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Abstract:

 We propose a model for Lorenz curves. It provides two-parameter fits to data on incomes, electric consumption, life expectation and rate of survival after cancer. Graphs result from the condition of maximum entropy and from the symmetry of statistical distributions. Differences in populations composing a binary system (poor and rich, young and old, etc.) bring about chance inequality. Symmetrical distributions insure equality of chances, generate Gini coefficients Gi ≤ ⅓, and imply that nobody gets more than twice the per capita benefit. Graphs generated by different symmetric distributions, but having the same Gini coefficient, intersect an even number of times. The change toward asymmetric distributions follows the pattern set by second-order phase transitions in physics, in particular universality: Lorenz plots reduce to a single universal curve after normalisation and scaling. The order parameter is the difference between cumulated benefit fractions for equal and unequal chances. The model also introduces new parameters: a cohesion range describing the extent of apparent equality in an unequal society, a poor-rich asymmetry parameter, and a new Gini-like indicator that measures unequal-chance inequality and admits a theoretical expression in closed form.
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1. Introduction

For more than a century, Lorenz plots [1] have been used to describe inequalities in economic, social or biological systems. Now, a curve in a plane is usually the expression of an underlying mathematical law. Our goal here is to derive it from a small number of plausible assumptions. Related Gini coefficients [2], [image: there is no content], provide a simple measure of inequality. We pointed out [3] that values 0 < Gi ≤ ⅓ implied the coexistence of inequality in the distribution of incomes with equality of chances for individuals to get any possible income. We also discussed [3,4] the relevancy for the characterisation of inequality of a notion originated in thermodynamics and statistical physics-entropy. Analogies between economics and physics have often been reported [5,6,7]. Georgescu-Roegen in particular discussed [8] the role of entropy in production, that is, material economic processes. Theil [9], Eliazar [10], and Eliazar and Sokolov [11], applied statistical formulations of entropy, or information, to an immaterial, but nevertheless objective and fundamental relation between individuals, inequality. Here we invoke entropy together with another crucial concept in many statistical phenomena, symmetry. We thus show that the elementary theory of second-order symmetry phase transitions in physics [12,13] can be tailored to describe Lorenz’s inequality plots and corresponding values of [image: there is no content]. Predictive features of the resulting model will be checked against data on incomes, electricity consumption, life expectation and (male) cancer-specific rate of survival. The latter is defined as the difference between cancer incidence and the mortality of its victims, that is, the probability of death by any cause other than cancer. Dollars, kWh, years, ages, etc., will thus be generically referred to as benefit units (BUs) in this paper, while “individuals” may apply to persons, households, economic agents, countries, etc. In the present probabilistic description, expectation values will be shown as [image: there is no content] and eventually assumed to be equal to their estimators, ‹w› = W/N, where [image: there is no content] is the total benefit of a particular kind enjoyed by N individuals, and the random variable [image: there is no content] defines the amount of benefit befallen on a randomly chosen individual n.

Phase transitions have been reported in connection with interest rate models [14], but they appear mainly in physics, from liquid-gas to binary alloy transformations. Different substances may feature dissimilar data, but suitable normalisation of relevant quantities results in a single universal curve on each side of the transition, describing the properties of all such substances simultaneously. This is the signature of a phase transition and is known as the law of corresponding states for liquid-gas transitions, and universality in the general case. In binary alloys universality is directly related to a change in the symmetry of relevant structures. We show here that it also holds for quite different economic and demographic data, and we obtain a mathematical expression for it. It allows the calculation of Lorenz plots and thereby their possible intersections. Atkinson [15] pointed out that, given two intersecting such curves, additive social welfare functions (SWF) could be found that led to opposite rankings of their inequality measures. We show that symmetry determines whether the number of such intersections, if any, is even or odd.

We discuss the relation between Lorenz graphs and statistical distributions in Section 2. Section 3 deals with the statistical implementation of the model, to be compared in Section 4 to data on incomes [16], electricity consumption [17], life expectation [16] and cancer survival [18]. Section 5 summarises our results and discusses their conceptual and practical consequences. An appendix proves two lemmas on relationships between the symmetry of the statistical distribution and the resulting graphs.



