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Abstract: This study deals with the combined effects of Navier Slip, Convective cooling,
variable viscosity, and suction/injection on the entropy generation rate in an unsteady
flow of an incompressible viscous fluid flowing through a channel with permeable walls.
The model equations for momentum and energy balance are solved numerically using
semi-discretization finite difference techniques. Both the velocity and temperature profiles
are obtained and utilized to compute the entropy generation number. The effects of key
parameters on the fluid velocity, temperature, entropy generation rate and Bejan number are
depicted graphically and analyzed in detail.
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1. Introduction

The cornerstone in the field of heat transfer and thermal design is the second law analysis and its
design-related concept of entropy generation minimization. The foundation of knowledge of entropy
production goes back to Clausius and Kelvin’s studies on the irreversible aspects of the Second Law
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of Thermodynamics [1–4]. Since then the theories based on these foundations have rapidly developed.
However, the entropy production resulting from combined effects of velocity and temperature gradients
has remained untreated by classical thermodynamics, which has motivated many researchers to conduct
analyses of fundamental and applied engineering problems based on second law analyses. Entropy
generation is associated with thermodynamic irreversibility, which is common in all types of heat transfer
processes, namely conduction, convection and radiation. In thermodynamical analysis, the fundamental
principle remains the improvement of the relevant thermal systems to mitigate against energy losses
and hence fully optimize the energy resources. Since the pioneering work of Bejan [1–4], widespread
research has been conducted on entropy generation analysis [5–7].

The work of Chinyoka [8] introduced uniform suction/injection at the walls as a means of mitigating
the thermal effects of highly exothermic, reactive viscoelastic fluids. Our current work demonstrates
that such an intervention also works in reducing heat generation in unsteady porous channel flows with
Navier slip and convective cooling. Similarly, the work of Ikenna and Chinyoka [9] investigated the
effects of wall slip at the channel walls on the heat transfer characteristics in reactive viscoelastic flows.
It was shown in [9] that presence of wall slip enhanced heat build-up within the channel flow; our current
results lead to similar conclusions.

The pioneering works of Aziz [10], Makinde and Aziz [11], and the references therein introduced
the idea of using the convective boundary conditions in boundary layer flows. We adopt such boundary
conditions in the current work. Makinde [12,13] investigated the thermal effects of reactive viscous
flows through channels filled with porous media under isothermal wall conditions. As noted, several
studies involving heat and mass transfer in Newtonian and non-Newtonian fluids [14–16] have been
conducted but most lack a systematic and rational treatment of the thermodynamics of the problem
with respect to the combined effects of porous walls, wall slip, unsteadiness, variable viscosity and
asymmetric convective boundary conditions on the flow system.

The objective of the present work is to study the unsteady flow of a reactive variable viscosity fluid
between two parallel porous plates acted upon by nonconstant pressure. Both the lower and upper walls
of the channel are subjected to asymmetric convective heat exchange with the ambient and allow for
uniform suction/injection in the transverse direction. The mathematical formulation of the problem
is established in Section 2. In Section 3 the semi-implicit finite difference technique is implemented
for the solution process of the coupled nonlinear problem. Graphical results are presented and
discussed qualitatively and quantitatively with respect to various parameters embedded in the system
in Section 4.

2. Mathematical Model

We consider unsteady flow of an incompressible viscous fluid through a channel with permeable
walls, see Figure 1. It is assumed that the fluid is injected uniformly at a constant rate into the channel at
the lower wall and fluid suction occurs at the upper wall at the same rate.
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Figure 1. Schematic diagram of the problem.
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Under these assumptions, the governing equations for the momentum and energy balance in one
dimension can be written as follows:

ρ

(
∂u

∂t̄
+ V

∂u

∂ȳ

)
= −∂P̄

∂x̄
+

∂

∂ȳ

(
µ̄(T )

∂u

∂ȳ

)
(1)

and

ρ cp

(
∂T

∂t̄
+ V

∂T

∂ȳ

)
= k

∂2T

∂ȳ2
+ µ̄(T )

(
∂u

∂ȳ

)2

(2)

The appropriate initial and boundary conditions are:

u(ȳ, 0) = 0, T (ȳ, 0) = T0 (3)

β1 u(0, t̄) = µ̄(T )
∂u

∂ȳ
(0, t̄), −k

∂T

∂ȳ
(0, t̄) = γ1[Ta − T (0, t̄)] (4)

