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Abstract:



Deriving the form of the optimal solution of a maximum entropy problem, we obtain an infinite family of linear inequalities characterizing the polytope of spin correlation matrices. For [image: there is no content], the facet description of such a polytope is provided through a minimal system of Bell-type inequalities.
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1. Introduction


Moment problems are fairly common in many areas of applied mathematics, statistics and probability, economics, engineering, physics and operations research. Historically, moment problems came into focus with Stieltjes in 1894 [1], in the context of studying the analytic behavior of continued fractions. The term “moment” was borrowed from mechanics: the moments could represent the total mass of an unknown mass density, the torque necessary to support the mass on a beam, etc. Over time, however, moment problems took the shape of an important field in their own right. A deep connection with convex geometry was discovered by Krein in the mid 1930s and developed by the Russian school; see, e.g., [2,3]. Another fundamental connection with the work of Caratheodory, Toeplitz, Schur, Nevanlinna and Pick on analytic interpolation was investigated in the first half of the twentieth century [4]. This led to important developments in operator theory; see, e.g., [5,6]. In more recent times, a rather impressive application and generalization of this mathematics has been developed by the Byrnes-Georgiou-Lindquist school for signal and control engineering applications. In their approach, one seeks a multivariate, stationary stochastic process as the input of a bank of rational filters whose output covariance has been estimated. This turns into a Nevanlinna-Pick interpolation problem with a bounded degree [7,8]. The latter can be viewed as a generalized moment problem (namely, a moment problem with complexity constraints), which is advantageously cast in the frame of various convex optimization problems, often featuring entropic-type criteria. An example is provided by the covariance extension problem and its generalization; see [9,10,11,12,13,14]. These problems pose a number of theoretical and computational challenges, especially in the multivariable framework, for which we also refer the reader to [15,16,17,18,19,20,21,22]. Besides signal processing, significant applications of this theory are found in modeling and identification [23,24,25], [image: there is no content] robust control [26,27], and biomedical engineering [28].



A general moment problem can be stated as follows. Suppose we are given a measurable space, [image: there is no content], a family, [image: there is no content], of measurable functions for Ω to [image: there is no content] and a corresponding family of real numbers, {cf:f∈[image: there is no content]}. One wants to determine whether there exists a probability, P, on [image: there is no content], such that:


[image: there is no content]








for every f∈[image: there is no content] and, if so, characterize all probabilities having this property.



Among the various instances of this inverse problem, the covariance realization/completion problem has raised wide interest, in part because of its important applications in mathematical statistics [29] and in theoretical engineering [30]. It is well known that an [image: there is no content] matrix is the covariance matrix of some [image: there is no content]n-valued random vector if and only if it belongs to the convex cone of symmetric and positive semidefinite matrices. A relevant problem for applications considers the situation in which only some entries of the covariance matrix are given, for example, those that have been estimated from the data. In this context, one aims at characterizing all possible completions of the partially given covariance matrix or completions that possess certain desirable properties; see, e.g., [29,31,32,33,34,35,36,37] and references therein. Another more theoretical problem investigates the geometry of correlation matrices, namely, covariances of standardized random variables. Clearly, correlation matrices form a compact, convex subset of the vector space of symmetric matrices of dimension, n, since the latter is determined by a family of linear inequalities, namely, the positivity constraints. A natural question is to determine the extreme points of this convex set. This problem was solved by Parthasarathy in [38], who could parametrize the uncountable family of extremals, which turn out to be all singular.



The geometry of correlation matrices may change dramatically if one adds constraints on the values of the random vector realizing the covariance matrix. In this paper, we consider the case in which the components of the random vector are required to be [image: there is no content]-valued. We call spin systems random vectors of this type or, by abuse of language, their distributions. Although spin systems have been extensively studied in statistical mechanics and probability, various questions are still open concerning their covariance matrices. In [39], J. C. Gupta proved that covariance matrices of a system of n spins form a polytope and exhibited its [image: there is no content] extremals. Apparently, his result is contained in some form in Pitowsky’s previous work [40] and in even earlier, but not easily accessible, work by Assouad (1980) and Assouad and Deza (1982); cf. [41] (Section 5.3), for more information.