2. Thermodynamics of Inequality


2.1. Assumptions

Once averaged over many individuals and sufficiently long intervals of time (typically, a year) for data to be statistically significant, the individual’s share of total benefit defines one out of many possible states. Individuals are said to occupy such states, to an extent measured by occupation numbers, i.e., the number of individuals occupying a given state. One has strict equality of chances if this number is a constant for all available states. A complete set of occupation numbers determines the state of the social system referred to the particular kind of benefit under study. Time intervals will be assumed to be short compared with the characteristic time of relevant medical, economic or social changes. In other words, possible transformations of society are assumed to be quasi-static. In general [19], inequality indicators are expected to be scale and replication invariant, that is, there is no change in the indicator when either all benefits (scaling) or both benefit and number of individuals are multiplied by the same positive factor, while leaving occupation numbers unchanged (replication). The latter does not affect the per capita benefit [image: there is no content], while the ratio [image: there is no content], with expectation value [image: there is no content], is insensitive to scaling. Functions of the vector [image: there is no content] are thus automatically invariant against both transformations, and will be systematically used in the following. The cumulative distribution function (CDF) [image: there is no content], the probability density function (PDF) is [image: there is no content], and the quantile function [image: there is no content] is assumed to admit a Taylor expansion in the interval [image: there is no content]. The following assumptions are perhaps more specific to Lorenz functions, [image: there is no content]:


	Finiteness. Real-world benefits are finite, with [image: there is no content] and [image: there is no content], and [image: there is no content] is bounded, continuous, differentiable and single-peaked in an open interval, [image: there is no content], while [image: there is no content] otherwise.


	Generalised Pareto criterion. Individuals interact, and the resulting relationship is reflexive, symmetric and transitive, defining a class of equivalence. Two mutually exclusive such classes – poor and rich, young and old, healthy and sick, etc.—describe [image: there is no content] schematically, provided the boundary [image: there is no content] between them is realistically defined [20]. If the two classes are equally populated (a conceptually possible case), then [image: there is no content]. Otherwise [image: there is no content] satisfies the equation [image: there is no content], a simple generalisation of Pareto’s 80/20 well-known rule.


	Entropy. The most probable state of the whole society with respect to a given type of benefit maximises the entropy functional. Entropy decreases as inequality increases, and goes to zero in the limit of absolute inequality, where a single individual gets the whole benefit and leaves nothing to others.


	Phase transition. The change from [image: there is no content] to [image: there is no content] marks a second-order phase transition from symmetric to asymmetric distributions. The entropy and [image: there is no content] are continuous across the transition.




Of course, as will become clear below, supplementary assumptions will be necessary to obtain a workable expression for the entropy.



2.2 Statistical Mechanics and Lorenz Functions

Standard entropy maximisation with no other constraint than the obvious [image: there is no content] results in a single Lagrange multiplier and an optimal uniform, therefore symmetrical density [image: there is no content]. Consider an additive social welfare function [image: there is no content] and assume that the average [image: there is no content] is imposed as an additional constraint; the final result is:



[image: there is no content]



(1)




where α refers to “external” parameters, due to other constraints. The parameter [image: there is no content] is zero for uniform densities, and can in principle be obtained in the general case from [image: there is no content], which leads to [image: there is no content]. The optimal distribution is symmetrical if the centred function [image: there is no content] is even, with [image: there is no content]. In particular, a normal distribution is obtained if the value of [image: there is no content] becomes an additional constraint. Symmetric PDFs [image: there is no content] describe equality ofchances (for an individual to belong to any of two classes), [image: there is no content], irrespective of inequalities in the distribution of benefits. Maximum equal-chance inequality (ECI) has [image: there is no content], perfect equality requires [image: there is no content]. Equality of chances should not be confused with equality of opportunities [21], dealing with sources of inequality and their possible legitimacy.
Lorenz plots [image: there is no content] result from taking as evaluation function in Equation (1) [image: there is no content], the maximum benefit enjoyed by the fraction [image: there is no content] of the population. We write [image: there is no content] in an apparently redundant but altogether useful form, as different functions [image: there is no content] of arguments [image: there is no content], [image: there is no content], [image: there is no content], respectively, indicating as many ways of writing the same Riemann-Stieltjes integral:



[image: there is no content]



(2)




