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Abstract: We propose a model for Lorenz curves. It provides two-parameter fits to data on 

incomes, electric consumption, life expectation and rate of survival after cancer. Graphs 

result from the condition of maximum entropy and from the symmetry of statistical 

distributions. Differences in populations composing a binary system (poor and rich, young 

and old, etc.) bring about chance inequality. Symmetrical distributions insure equality of 

chances, generate Gini coefficients Gi  ⅓, and imply that nobody gets more than twice the 

per capita benefit. Graphs generated by different symmetric distributions, but having the 

same Gini coefficient, intersect an even number of times. The change toward asymmetric 

distributions follows the pattern set by second-order phase transitions in physics, in 

particular universality: Lorenz plots reduce to a single universal curve after normalisation 

and scaling. The order parameter is the difference between cumulated benefit fractions for 

equal and unequal chances. The model also introduces new parameters: a cohesion range 

describing the extent of apparent equality in an unequal society, a poor-rich asymmetry 

parameter, and a new Gini-like indicator that measures unequal-chance inequality and 

admits a theoretical expression in closed form. 

Keywords: Lorenz plots; inequality of chances; symmetry; phase transition;  

maximum entropy; Gini coefficient 

PACS Codes: 89.65.Gh; 64.60.A- 

 

1. Introduction 

For more than a century, Lorenz plots [1] have been used to describe inequalities in economic, 

social or biological systems. Now, a curve in a plane is usually the expression of an underlying 
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mathematical law. Our goal here is to derive it from a small number of plausible assumptions. Related 

Gini coefficients [2], , provide a simple measure of inequality. We pointed out [3] that values 0 < Gi  ⅓ 

implied the coexistence of inequality in the distribution of incomes with equality of chances for 

individuals to get any possible income. We also discussed [3,4] the relevancy for the characterisation of 

inequality of a notion originated in thermodynamics and statistical physics-entropy. Analogies between 

economics and physics have often been reported [5–7]. Georgescu-Roegen in particular discussed [8] 

the role of entropy in production, that is, material economic processes. Theil [9], Eliazar [10], and Eliazar 

and Sokolov [11], applied statistical formulations of entropy, or information, to an immaterial, but 

nevertheless objective and fundamental relation between individuals, inequality. Here we invoke 

entropy together with another crucial concept in many statistical phenomena, symmetry. We thus show 

that the elementary theory of second-order symmetry phase transitions in physics [12,13] can be 

tailored to describe Lorenz’s inequality plots and corresponding values of . Predictive features of the 

resulting model will be checked against data on incomes, electricity consumption, life expectation and 

(male) cancer-specific rate of survival. The latter is defined as the difference between cancer incidence 

and the mortality of its victims, that is, the probability of death by any cause other than cancer. Dollars, 

kWh, years, ages, etc., will thus be generically referred to as benefit units (BUs) in this paper, while 

“individuals” may apply to persons, households, economic agents, countries, etc. In the present 

probabilistic description, expectation values will be shown as …  and eventually assumed to be equal 

to their estimators, ‹w› = W/N, where ∑  is the total benefit of a particular kind enjoyed by  

N individuals, and the random variable  defines the amount of benefit befallen on a randomly 

chosen individual n. 

Phase transitions have been reported in connection with interest rate models [14], but they appear 

mainly in physics, from liquid-gas to binary alloy transformations. Different substances may feature 

dissimilar data, but suitable normalisation of relevant quantities results in a single universal curve on 

each side of the transition, describing the properties of all such substances simultaneously. This is the 

signature of a phase transition and is known as the law of corresponding states for liquid-gas transitions, 

and universality in the general case. In binary alloys universality is directly related to a change in the 

symmetry of relevant structures. We show here that it also holds for quite different economic and 

demographic data, and we obtain a mathematical expression for it. It allows the calculation of Lorenz 

plots and thereby their possible intersections. Atkinson [15] pointed out that, given two intersecting 

such curves, additive social welfare functions (SWF) could be found that led to opposite rankings of their 

inequality measures. We show that symmetry determines whether the number of such intersections, if any, 

is even or odd. 