β2 u(h, t̄) = µ̄(T )
∂u

∂ȳ
(h, t̄), −k

∂T

∂ȳ
(0, t̄) = γ2[T (h, t̄)− Ta] (5)

where h is the channel width, u is the velocity of the fluid, P is the fluid pressure, V is the uniform
suction/injection velocity at the channel walls, k is the thermal conductivity coefficient, ρ is the fluid
density, cp is the specific heat at constant pressure, γ1 is the lower wall heat transfer coefficient, γ2 is
the upper wall heat transfer coefficient, β1 is the lower wall slip parameter, β2 is the upper wall slip
parameter, T is the temperature and Ta is the ambient temperature. The temperature dependant viscosity
(µ̄) can be expressed as

µ̄(T ) = µ0e
−b(T−T0) (6)
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where b is a viscosity variation parameter and µ0 is the initial fluid dynamic viscosity at temperature T0.
We introducing the following non-dimensional quantities:

η =
ȳ

h
, t =

V t̄

h
, X =

x̄

a
, W =

u

V
, θ =

T − T0

Ta − T0

, P =
P̄ h

µ0 V

Re =
ρ h V

µ0

, Pr =
µ0cp
k

, Bi1 =
γ1h

k
, Bi2 =

γ2h

k
, G = − ∂P

∂X
(7)

µ =
µ̄

µ0

, m = b(Ta − T0), λ1 =
µ0

hβ1

, λ2 =
µ0

hβ2

, Ec =
V 2

cp(Ta − T0)

Substituting Equation (8) into Equations (1)–(6), we obtain

Re

(
∂W

∂t
+

∂W

∂η

)
= G+ e−mθ ∂

2W

∂η2
−me−mθ ∂θ

∂η

∂W

∂η
(8)

RePr

(
∂θ

∂t
+

∂θ

∂η

)
=

∂2θ

∂η2
+ EcPr

(
∂W

∂η

)2

(9)

with the initial and boundary conditions given as

W (η, 0) = 0, θ(η, 0) = 0 (10)

W (0, t) = λ1 e
−mθ(0,t) ∂W

∂η
(0, t),

∂θ

∂η
(0, t) = Bi1 [θ(0, t)− 1] (11)

W (1, t) = λ2 e
−mθ(1,t) ∂W

∂η
(1, t),

∂θ

∂η
(1, t) = Bi2 [1− θ(1, t)] (12)

where m is the viscosity variation parameter, λ1 is the lower wall slip parameter, λ2 is the upper wall slip
parameter, G is the pressure gradient parameter, Re is the Reynolds number, Pr is the Prandtl number,
Ec is the Eckert number, Bi1 is the lower wall Biot number, and Bi2 is the upper wall Biot number.

In the Section 4, the coupled nonlinear boundary value problem represented by
Equations (8)–(9) together with their initial and boundary conditions (10)–(12) are solved numerically
using semi-discretization finite difference techniques.

3. Entropy Analysis

Following Bejan [1], Mahmud and Fraser [7], the local entropy generation rate for a viscous
incompressible fluid is given as

EG =
k

T 2
0

(
∂T

∂ȳ

)
+

µ̄

T0

(
∂ū

∂ȳ

)2

(13)

The first term in Equation (13) is the irreversibility due to heat transfer and the second term is the
entropy generation due to viscous dissipation and third term is due to magnetic field. In dimensionless
form, Equation (13) becomes,

Ns =
h2 T 2

0 EG

k(Ta − T0)2
=

(
∂θ

∂η

)2

+
Br e−mθ

Ω

(
∂W

∂η

)2

(14)
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where Ω = (Ta − T0)/T0 is the temperature difference parameter and Br = EcPr is the Brinkmann
number. Let

N1 =

(
∂θ

∂r

)2

, N2 =
Br e−mθ

Ω

(
∂u

∂r

)2

, Φ =
N2

N1

(15)

We then define the Bejan number as

Be =
N1

Ns

=
1

1 + Φ
(16)

where Φ is the irreversibility ratio. Bejan number ranges from 0 to 1. The limit of fluid friction
irreversibility dominant effects is given by Be = 0, while Be = 1 is the limit where the irreversibility
due to heat transfer dominates the flow system.

4. Numerical Solution

Our numerical algorithm is based on the semi-implicit finite difference scheme [8,9,17–20]. Implicit
terms are taken at the intermediate time level (N + ξ) where 0 ≤ ξ ≤ 1.

The discretization of the governing equations is based on a linear Cartesian mesh and uniform grid
on which finite-differences are taken. We approximate both the second and first spatial derivatives with
second-order central differences.