The expectation value of [image: there is no content] is [image: there is no content]. In terms of the function [image: there is no content], Gini’s coefficient [22] is given by:



[image: there is no content]



(3)




that is, [image: there is no content] is the same for any two distributions (called Gini-equivalent here) with the same value of [image: there is no content], and therefore with the same area under [image: there is no content]-curves. Strict equality of chances requires a uniform distribution, that is, [image: there is no content] in Equation (1). Then, using Equation (2) and [image: there is no content], one obtains [image: there is no content], a result that applies to all symmetric distributions according to Lemma 1 in the appendix. Now, since nobody survives with less than zero income or, for that matter, with zero life expectancy, a symmetric distribution implies that nobody earns more than twice the average. Incidentally, this furnishes a useful test of consistency when values of [image: there is no content] are found. The resulting Lorenz curve is:


[image: there is no content]



(4)




and, correspondingly, [image: there is no content], where [image: there is no content] and [image: there is no content] are universal functions pertaining to uniform distributions, a particular case of symmetric distributions. Any of the latter is Gini-equivalent to one of the former wit [image: there is no content] and [image: there is no content]. Resulting L-curves scan the whole [image: there is no content] region with [image: there is no content]. Changing to [image: there is no content] requires the transfer of individuals from one half of the population to the other, so the distribution becomes asymmetric and [image: there is no content] becomes downward-convex.

2.2.1. L-Curves

Figure 1a shows four theoretical curves displaying: (i) perfect equality ([image: there is no content]), (ii) a normal distribution together with (iii) its Gini-equivalent uniform counterpart, the curves (ii) and (iii) being practically indistinguishable in Figure 1a, and (iv) maximum inequality compatible with equal chance, [image: there is no content]. Figure 1a has [image: there is no content] abscissas, instead of [image: there is no content] as usual. This is not accidental. It means that the reference state—conceptually possible but unattained in practice—is no longer perfect equality but maximum ECI. We refer to the resulting graphs as L-curves. Figure 1a also displays empirical data on incomes in the United States, world electricity consumption, life expectation per individual in a class of age, and the rate of survival of males in the USA after contracting cancer. Corresponding distributions are shown in Figure 1b.

Figure 1. (a) Concave and convex L-graphs resulting from equal- and unequal-chance inequality, respectively. [image: there is no content] Perfect equality, [image: there is no content]. [image: there is no content] Gaussian and its Gini-equivalent uniform density, both having [image: there is no content]—Equal-chance line, [image: there is no content]. [image: there is no content] USA incomes. [image: there is no content]World electricity consumption. [image: there is no content]Life expectation. ♦♦♦ Cancer rate of survival. Class boundaries, [image: there is no content] and [image: there is no content]. –– Unit-slope tangent. X──X Distance d from equal-chance line. (b) Corresponding statistical distributions. Symbols apply as in (a).
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The unequal-chance inequality (UCI) region is defined by [image: there is no content]. Real-world data lies in this region and forms downward-concave L-curves. This is also the case of beer bubble-size distributions [23], that systematically show [image: there is no content] and asymmetric PDFs. Of course, besides the common points (0,0) and (1,1), there is no possible intersection of concave and convex L-curves. The transition line, [image: there is no content], implies [image: there is no content] and an optimal uniform density [image: there is no content], shown in Figure 1b.



2.2.2. Symmetry, Class Boundaries and Discontinuities

The median, the mode and the mean coincide for symmetrical distributions. The natural boundary between classes is then the axis of symmetry, as illustrated in Figure 1b, with [image: there is no content] and [image: there is no content]. By Lemma 1 in the appendix, it coincides with a maximum of [image: there is no content]. In fact, the extremums of [image: there is no content] occur in both regions at points of abscissa [image: there is no content] where [image: there is no content], that is, where the tangent to [image: there is no content] is perpendicular to the second diagonal in Figure 1a, of equation [image: there is no content]. We therefore extend the definition of class boundary to the locus of all extremums of [image: there is no content]. We call [image: there is no content] the ideal UCI class-boundary line, because it closely describes the minima of [image: there is no content] in this region. Now, ECI extremums of [image: there is no content] form a vertical line of abscissa [image: there is no content], while [image: there is no content] in the UCI region. There is clearly a discontinuity in the values of [image: there is no content], a hint of a possible phase transition. Since [image: there is no content] must be continuous according to the generalised Pareto principle, we circumvent the difficulty by giving region-dependent definitions: [image: there is no content] in the ECI region and [image: there is no content] in the UCI region.