A more delicate problem is to characterize covariance matrices of spin systems by a system of linear inequalities. This problem was tackled in [40] (see, however [41] (p.54) for a thorough description of preceding contributions on “correlation polytopes” coming from such different fields as mathematical physics, quantum logic and analysis). There, the dual description, in the sense of linear programming, was considered, and the high complexity of the problem of determining the extremals of this dual, i.e., the facets of the polytope, was discussed. Moreover, in [42], it has been shown that this dual is generated by the Bell’s inequalities (see [43] for an overview of the role played by these inequalities in quantum mechanics) for [image: there is no content], but not for [image: there is no content]. Finally, we mention the paper [44], where the problem of realizability of correlations has been extended to the more general setting of random points in a topological space.



The aim of this paper is two-fold.

	
We derive an infinite family of linear inequalities characterizing covariances of spin systems, via the solution of a maximum entropy problem. Besides its intrinsic interest, this method has the advantage of describing, in terms of certain Lagrangian multipliers, an explicit probability realizing the covariances, whenever they are realizable. The search for the Lagrange multipliers is an interesting computational problem, which will be addressed in a forthcoming paper.



	
Via a computer-aided proof, we determine the facets of the polytope of covariance matrices of spin systems for [image: there is no content]. In particular, we show that for these values of n, Bell’s inequalities are actually facets of the polytope, but generate the whole polytope only for [image: there is no content]. For [image: there is no content] and 6, the remaining facets are given by suitable generalizations of Bell’s inequalities. Although the problem is computationally feasible also for some larger values of n, the number of extremal inequalities increases dramatically, and we have not been able to describe them synthetically. We mention the fact that the case [image: there is no content] is peculiar, since it is the only case in which the polytope is a simplex. A more detailed description of this case is contained in the note [45]. Our work here inevitably overlaps with some previous research on linear descriptions of polytopes in combinatorial geometry, such as [46]; see also (Section 30.6 in [41]) and, in particular, the footnote on p. 503 of the latter reference (the book [41] by M. Deza and M. Laurent is a general, comprehensive reference on discrete geometry). We remark that our arguments go through even when the covariance matrix is only partially given, a case important for applications, but typically not considered in the discrete geometry literature.





Summing up, we obtain necessary and sufficient conditions for the existence of a covariance completion, as well as a “canonical” (maximum entropy) probability realizing the given covariances.




2. Spin Systems and Spin Correlation Matrices


Let us define a spin system first. Let [image: there is no content] be the space of length-n sequences, which are denoted by [image: there is no content], where σi∈[image: there is no content]. Define the spin random variables, ξi:[image: there is no content]⟶[image: there is no content], for [image: there is no content] as [image: there is no content]. For a probability, P, on [image: there is no content], we denote by [image: there is no content] the expectation with respect to P. The finite probability space ([image: there is no content],P) is called the spin system. As in [39], for simplicity, we only consider symmetric probabilities, i.e., those for which [image: there is no content](ξi)=0 for all [image: there is no content]. Note that, in this case, the covariance matrix, C=[image: there is no content](ξiξj)i,j=1n, has all diagonal elements equal to 1. We will refer to this matrix as the spin-correlation matrix associated to P.



Suppose that we are given the spin-spin correlations, [image: there is no content]’s, and look for a probability, P, on [image: there is no content], such that [image: there is no content]=[image: there is no content](ξiξj) for every [image: there is no content] or for all pairs [image: there is no content] for which [image: there is no content] is given. We consider the following questions:

	
Under what conditions does a distribution with those correlations exist?



	
If one such distribution exists, that is, if the given correlations are realizable, then how does one characterize the maximum entropy probability measure?








The spin correlation/covariance matrices form a convex polytope whose description in terms of vertices is known. Let us denote the convex polytope of the spin correlation matrices of the order, n, by [image: there is no content]. J. C. Gupta proved that [image: there is no content] is the convex hull of [image: there is no content] matrices (it turns out that these matrices are exactly the extremal vertices of this polytope) that can be found explicitly.