The equations corresponding to the first and last grid points are modified to incorporate the boundary
conditions. The semi-implicit scheme for the velocity component reads:

Re

(
∂W

∂t
+

∂

∂η
W (N)

)
= G+ e−mθ(N) ∂2

∂η2
W (N+ξ) +

[
me−mθ ∂θ

∂η

∂W

∂η

](N)

(17)

In Equation (17) it is understood that ∂#/∂t := (#(N+1) − #(N))/∆t. The equation for W (N+1)

then becomes:

−r1W
(N+1)
j−1 + (Re + 2r1)W

(N+1)
j − r1W

(N+1)
j+1 = explicit terms (18)

where

r1 = ξ
∆t

∆η2
exp(−mθ)

The solution procedure for W (N+1) thus reduces to inversion of tri-diagonal matrices, which is an
advantage over a full implicit scheme. The semi-implicit integration scheme for the temperature equation
is similar to that for the velocity component. Unmixed second partial derivatives of the temperature are
treated implicitly:

RePr

(
∂θ

∂t
+

∂

∂η
θ(N)

)
=

∂2

∂η2
θ(N+ξ) + EcPr

(
∂

∂η
W (N)

)2

(19)

The equation for θ(N+1) thus becomes:

−r θ
(N+1)
j−1 + (RePr + 2r) θ

(N+1)
j − r θ

(N+1)
j+1 = explicit terms (20)
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where r = ξ∆t/∆η2. The solution procedure again reduces to inversion of tri-diagonal matrices. The
schemes (18 and 20) were checked for consistency. For ξ = 1, these are first-order accurate in time but
second order in space. The schemes in Chinyoka [19] have ξ = 1/2, which improves the accuracy in
time to second order. As in Chinyoka [8,9,20] we, however, use ξ = 1 here so that we are free to choose
larger time steps and still converge to the steady solutions.

5. Results and Discussion

Unless otherwise stated, we employ the parameter values:
G = 1, Pr = 0.71, λ1 = 0.1, λ2 = 0.1, Bi1 = 0.1, Bi2 = 0.1 m = 0.1, Ω = 0.1, ∆η = 0.01,

∆t = 0.01, Re = 0.1, t = 50.
These will be the default values in this work. In the succeeding graphics, if any of these parameter

values is not explicitly mentioned, it will be understood that such parameters take on the default values.

5.1. Transient and Steady Flow Profiles

We display the transient solutions in Figure 2. The figures show a transient increase in both fluid
velocity, Figure 2a, and temperature, Figure 2b, until a steady state is reached.

Figure 2. Transient and steady state profiles.
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5.2. Code Validation

The steady flow case with m = 0 is readily amenable to analytical treatment. We demonstrate in this
section that our numerical scheme accurately reproduces this analytic solution. The steady equation for
the velocity subject to m = 0 is given by

Re
dW

dη
= G+

d2W

dη2
(21)
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with boundary conditions given as

W (0) = λ1
dW

dη
(0), W (1) = λ2

dW

dη
(1) (22)

The analytic solution reads:

W (η) = C1 exp(Re η) +
G

Re
η + C0 (23)

where for example,

C1 =
G(1 + λ1 − λ2)

Re(1− exp(Re) + λ2Re exp(Re)− λ1Re)

C0 = λ1(C1 Re +G/Re)− C1

A comparison plot of the exact solution and the corresponding numerical solution (obtained at t = 10)
is given in Figure 3.

Figure 3. Analytic and numerical solution: (a) default values, (b) λ1 = λ2 = 0.
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5.2.1. Parameter Dependence of Solutions

The response of the velocity and temperature to varying values of the Prandtl number (Pr) is illustrated
in Figure 4.

Larger values of the Prandtl number correspondingly increase the strength of the heat sources in
the temperature equation and hence in turn increases the overall fluid temperature as clearly illustrated
in Figure 4b. The increased temperature leads to decreased fluid viscosity and hence to higher fluid
velocities as illustrated in Figure 4a.
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Figure 4. Effects of the Prandtl number, Pr.
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The response of the velocity and temperature to varying values of the Reynolds number (Re) is
illustrated in Figure 5.

Figure 5. Effects of the Reynolds number, Re.
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Larger values of the Reynolds number correspond to higher suction/injection strength and hence
clearly decreases the axial fluid velocity as illustrated in Figure 5a. The decreased velocity leads to
decreased heat source strength and hence to lower fluid temperature as illustrated in Figure 5b. The
trends shown in Figures 4 and 5 in which the velocity and temperature either both increase or decrease
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together will be reproducible throughout our investigations and hence the explanations already given will
not be repeated.