We discuss the relation between Lorenz graphs and statistical distributions in Section 2. Section 3 

deals with the statistical implementation of the model, to be compared in Section 4 to data on incomes [16], 

electricity consumption [17], life expectation [16] and cancer survival [18]. Section 5 summarises our 

results and discusses their conceptual and practical consequences. An appendix proves two lemmas on 

relationships between the symmetry of the statistical distribution and the resulting graphs. 
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2. Thermodynamics of Inequality 

2.1. Assumptions 

Once averaged over many individuals and sufficiently long intervals of time (typically, a year) for 

data to be statistically significant, the individual’s share of total benefit defines one out of many 

possible states. Individuals are said to occupy such states, to an extent measured by occupation 

numbers, i.e., the number of individuals occupying a given state. One has strict equality of chances if 

this number is a constant for all available states. A complete set of occupation numbers determines the 

state of the social system referred to the particular kind of benefit under study. Time intervals will be 

assumed to be short compared with the characteristic time of relevant medical, economic or social 

changes. In other words, possible transformations of society are assumed to be quasi-static. In general [19], 

inequality indicators are expected to be scale and replication invariant, that is, there is no change in the 

indicator when either all benefits (scaling) or both benefit and number of individuals are multiplied by 

the same positive factor, while leaving occupation numbers unchanged (replication). The latter does 
not affect the per capita benefit , while the ratio , with expectation value 1, is 

insensitive to scaling. Functions of the vector  , … , …  are thus automatically invariant 

against both transformations, and will be systematically used in the following. The cumulative 

distribution function (CDF) Pr , the probability density function (PDF) is 

, and the quantile function  is assumed to admit a Taylor expansion in the interval 0 1. 

The following assumptions are perhaps more specific to Lorenz functions, : 

 Finiteness. Real-world benefits are finite, with inf 0  and sup ∞ ,  

and  is bounded, continuous, differentiable and single-peaked in an open interval,  

, 0, while 0 otherwise. 

 Generalised Pareto criterion. Individuals interact, and the resulting relationship is reflexive, 

symmetric and transitive, defining a class of equivalence. Two mutually exclusive such classes – 

poor and rich, young and old, healthy and sick, etc.—describe  schematically, provided the 
boundary  between them is realistically defined [20]. If the two classes are equally populated 

(a conceptually possible case), then . Otherwise  satisfies the equation 1 , 

a simple generalisation of Pareto’s 80/20 well-known rule. 

 Entropy. The most probable state of the whole society with respect to a given type of benefit 

maximises the entropy functional. Entropy decreases as inequality increases, and goes to zero in 

the limit of absolute inequality, where a single individual gets the whole benefit and leaves 

nothing to others. 

 Phase transition. The change from  to  marks a second-order phase transition from 

symmetric to asymmetric distributions. The entropy and  are continuous across the transition. 

Of course, as will become clear below, supplementary assumptions will be necessary to obtain a 

workable expression for the entropy. 
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2.2 Statistical Mechanics and Lorenz Functions 

Standard entropy maximisation with no other constraint than the obvious 1 results in 

a single Lagrange multiplier and an optimal uniform, therefore symmetrical density . 

Consider an additive social welfare function  and assume that the average  is 

imposed as an additional constraint; the final result is: 

,
,      , ,  (1)  

where  refers to “external” parameters, due to other constraints. The parameter  is zero for uniform 

densities, and can in principle be obtained in the general case from ln , , which  

leads to , . The optimal distribution is symmetrical if the centred function  

 is even, with 1. In particular, a normal distribution is obtained if the 

value of  becomes an additional constraint. Symmetric PDFs  describe equality of chances 

(for an individual to belong to any of two classes), , irrespective of inequalities in the 

distribution of benefits. Maximum equal-chance inequality (ECI) has 0, perfect equality 

requires 1 . Equality of chances should not be confused with equality of opportunities [21], 

dealing with sources of inequality and their possible legitimacy. 
Lorenz plots  result from taking as evaluation function in Equation (1) , the 

maximum benefit enjoyed by the fraction  of the population. We write  in an apparently 

redundant but altogether useful form, as different functions , ,  of arguments , , ² , 

respectively, indicating as many ways of writing the same Riemann-Stieltjes integral: 

²
√

2√

²

. (2)  

The expectation value of  is 1 1 0. In terms of the function | ², 

Gini’s coefficient [22] is given by:  

2
1
3

2 |
1
3

2 , (3)  

that is,  is the same for any two distributions (called Gini-equivalent here) with the same value of 

, and therefore with the same area under -curves. Strict equality of chances requires a uniform 

distribution, that is, 0  in Equation (1). Then, using Equation (2) and 1 1 , one obtains 

2 , a result that applies to all symmetric distributions according to Lemma 1 in the 

appendix. Now, since nobody survives with less than zero income or, for that matter, with zero life 

expectancy, a symmetric distribution implies that nobody earns more than twice the average. 