Inequality thus shows up in at least two conceivable and non equivalent ways: for ECI, the poor fraction of the population equals the rich fraction, [image: there is no content], but the former as a whole gets less than the latter, [image: there is no content]; for UCI, one of the two classes outnumbers the other, [image: there is no content], with [image: there is no content] for absolute inequality. The generalised Pareto criterion results in [image: there is no content] and, from Lemma 2 in the appendix, the maximum per capita benefit is necessarily greater than twice the average in this case.




2.3. Universality

If a phase transition is indeed at work here, we expect a law of corresponding states to apply, as it does for similar transformations in physics [12,13]. L-curves should result from one another by suitable rescaling of universal functions, at most one on each side of the transition line [image: there is no content]. This is shown in Figure 2 for symmetrical distributions in Figure 2a and empirical UCI data in Figure 2b. Gini-equivalent [image: there is no content]-curves from symmetrical distributions necessarily intersect an even number of times, twice in practice, on both sides of the axis of symmetry, as illustrated by Figure 2a. Figure 2b describes UCI and results from a rotation of axes by 45 degrees in Figure 1a, so as to make the F²-axis join the main diagonal, followed by (cosmetic) inversion of the resulting ordinates to make data positive. One obtains [image: there is no content] graphs looking like the made-up dashed curve in Figure 2b, intersecting once the UCI universal curve. After normalisation and rescaling of the X-axis so as to have all [image: there is no content] coincident a [image: there is no content], empirical data crowds indeed close to a universal curve as shown in Figure 2b. The rotation results in new coordinates [image: there is no content], where [image: there is no content] is the universal curve, defined parametrically in the UCI region by:

Figure 2. Symmetry-dependent universal behaviours. (a) ECI concave L-curves: ––Perfect equality, [image: there is no content]. [image: there is no content] Uniform distribution, [image: there is no content]. [image: there is no content] Gini-equivalent, Gaussian-like distribution, [image: there is no content] (b) UCI convex L-curves: [image: there is no content] Incomes. [image: there is no content] World electricity consumption. [image: there is no content] Life expectation. ♦♦♦ Rate of survival after cancer. –– Theoretical curve. [image: there is no content] Absolute inequality. [image: there is no content]Fictitious data before normalisation and symmetrisation (right-hand ordinates, with [image: there is no content]).
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[image: there is no content]



(5)




where [image: there is no content] is the maximum of [image: there is no content], with d the maximum distance between the [image: there is no content] line and the L-curve.


Data shows this maximum to occur at values [image: there is no content] in all cases. The theoretical curve, to be obtained in the next section, is also shown for comparison. The L-curve for absolute inequality is just a pair of perpendicular straight lines, [image: there is no content] for [image: there is no content], and [image: there is no content] for [image: there is no content], with [image: there is no content]. It becomes [image: there is no content] fo [image: there is no content] and [image: there is no content] for [image: there is no content] in Figure 2b.




3. The Transition to Convexity


3.1. Probabilistic Model

We define the unequal-chance order parameter (OP) of the concave → convex transformation as the difference between equal- and unequal-chance cumulated benefit fractions for the population fraction [image: there is no content] in the UCI region, and zero elsewhere. It is just the numerator [image: there is no content] in the second Equation (5). Let [image: there is no content] be the entropy functional an [image: there is no content] the entropy in the [image: there is no content] equal-chance state. We assume that constraints exist that result in an entropy difference [image: there is no content] that depends not only on [image: there is no content], but also on [image: there is no content]. Indeed, if correlations exist, they should depend on the gradient of the order parameter. The maximum [image: there is no content] for each curve is the difference between the probability of being poor and that of being rich, [image: there is no content]. At absolute inequality [image: there is no content], [image: there is no content] and [image: there is no content]; thereon [image: there is no content] increases as d decreases. Now, the asymmetry is the same if the poor outnumber the rich—the case of incomes—or just the opposite, as for demography, where the numerous young are richer in life expectation. The signs of the OP and its derivative should therefore be irrelevant. The Taylor expansion of the entropy density [image: there is no content] contains then only even powers of [image: there is no content] and [image: there is no content]. For [image: there is no content], to fourth order in the OP and second order in its derivative we have:



[image: there is no content]



(6)




where [image: there is no content], and [image: there is no content] is required to make [image: there is no content], while [image: there is no content] must optimise the integral. Note the great generality of this approach. It applies equally well to any type of entropic form out of the many that have been proposed, whether extensive or not [24]. Equation (6) could also conceivably describe average entropy production, for example. Anyway, these undefined features do not prevent the calculation to proceed.