Theorem 1 

(J. C. Gupta, 1999): The class of realizable correlation matrices of n spin variables is given by:


[image: there is no content]=ConvexHull{[image: there is no content]:S∈[image: there is no content]}








where [image: there is no content] and [image: there is no content] are defined as follows:


[image: there is no content]=S⊂1,2,…,n:1∈S








and


[image: there is no content]=((cijS))








where [image: there is no content] for all i and [image: there is no content] for [image: there is no content].





These [image: there is no content]’s are rank-1 matrices obtained by considering probability measures on [image: there is no content] supported at two points (configurations), such that each of these two configurations have probability, [image: there is no content]. The proof of above theorem can be found in [39].



It is interesting to note that the description of extremals of spin correlation matrices is rather simple when compared with the description of extremals of the convex set of correlation matrices in general (see [38]). As mentioned in the introduction, it is more difficult to obtain the dual representation in terms of linear inequalities. One simple observation is that every spin correlation matrix, C=([image: there is no content]), must satisfy the following Bell’s inequalities: for every ε∈[image: there is no content] and [image: there is no content]:


1+εiεj[image: there is no content]+εjεkcjk+εkεicki≥0



(1)







The necessity of these inequalities is easy to show:


εiεj[image: there is no content]+εjεkcjk+εkεicki=[image: there is no content]εiεjξiξj+εjεkξjξk+εkεiξkξi=12[image: there is no content]εiξi+εjξj+εkξk2-32≥-1








where, in the last step, we have observed that [image: there is no content] for every σ∈[image: there is no content]. One immediate consequence is that not all positive matrices, with diagonal elements equal to 1, are spin correlation matrices.



Example 1 

Consider a symmetric matrix:


[image: there is no content]








with [image: there is no content]. Then, the condition for positive-definiteness is:


[image: there is no content]








and the Bell’s inequalities are given by:


[image: there is no content]













For instance, for [image: there is no content] and [image: there is no content], we get a matrix, C, that is symmetric and positive semi-definite—hence, a correlation matrix—but it does not satisfy the Bell’s inequalities, so it can’t be a spin correlation matrix.




3. The Dual Representation for [image: there is no content]


We have seen that the spin correlation matrices form a convex polytope with extreme points given by Theorem 1. Every convex polytope has two representations: one as the convex hull of finitely many extreme points (known as the V-representation) and another in terms of the inequalities defining the faces of the polytope (known as the H-representation). These inequalities provide necessary and sufficient conditions for a point to lie inside the convex hull. Thus, finding necessary and sufficient conditions for a matrix, M, to lie in [image: there is no content] is equivalent to finding the H-representation of [image: there is no content]. The problem of obtaining the H-representation from the V-representation is called the facet enumeration problem, while the dual one is called the vertex enumeration or the convex hull problem. These are well known problems in the theory of linear programming.



The program, cdd+ (cdd, respectively), is a C++ (ANSI C) program that performs both tasks. Given the equations of faces of the polytope, it returns the set of vertices and extreme rays and vice versa [47]. This program is a computer implementation of the double description method (see, for instance, [48]). This program works with integer arithmetics; in particular, when data in the input are integers, it does not make any rounding.



We executed the cdd+ program to find the necessary and sufficient condition for [image: there is no content]. We know the extremals in each case from Theorem 1. We summarize below the results obtained. We remark that the facets of this correlation polytope have been previously computed for [image: there is no content] (Section 30.6 in [41]). Our point here is to connect these facets with Bell’s inequalities and their generalizations (see Section 4).



3.1. Cases [image: there is no content]


These are the simplest cases, already covered in [42]. The program returns exactly the Bell’s inequalities in Equation (1). In particular, the following nontrivial facts follow:

	
Bell’s inequalities imply positivity of the matrix;



	
Bell’s inequalities correspond to the facets of the polytope of spin correlation matrices in dimension three and four; in particular, they provide the “minimal” description in terms of linear inequalities.









3.2. Case [image: there is no content]


The polytope of spin-correlation matrices has 56 facets. Forty of these are given by the Bell’s inequalities, corresponding to [image: there is no content] choices of three indexes and [image: there is no content] for ε∈[image: there is no content]3 (modulo change of sign).



The remaining 16 facets correspond to the following inequalities: for every ε∈[image: there is no content]5, the modulo sign:


2+∑1≤i<j≤5εiεj[image: there is no content]≥0



(2)








3.3. Case [image: there is no content]


There are 368 facets. We can group the corresponding inequalities into three groups.