Incidentally, this furnishes a useful test of consistency when values of  are found. The resulting 

Lorenz curve is: 

|
2

1
1
1

, 
 

(4)  



Entropy 2013, 15            

 

1989

and, correspondingly, | , where 1 3  and 1  are 

universal functions pertaining to uniform distributions, a particular case of symmetric distributions. 

Any of the latter is Gini-equivalent to one of the former with   and . 

Resulting L-curves scan the whole 0  region with 1 0. Changing to  requires the 

transfer of individuals from one half of the population to the other, so the distribution becomes 

asymmetric and ²  becomes downward-convex. 

2.2.1. L-Curves 

Figure 1a shows four theoretical curves displaying: (i) perfect equality ( 1), (ii) a normal 

distribution together with (iii) its Gini-equivalent uniform counterpart, the curves (ii) and (iii) being 

practically indistinguishable in Figure 1a, and (iv) maximum inequality compatible with equal chance, 

² . Figure 1a has ² abscissas, instead of  as usual. This is not accidental. It means that the 

reference state—conceptually possible but unattained in practice—is no longer perfect equality but 

maximum ECI. We refer to the resulting graphs as L-curves. Figure 1a also displays empirical data on 

incomes in the United States, world electricity consumption, life expectation per individual in a class 

of age, and the rate of survival of males in the USA after contracting cancer. Corresponding distributions 

are shown in Figure 1b. 

Figure 1. (a) Concave and convex L-graphs resulting from equal- and unequal-chance 

inequality, respectively. ─·─ Perfect equality, . —— Gaussian and its Gini-equivalent 

uniform density, both having 0.17 —Equal-chance line, ² .  USA 

incomes. World electricity consumption. Life expectation.  Cancer rate of 

survival. Class boundaries, ²  and ² 1 ² . –– Unit-slope tangent. X──X 

Distance d from equal-chance line. (b) Corresponding statistical distributions. Symbols 

apply as in (a). 
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The unequal-chance inequality (UCI) region is defined by ² ² . Real-world data lies in this 

region and forms downward-concave L-curves. This is also the case of beer bubble-size distributions [23], 

that systematically show 0.33 and asymmetric PDFs. Of course, besides the common points (0,0) 

and (1,1), there is no possible intersection of concave and convex L-curves. The transition line,  

², implies 2  and an optimal uniform density , shown in Figure 1b. 

2.2.2. Symmetry, Class Boundaries and Discontinuities 

The median, the mode and the mean coincide for symmetrical distributions. The natural  

boundary between classes is then the axis of symmetry, as illustrated in Figure 1b, with   and  

1. By Lemma 1 in the appendix, it coincides with a maximum of ² ². In 

fact,  the extremums of  occur in both regions at points of abscissa  where 
²

1, that is, 

where the tangent to ²  is perpendicular to the second diagonal in Figure 1a, of equation 

1 . We therefore extend the definition of class boundary to the locus of all extremums 

of . We call  the ideal UCI class-boundary line, because it closely describes the minima of  

in this region. Now, ECI extremums of  form a vertical line of abscissa , while 1 in 

the UCI region. There is clearly a discontinuity in the values of , a hint of a possible phase 
transition. Since  must be continuous according to the generalised Pareto principle, we circumvent 

the difficulty by giving region-dependent definitions:  in the ECI region and  

in the UCI region. 

Inequality thus shows up in at least two conceivable and non equivalent ways: for ECI, the poor 
fraction of the population equals the rich fraction, 1 , but the former as a whole gets less  

than the latter,  1 ; for UCI, one of the two classes outnumbers the other,  

1– , with 1  for absolute inequality. The generalised Pareto criterion results in 

1  and, from Lemma 2 in the appendix, the maximum per capita benefit is necessarily 

greater than twice the average in this case. 

2.3. Universality 

If a phase transition is indeed at work here, we expect a law of corresponding states to apply, as it 

does for similar transformations in physics [12,13]. L-curves should result from one another by 

suitable rescaling of universal functions, at most one on each side of the transition line ². This is 

shown in Figure 2 for symmetrical distributions in Figure 2a and empirical UCI data in Figure 2b. 