3.1.1. Entropy Maximisation

At first sight, three parameters, [image: there is no content], are necessary to describe a single L-curve, but Figure 2b suggests that at most two parameters, d and eventually [image: there is no content], should suffice. Consider then two cases where we know that [image: there is no content] is a constant, the equal chance limit with [image: there is no content], and absolute inequality with [image: there is no content] and [image: there is no content]. According to the definition, [image: there is no content] for arbitrary [image: there is no content] or [image: there is no content] in the entire ECI region, which results in [image: there is no content] in it. Maximum entropy requires [image: there is no content], so [image: there is no content] is either zero, as expected for the first case, or [image: there is no content] in the second case, i.e. [image: there is no content] and [image: there is no content]. We tentatively apply these values to the whole UCI region. Incidentally, if L-curves rather than straight lines are to be obtained, this is a matter-of-fact argument for the introduction of the derivative term. The condition for an extremum is given by Euler’s equation, which reads:



[image: there is no content]



(7)




with boundary conditions [image: there is no content], supplemented by [image: there is no content]. Useful insight is obtained from successive approximate solutions. All boundary conditions are satisfied in the [image: there is no content] limit by [image: there is no content]. When replaced in (6) this solution makes the integral equal to zero as announced, independently of the value of [image: there is no content]. Next, we linearise Equation (7) by replacing [image: there is no content] by its average in the previous approximation, [image: there is no content]. Now, if [image: there is no content] is indeed universal it cannot depend on d, which imposes [image: there is no content]. The parameter [image: there is no content] is a natural unit of measurement of [image: there is no content] and of the rate of change of the OP, insofar as a sizeable change in the latter along an L-curve requires significant changes in the ratio [image: there is no content]. Schematically, it defines a cohesion range on [image: there is no content] such that increments [image: there is no content] are unimportant, those where [image: there is no content] do matter, and a significant level of equality of chances persists for [image: there is no content]. The product [image: there is no content] furnishes a convenient correlation or cohesion indicator: it is a maximum, unity, for minimum UCI, [image: there is no content], and decreases to zero, as shown below, for absolute inequality ([image: there is no content]). Equation (7) admits a first integral:


[image: there is no content]



(8)






3.1.2. Class Asymmetry and Intersections of L-Curves

If [image: there is no content] is not strictly symmetrical about[image: there is no content], the two derivatives at the end of (8) will be different, which requires two values of [image: there is no content] for a single value of d. We use the notation [image: there is no content] for a simultaneous description of the two classes. The approximate solution found for Equation (7) above suggests putting [image: there is no content]. When this is replaced in Equation (8), its solution can be expressed in parametric form, in terms of the incomplete, [image: there is no content], and complete, [image: there is no content], elliptic integrals of the first kind [25], with [image: there is no content]:



[image: there is no content]



(9)




and:


[image: there is no content]



(10)




Its continuation into the region [image: there is no content] is just [image: there is no content]. The cohesion ranges are:



[image: there is no content]



(11)




One recovers the approximate expression for [image: there is no content] obtained above. Equation (11) shows that the average parameter [image: there is no content], describing the interclass cohesion, is a decreasing function of that becomes [image: there is no content] at absolute inequality, where no cohesion is possible. Class asymmetry is defined by [image: there is no content]. If [image: there is no content], two parameters, like d and [image: there is no content], [image: there is no content] and , or [image: there is no content] and [image: there is no content], suffice to characterise an L-curve. As a result two convex L-curves, say A and B, having (i) [image: there is no content], coincide if [image: there is no content]; they intersect once if [image: there is no content]. In both cases [image: there is no content]. (ii) If [image: there is no content] intersections are irrelevant because in all case [image: there is no content], but there is no intersection if [image: there is no content]. The apparent dependence of [image: there is no content] on k² is in fact negligible over the range of interest. The universal curve in Figure 2b makes use of the average [image: there is no content] and provides an acceptable fit to all our data.