The response of the velocity and temperature to varying values of the viscosity parameter (m) is
illustrated in Figure 6.

Figure 6. Effects of the viscosity parameter, m.
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As expected, both velocity and temperature increase with increasing viscosity parameter (i.e., with
decreasing fluid viscosity).

The effects of the wall Biot numbers on the velocity and temperature profiles is illustrated in
Figures 7 and 8.

Figure 7. Effects of the lower wall Biot number (Bi1).
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Figure 8. Effects of the upper wall Biot number (Bi2).
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As seen from the temperature boundary conditions (12), higher Biot numbers mean correspondingly
higher degrees of convective cooling at the channel walls, thus leading to lower temperatures at the
channel walls and hence also in the bulk fluid. The overall temperature profiles thus decrease with
increasing Biot number as the bulk fluid continually adjusts to the lower wall temperatures.

The response of the velocity and temperature to varying values of the Eckert number (Ec) is illustrated
in Figure 9.

Figure 9. Effects of the Eckert number, (Ec).
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The effects of the Eckert number are similar to those for the Prandtl number. The effects of the wall
slip parameters on the velocity and temperature profiles is illustrated in Figures 10 and 11.

Figure 10. Effects of the lower wall slip parameter, (λ1).
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Figure 11. Effects of the upper wall slip parameter, (λ2).
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As expected, an increase in the slip parameters correspondingly increases the wall (and hence also the
bulk) fluid velocity.
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5.3. Entropy Generation

In this section, we plot the entropy generation rate (Ns) across the channel under varying parameter
conditions. With the exception of the time evolution graphs shown in Figures 12 and 13, all other graphs
are drawn at the time t = 10.

Figure 12. Variation of entropy generation rate with η and t.
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Figure 13. Variation of Bejan number with η and t.
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Figures 12–21 show the expected results for Ns. In particular, Ns clearly increases with BrΩ−1,
and decreases with increasing m. Parameters that increase the velocity and temperature gradients also
increase the entropy generation rate and vice versa. In Figures 12–21, the entropy generation rate is
expectedly maximum at the walls where velocity and temperature gradients as well as fluid viscosity are
highest and minimum around the channel centerline where the maximum temperature and velocity and
hence also zero temperature and velocity gradients are recorded.
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Figure 14. Variation of entropy generation rate with η and Re.
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Figure 15. Variation of entropy generation rate with η and Pr.
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Figure 16. Variation of entropy generation rate with η and m.
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Figure 17. Variation of entropy generation rate with η and BrΩ−1.
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Figure 18. Variation of entropy generation rate with η and λ1.
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Figure 19. Variation of entropy generation rate with η and λ2.
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Figure 20. Variation of entropy generation rate with η and Bi1.
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Figure 21. Variation of entropy generation rate with η and Bi2.
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5.4. Bejan Number

In this section, we plot the Bejan number (Be) across the channel under varying parameter conditions.
The analysis in this section is similar to that for the previous section with Ns now replaced by Be.

Figures 13–29 show as expected that parameters that increase the entropy generation rate will
correspondingly decrease the Bejan number and vice versa.

Away from the wall (i.e., inside the main flow), the fluid friction with magnetic field irreversibility
strongly dominates over heat transfer irreversibility. In the vicinity of the wall, the strength of the fluid
parameters will determine which mode of irreversibility dominates over the other.
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Figure 22. Variation of Bejan number with η and Re.
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Figure 23. Variation of Bejan number with η and Pr.
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Figure 24. Variation of Bejan number with η and m.
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Figure 25. Variation of Bejan number with η and BrΩ−1.
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Figure 26. Variation of Bejan number with η and λ1.
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Figure 27. Variation of Bejan number with η and λ2.
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Figure 28. Variation of Bejan number with η and Bi1.
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Figure 29. Variation of Bejan number with η and Bi2.
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6. Conclusions

We computationally investigate the combined entropy generation rate in an unsteady porous channel
flow with Navier slip subjected to asymmetrical convective boundary conditions. A major observation in
the current work is the reduction in heat generation due to the presence of uniform suction/injection.
We also notice that due to the nature of the coupling of the source terms, the fluid velocity and
temperature either both increase or both decrease together. We have also demonstrated computationally
that parameters that increase the entropy generation rate will correspondingly decrease the Bejan number
and vice versa. In particular wall subjected to higher slip (i.e., lower viscosity) will have lower viscosities
but higher Bejan numbers and vice versa.
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