Gini-equivalent -curves from symmetrical distributions necessarily intersect an even number of 

times, twice in practice, on both sides of the axis of symmetry, as illustrated by Figure 2a. Figure 2b 

describes UCI and results from a rotation of axes by 45 degrees in Figure 1a, so as to make the F²-axis 

join the main diagonal, followed by (cosmetic) inversion of the resulting ordinates to make data 

positive. One obtains  graphs looking like the made-up dashed curve in Figure 2b, intersecting 

once the UCI universal curve. After normalisation and rescaling of the X-axis so as to have all  

coincident at , empirical data crowds indeed close to a universal curve as shown in Figure 2b. 
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The rotation results in new coordinates , , where  is the universal curve, defined 

parametrically in the UCI region by:  

² ²
2

,   
² ²

√2
   (5) 

where √2 is the maximum of , with d the maximum distance between the ² line 

and the L-curve. 

Figure 2. Symmetry-dependent universal behaviours. (a) ECI concave L-curves: ––Perfect 

equality, 0. Uniform distribution, 0.33, 0.17. – – – Gini-equivalent, 

Gaussian-like distribution, 0.17.  (b) UCI convex L-curves:  Incomes.  

 World electricity consumption.  Life expectation.  Rate of survival after 

cancer. –– Theoretical curve.  Absolute inequality. - - -Fictitious data before 

normalisation and symmetrisation (right-hand ordinates, with √2 0.7, 0.8). 

 

Data shows this maximum to occur at values  in all cases. The theoretical curve, to be 

obtained in the next section, is also shown for comparison. The L-curve for absolute inequality is just a 

pair of perpendicular straight lines, 0 for 0 ² 1, and 0 1 for ² 1, with √2 1. 

It becomes ² 2  for  and 2 1  for  in Figure 2b.  

3. The Transition to Convexity 

3.1. Probabilistic Model 

We define the unequal-chance order parameter (OP) of the concave → convex transformation as 

the difference between equal- and unequal-chance cumulated benefit fractions for the population fraction  

in the UCI region, and zero elsewhere. It is just the numerator ² ²  in the 

second Equation (5). Let  be the entropy functional and  the entropy in the ² equal-chance 

state. We assume that constraints exist that result in an entropy difference 0 that depends 

not only on , but also on 


 
. Indeed, if correlations exist, they should depend on the gradient of 
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the order parameter. The maximum √2  for each curve is the difference between the 
probability of being poor and that of being rich, 1 2 1 √2 1 . At 

absolute inequality 1, 1 and 0; thereon  increases as d decreases. Now, the 

asymmetry is the same if the poor outnumber the rich—the case of incomes—or just the opposite, as 

for demography, where the numerous young are richer in life expectation. The signs of the OP and its 

derivative should therefore be irrelevant. The Taylor expansion of the entropy density  contains then 

only even powers of  and 
 
. For 1, to fourth order in the OP and second order in its 

derivative we have: 

1 ²

1 4 ² , 
(6) 

where ² , and 0 is required to make 1 0, while 0 must optimise the 

integral. Note the great generality of this approach. It applies equally well to any type of entropic form 

out of the many that have been proposed, whether extensive or not [24]. Equation (6) could also 

conceivably describe average entropy production, for example. Anyway, these undefined features do 

not prevent the calculation to proceed. 

3.1.1. Entropy Maximisation 

At first sight, three parameters, , , , are necessary to describe a single L-curve, but Figure 2b 

suggests that at most two parameters, d and eventually , should suffice. Consider then two cases 

where we know that  is a constant, the equal chance limit with 0, and absolute inequality with 

1 and 1 0. According to the definition,  for arbitrary  or  in the entire ECI region, 

which results in 0  in it. Maximum entropy requires 2 0 , so  is 

either zero, as expected for the first case, or 1 in the second case, i.e. 2 and 1. We 

tentatively apply these values to the whole UCI region. Incidentally, if L-curves rather than straight 

lines are to be obtained, this is a matter-of-fact argument for the introduction of the derivative term. 

The condition for an extremum is given by Euler’s equation, which reads: 

²
²

²
1 2 ² 0, (7) 

with boundary conditions 1, 0 , supplemented by 0 1 0 . 