4. Results


4.1. Fitting Empirical Data

Equations (5), once solved for [image: there is no content] and [image: there is no content] as functions of [image: there is no content] and [image: there is no content], allow, using Equation (9), to obtain theoretical Lorenz curves in the UCI region. The parameters [image: there is no content] and [image: there is no content] are directly read from data—i.e., not adjusted for an overall fit. They provide Lorenz curves as shown in Figure 3a conventional [image: there is no content] plot. The expansion in Equation (6) is in principle valid only for [image: there is no content]. A distinctive feature of this model is that it precisely defines its own limit, [image: there is no content], above which the theoretical initial slope of [image: there is no content] becomes unrealistically negative, as suggested by Figure 3. Universality of L-curves is nevertheless substantiated well beyond this limit, as shown in Figure 2, where cancer data has [image: there is no content].

Figure 3. Conventional [image: there is no content] Lorenz plots. Symbols for data and for their fits by model predictions are shown in the insert. The model should not apply for values [image: there is no content].
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4.2. A New Indicator

The main advantage of the Gini coefficient is its conceptual simplicity, though counterbalanced by possible inaccuracies when obtained from discontinuous data. Equations (5) and (9) provide a function describing L-curves and thereby allow a precise numerical integration of the function [image: there is no content] in Equation (3). Gini values in Table 1 below have been obtained in this way. Furthermore, a new Gini-like indicator [image: there is no content], measures unequal-chance inequality in the [image: there is no content] plane, and is easily obtained in closed form. It is twice the area under the curve [image: there is no content]:

Table 1. Characteristic parameters of unequal-chance inequality for different types of data. [image: there is no content] is the largest fraction of the population, the poorest in the first two cases, the youngest in the other two.


	BENEFIT
	k2
	FP
	XM
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	Giuc(k)





	Income
	0.008
	0.58
	0.68
	0.16
	0.99
	0.35
	0.46
	0.16



	Electricity consumption
	0.046
	0.66
	0.52
	0.32
	0.97
	0.04
	0.60
	0.38



	Life expectation
	0.159
	0.76
	0.55
	0.52
	0.89
	0.10
	0.79
	0.68



	Model limits
	0.220
	0.80
	0.5
	0.60
	0.85
	0
	0.85
	0.78



	Survival after cancer
	0.344
	0.86
	0.45
	0.71
	0.78
	–0.11
	––
	––










[image: there is no content]



(12)




Quantities like [image: there is no content] and [image: there is no content], resulting from a good fit to the whole L-curve, become meaningless for [image: there is no content]. Others, dependent on the single value d through [image: there is no content] like [image: there is no content], are still valid beyond this limit. This is shown in Table 1.






5. Conclusions

This work provides a model that fairly fits Lorenz curves, up to [image: there is no content]. It is just the social analogue of Ginzburg and Landau’s ideas [13] on second-order phase transitions in physics. The symmetry of the statistical distribution plays a crucial role in this development. Symmetrical distributions result in ECI downward-concave [image: there is no content] curves, [image: there is no content] and [image: there is no content], i.e., nobody gets more than twice the per capita average, a straightforward but apparently overlooked result. Since equality of chances must be a rather unusual event, too low values of [image: there is no content] may be profitably checked for consistency against this relation. Asymmetrical distributions display convex L-curves, [image: there is no content] and impose [image: there is no content]. Initial slopes of [image: there is no content] furnish a supplementary criterion, though less convenient for numerical applications. A clear-cut distinction appears to be necessary between equal- and unequal-chance inequalities, related to different regions in the [image: there is no content] plane. One may expect that critical values, corresponding to [image: there is no content] at the phase transition, will also be found in other indicators of inequality. New parameters appear in the UCI region, like the cohesion range [image: there is no content], measuring the range of persistent equality in the distribution, the asymmetry parameter [image: there is no content], and the Gini-like coefficient [image: there is no content]. The latter measures how far away a society is from maximum ECI in just the same way as [image: there is no content] measures how far away it is from perfect equality.