Useful insight is obtained from successive approximate solutions. All boundary conditions are satisfied 

in the 0  limit by sin ,  . When replaced in (6) this solution makes the integral 

equal to zero as announced, independently of the value of . Next, we linearise Equation (7) by 

replacing  by its average in the previous approximation, sin²  . Now, if  is indeed 

universal it cannot depend on d, which imposes 1 ². The parameter  is a natural unit of 
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measurement of  and of the rate of change of the OP, insofar as a sizeable change in the latter along 

an L-curve requires significant changes in the ratio   . Schematically, it defines a cohesion range on  

such that increments Δ  are unimportant, those where ∆  do matter, and a significant level 

of equality of chances persists for Δ . The product  furnishes a convenient correlation or 

cohesion indicator: it is a maximum, unity, for minimum UCI, 0 , and decreases to zero, as 

shown below, for absolute inequality (√2 1). Equation (7) admits a first integral: 

1 . (8) 

3.1.2. Class Asymmetry and Intersections of L-Curves 

If  is not strictly symmetrical about , the two derivatives at the end of (8) will be 

different, which requires two values of  for a single value of d. We use the notation |  for 

a simultaneous description of the two classes. The approximate solution found for Equation (7) above 

suggests putting sin . When this is replaced in Equation (8), its solution can be expressed in 
parametric form, in terms of the incomplete,  Φ ², , and complete, ²  Φ ², , elliptic 

integrals of the first kind [25], with ² ²

²
 : 

| ²,
Φ ,

²

Φ , 2
²

1 , sin  (9) 

and: 

Φ ²,
1

1 ²sin²
,

2
. (10) 

Its continuation into the region  is just Φ ², ² Φ ², . The cohesion 

ranges are: 

|  ²
1

1 ²
|1 2 ² |1  (11) 

One recovers the approximate expression for  obtained above. Equation (11) shows 

that the average parameter  ²   

² ²
 , describing the interclass cohesion, is a 

decreasing function of ² that becomes 1 0 at absolute inequality, where no cohesion is possible. 

Class asymmetry is defined by Δ 2 1. If Δ 0, two parameters, like d and ,  and 

 , or ²  and Δ, suffice to characterise an L-curve. As a result two convex L-curves, say A and B, 
having (i) , coincide if , , ; they intersect once if , , . In both cases 

. (ii) If  intersections are irrelevant because in all cases , but there is no 
intersection if , , . The apparent dependence of ²,  on k² is in fact negligible over the 
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range of interest. The universal curve in Figure 2b makes use of the average ²  0.139  and 

provides an acceptable fit to all our data. 

4. Results 

4.1. Fitting Empirical Data 

Equations (5), once solved for  and  as functions of  and , allow, using Equation (9), to 

obtain theoretical Lorenz curves in the UCI region. The parameters  and  are directly read from 

data—i.e., not adjusted for an overall fit. They provide Lorenz curves as shown in Figure 3a 

conventional  plot. The expansion in Equation (6) is in principle valid only for 1 . A 

distinctive feature of this model is that it precisely defines its own limit, ² 0.22, above which the 

theoretical initial slope of ²  becomes unrealistically negative, as suggested by Figure 3. 

Universality of L-curves is nevertheless substantiated well beyond this limit, as shown in Figure 2, 

where cancer data has ² 0.34. 

Figure 3. Conventional  Lorenz plots. Symbols for data and for their fits by model 

predictions are shown in the insert. The model should not apply for values ² 0.22. 

 

4.2. A New Indicator 

The main advantage of the Gini coefficient is its conceptual simplicity, though counterbalanced by 

possible inaccuracies when obtained from discontinuous data. Equations (5) and (9) provide a function 

describing L-curves and thereby allow a precise numerical integration of the function  in 
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Equation (3). Gini values in Table 1 below have been obtained in this way. Furthermore, a new  

Gini-like indicator,  , measures unequal-chance inequality in the ,  plane, and is easily 

obtained in closed form. It is twice the area under the curve ² ² √2 sin : 

2√2

2 2
1

sin

√1 sin

2
2

1
argth

, ² 0.22. 

(12) 

Quantities like  and , resulting from a good fit to the whole L-curve, become meaningless 

for ² 0.22. Others, dependent on the single value d through ² ²

²
 like ² , are still valid 

beyond this limit. This is shown in Table 1. 

Table 1. Characteristic parameters of unequal-chance inequality for different types of data. 
 is the largest fraction of the population, the poorest in the first two cases, the youngest 

in the other two. 