Quite different phenomena, from income distribution to cancer rate of survival, obey the same statistical laws. The resulting description of inequality implies an apparently oversimplified two-class division of society. A more detailed analysis should provide criteria allowing recognition of existing classes, whatever their number, out of real-life distributions. This amounts to a nontrivial challenge – modelling the probability density function.







Appendix: Two Lemmas on Convexity

We assumed that [image: there is no content] admits a Taylor expansion in the region [image: there is no content]:



[image: there is no content]



(A1)




so one obtains:


[image: there is no content]



(A2)




Let the density [image: there is no content] be single-peaked at [image: there is no content], with [image: there is no content]. Then the following lemma applies to downward-concave L-curves:

Lemma 1: Let [image: there is no content] be a parameter that preserves the symmetry of distributions, while defining a family [image: there is no content] of concave L-curves that spans the whole region [image: there is no content] as [image: there is no content] changes. (a) Such families are generated by, and only by, symmetric distributions, with [image: there is no content]. Maximum ECI admits only a uniform distribution. (b) Functions [image: there is no content] have their maxima at a common abscissa, [image: there is no content], and are symmetrical about this point. Peaks in the densities, [image: there is no content], and in the functions [image: there is no content], occur at the same values [image: there is no content] and [image: there is no content]. (c) If [image: there is no content], the initial slope of [image: there is no content] is infinite, if [image: there is no content], [image: there is no content] is necessarily discontinuous.

Proof: (a) The probability density for perfect equality is a Dirac δ-function, [image: there is no content], symmetrical about [image: there is no content]. Maximum ECI has [image: there is no content] and from Equation (2), [image: there is no content], that is, [image: there is no content] for [image: there is no content]. This is the uniform, therefore symmetrical distribution shown in Figure 1b. From the definition of [image: there is no content],



[image: there is no content]
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where [image: there is no content]. The last term is symmetric about [image: there is no content] and [image: there is no content] is odd. The antiderivative, like [image: there is no content], is therefore even in [image: there is no content], i.e. symmetrical about [image: there is no content]. Conversely, if [image: there is no content] is symmetric about [image: there is no content], [image: there is no content] and [image: there is no content] alike are odd, and the derivative of the latter, [image: there is no content], is an even function of [image: there is no content] , i.e., symmetrical about [image: there is no content]. Symmetry entails, for [image: there is no content], [image: there is no content] iff [image: there is no content] and [image: there is no content], with [image: there is no content]. This gives [image: there is no content] or [image: there is no content] as announced. (b) If [image: there is no content] is symmetrical, [image: there is no content] by definition of ECI, and [image: there is no content]. Maxima of [image: there is no content] occur for [image: there is no content]. Concavity imposes [image: there is no content], or [image: there is no content]. (c) If [image: there is no content], Equation (6) gives [image: there is no content]. For [image: there is no content], Equation (5) implies that [image: there is no content] if [image: there is no content] is to remain bounded, so [image: there is no content], which proves the discontinuity.
Lemma 2. Under the same conditions on [image: there is no content] and [image: there is no content] as in lemma 1, downward-convex L-curves, (a) have [image: there is no content], [image: there is no content] and finite initial slopes, and (b) result from asymmetric distributions with [image: there is no content].

Proof: (a) Convexity requires the L-curve to satisfy [image: there is no content] everywhere, so the initial slope is [image: there is no content], while from Equation (6) it would be infinity if [image: there is no content]. It also implies [image: there is no content], that is, [image: there is no content]. (b) Any asymmetric function [image: there is no content] can be split into odd [image: there is no content] and even [image: there is no content] components, where we now take [image: there is no content] as independent variable. Recalling that [image: there is no content], assume that [image: there is no content]. Then,



[image: there is no content]
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where we made use of the fact that [image: there is no content] for [image: there is no content] to change the upper limits of integration from [image: there is no content] to 1. The first term in the right-hand side is zero. The second term is also zero, because [image: there is no content] and [image: there is no content] are of opposite parity in the interval of integration. Then, since [image: there is no content] and [image: there is no content] are both odd and not identically zero, the last integral cannot be zero. This is absurd, because contrary to the definition implying [image: there is no content].
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