BENEFIT k²   √  ²     

Income 0.008 0.58 0.68 0.16 0.99 0.35 0.46 0.16 

Electricity consumption 0.046 0.66 0.52 0.32 0.97 0.04 0.60 0.38 

Life expectation 0.159 0.76 0.55 0.52 0.89 0.10 0.79 0.68 

Model limits 0.220 0.80 0.5 0.60 0.85 0 0.85 0.78 

Survival after cancer 0.344 0.86 0.45 0.71 0.78 –0.11 ––– ––– 

5. Conclusions 

This work provides a model that fairly fits Lorenz curves, up to 0.85. It is just the social 

analogue of Ginzburg and Landau’s ideas [13] on second-order phase transitions in physics. The 

symmetry of the statistical distribution plays a crucial role in this development. Symmetrical 

distributions result in ECI downward-concave ²  curves,  and 2 ,  

i.e., nobody gets more than twice the per capita average, a straightforward but apparently overlooked 

result. Since equality of chances must be a rather unusual event, too low values of  may be 

profitably checked for consistency against this relation. Asymmetrical distributions display convex  

L-curves,  and impose 2 . Initial slopes of ²  furnish a supplementary criterion, 

though less convenient for numerical applications. A clear-cut distinction appears to be necessary 

between equal- and unequal-chance inequalities, related to different regions in the ²,  plane. One 

may expect that critical values, corresponding to  at the phase transition, will also be found in 

other indicators of inequality. New parameters appear in the UCI region, like the cohesion range , 

measuring the range of persistent equality in the distribution, the asymmetry parameter Δ, and the 
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Gini-like coefficient . The latter measures how far away a society is from maximum ECI in just 

the same way as  measures how far away it is from perfect equality. 

Quite different phenomena, from income distribution to cancer rate of survival, obey the same 

statistical laws. The resulting description of inequality implies an apparently oversimplified two-class 

division of society. A more detailed analysis should provide criteria allowing recognition of existing 

classes, whatever their number, out of real-life distributions. This amounts to a nontrivial challenge – 

modelling the probability density function. 

Appendix: Two Lemmas on Convexity 

We assumed that  admits a Taylor expansion in the region 0 1: 

 ² ,
1

  (A1)

so one obtains: 

 
² 2 2 2 2

²  (A2)

Let the density  be single-peaked at , with . Then the following lemma 

applies to downward-concave L-curves: 

Lemma 1: Let  be a parameter that preserves the symmetry of distributions, while defining a 

family |  of concave L-curves that spans the whole region |  as  changes.  

(a) Such families are generated by, and only by, symmetric distributions, with 2 . 

Maximum ECI admits only a uniform distribution. (b) Functions | | ² have their 

maxima at a common abscissa,  , and are symmetrical about this point. Peaks in the densities, 

, and in the functions | , occur at the same values 1  and  

. (c) If 0, the initial slope of  ²  is infinite, if 0, 0 0  is 

necessarily discontinuous. 

Proof: (a) The probability density for perfect equality is a Dirac -function, , symmetrical 

about 1 . Maximum ECI has | 0  and from Equation (2), 
²

1 , that 

is,  for 0 2. This is the uniform, therefore symmetrical distribution shown in 

Figure 1b. From the definition of , 

 
| 2 , (A3)

where . The last term is symmetric about  and  is odd. The antiderivative, like 

| , is therefore even in , i.e. symmetrical about . Conversely, if |  is symmetric 

about ,  and  alike are odd, and the derivative of the latter, , is an even function of 

, i.e., symmetrical about . Symmetry entails, for ,  iff  and 

, with 1. This gives 2 or 2  as announced. (b) If  

is symmetrical,  by definition of ECI, and . Maxima of |  occur 
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for 
²

1 . Concavity imposes ²

² ² ²
0, or  . (c) If 

0, Equation (6) gives 
² ²

∞. For 0, Equation (5) implies that 0 0 if  is to 

remain bounded, so 0 0 0, which proves the discontinuity. 

Lemma 2. Under the same conditions on  and  as in lemma 1, downward-convex L-curves, 

(a) have 0,   and finite initial slopes, and (b) result from asymmetric distributions with 

2. 

Proof: (a) Convexity requires the L-curve to satisfy ² ² 0 everywhere, so the initial 

slope is 1 0 , while from Equation (6) it would be infinity if 0 . It also 

implies ²

² ²
0, that is,  . (b) Any asymmetric function  can be split into odd 

 and even  components, where 

we now take  as independent variable. Recalling that ² ² ² , assume that 2. 

Then, 

 1 2

2 1 0, 
(A4)

where we made use of the fact that 1 0 for 1  to change the upper 

limits of integration from  to 1. The first term in the right-hand side is zero. The second term is also 

zero, because  and  are of opposite parity in the interval of integration. Then, since  and  are 

both odd and not identically zero, the last integral cannot be zero. This is absurd, because contrary to 

the definition implying 1 0. 
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