	
We have the 63[image: there is no content]=80 Bell’s inequalities.



	
For [image: there is no content] with [image: there is no content] and ε∈[image: there is no content]T, we consider the inequality analogous to Equation (2):


2+∑i<j;i,j∈Tεiεj[image: there is no content]≥0








There are [image: there is no content] inequalities of this sort.



	
For [image: there is no content] with [image: there is no content] and ε∈[image: there is no content]T, letting [image: there is no content] be the only element of [image: there is no content], consider the inequalities:


4+∑i<j;i,j∈Tεiεj[image: there is no content]+2∑i∈Tεiε[image: there is no content]ci[image: there is no content]≥0








There are [image: there is no content] such inequalities.






We will see in the next section that inequalities of the types above hold for spin-correlation matrices also in higher dimensions, where, however, facets of different types appear.





4. Maximum Entropy Measure for Spin Systems


4.1. Maximum Entropy Method


Our aim now is to find an explicit measure that realizes the given covariances. One of the most natural and popular approach in these kind of problems is to use the maximum entropy method. The rationale underline this approach has been discussed over the years by various “deep thinkers" such as Jaynes [49,50,51] (physics), Dempster [29] (statistics) and Csiszár [52] (information theory). We refer the reader to these references for full motivation of this approach.



We want to find a probability measure that realizes the given covariances and that also maximizes the entropy of the system. In other words, we want to solve the following optimization problem:



Maximize the entropy:


[image: there is no content](P):=-∑σP(σ)lnP(σ)











over


P:[image: there is no content]→[0,∞)











subject to:


[image: there is no content]











Consider the [image: there is no content]:


[image: there is no content](P)=[image: there is no content](P)+∑[image: there is no content]λhkchk-∑σσhσkP(σ)+μ∑σP(σ)-1








Notice that [image: there is no content] coincides with [image: there is no content](P) on the set of P satisfying the constraints:


[image: there is no content]








Here, μ∈[image: there is no content] and the [image: there is no content] matrix [image: there is no content] are the [image: there is no content]. [image: there is no content] is a strictly concave function of P on the convex cone, [image: there is no content], of positive measures on [image: there is no content]. Thus, if we can find an internal point, [image: there is no content]∈[image: there is no content], such that:


[image: there is no content]








for all δP:[image: there is no content]→[image: there is no content], then, necessarily, [image: there is no content] is the unique maximum point for [image: there is no content] over [image: there is no content]. Since:


[image: there is no content]′([image: there is no content];δP)=∑σ-log[image: there is no content](σ)-∑[image: there is no content]λhkσhσk+μ-1δP(σ)








we get the optimality condition:


-log[image: there is no content](σ)-∑[image: there is no content]λhkσhσk+μ-1≡0








Namely, [image: there is no content] has the form:


[image: there is no content](σ)=1Zexp-∑[image: there is no content]λhkσhσk,σ∈[image: there is no content]



(3)




where [image: there is no content]. Such a [image: there is no content] is, in fact, an internal point of [image: there is no content]. Note that any probability of this form is such that [image: there is no content](σ)=[image: there is no content](-σ). In particular, this implies that each spin has a mean of zero with respect to [image: there is no content].



Also note that this last formula simply specifies a class of probability measures on [image: there is no content], parametrized by the matrix of Lagrange multipliers, [image: there is no content]. It remains to establish whether the given correlations are realized by any such probability and, if so, to determine the corresponding values of the multipliers. To this aim, we consider the so-called dual functional. Let us denote by [image: there is no content] the probability in Equation (3). Then, the dual functional, [image: there is no content], which is a real valued function of the Lagrange multipliers, is defined by:


[image: there is no content](Λ):=[image: there is no content]([image: there is no content])



(4)




Observing that:


Λ([image: there is no content])=∑[image: there is no content]λhkchk-∑σ∑[image: there is no content]λhkσhσk[image: there is no content](σ)








and:


[image: there is no content]([image: there is no content])=logZ+∑σ∑[image: there is no content]λhkσhσk[image: there is no content](σ)=log∑σexp-∑[image: there is no content]λhkσhσk+∑σ∑[image: there is no content]λhkσhσk[image: there is no content](σ)








we obtain the convex function:


[image: there is no content](Λ)=∑[image: there is no content]λhkchk+log∑σexp-∑[image: there is no content]λhkσhσk



(5)




If we denote by ∇[image: there is no content] the gradient of [image: there is no content] with respect to the variables, [image: there is no content], it is immediately seen that the following statements are equivalent:

	
Λ is a critical point for [image: there is no content], i.e., ∇[image: there is no content](Λ)=0;



	
[image: there is no content] realizes the assigned correlations, i.e.,:


∑σ∑[image: there is no content]λhkσhσk[image: there is no content](σ)=chk








for every [image: there is no content].








A critical point exists if [image: there is no content] is proper, which means:


lim∥Λ∥→∞[image: there is no content](Λ)=+∞











It is also clear that the following set of inequalities ensures the properness of [image: there is no content] :


∑i,j[image: there is no content][image: there is no content]>min∑i,j[image: there is no content]σiσj:σ∈Ω,for everyΛ











Let us denote by [image: there is no content], the minimum given by: min∑i,j[image: there is no content]σiσj:σ∈Ω. We denote by [image: there is no content] the set of matrices defined by:


[image: there is no content]=C=([image: there is no content]):∑i,j[image: there is no content][image: there is no content]≥M(Λ)foreveryΛ



(6)




We can now state the main result of this section.



Theorem 2 

Let [image: there is no content] be as defined in Equation (6). Then:


[image: there is no content]=[image: there is no content]













Proof. 

We first show that [image: there is no content]⊆[image: there is no content]. Since [image: there is no content] is closed, it is enough to show that [image: there is no content]∘⊆[image: there is no content], where [image: there is no content]∘ denotes the interior of [image: there is no content]. We know that


[image: there is no content]∘=C=([image: there is no content]):∑i,j[image: there is no content][image: there is no content]>M(Λ)foreveryΛ








.





Thus, for C∈[image: there is no content]∘, the dual functional, [image: there is no content](Λ), is proper. This implies feasibility. Thus, there exists a probability, P, that realizes C as a correlation matrix of spin variables. Hence, C∈[image: there is no content].



Now, to show [image: there is no content]⊆[image: there is no content], let C=([image: there is no content])∈[image: there is no content]. Then, for every Λ, we have:


∑i,j[image: there is no content]cijT=E∑i,j[image: there is no content]σiσj≥minσ∑i,j[image: there is no content]σiσj=M(Λ)








This implies C∈[image: there is no content]. As pointed out by one reviewer, Theorem 4.1 can also be proven by contradiction using the hyperplane separation theorem, using the knowledge of the extremal points of the polytope. Our proof, however, does not rely on this knowledge and holds, with minimal modifications, for random variables taking values in general subsets of [image: there is no content]. The theorem above provides a (non-minimal) dual description of the polytope of spin-correlation matrices.



Its main consequence is that it guarantees that whenever C is in the interior of [image: there is no content], then it can be realized by some probability of the form Equation (3), for a Λ, which minimizes the dual functional [image: there is no content]. The search of a probability that realizes a given correlation matrix is therefore reduced to finding the minimum of a function that, as we will see shortly, is convex. Before giving some details on this point, we observe that various classes of inequalities are obtained from Equation (6) by a suitable choice of Λ.



	
Positivity: let x∈[image: there is no content]n and set [image: there is no content]=xixj. Then, for every σ∈[image: there is no content]:


∑ij[image: there is no content]σiσj=∑ijxixjσiσj=12∑ixiσi2≥0








So, [image: there is no content]. Thus, for C∈[image: there is no content]


∑ijxixj[image: there is no content]≥0








which implies positivity.



	
Bell’s inequalities: let [image: there is no content] with [image: there is no content] and ε∈[image: there is no content]A. We set:


[image: there is no content]=εiεjfori,j∈A,i≠j0otherwise








Then, for [image: there is no content]:


12∑ij[image: there is no content]σiσj=εrεsσrσs+εrεtσrσt+εsεtσsσt=ηrηs+ηrηt+ηsηt≥-1








where [image: there is no content]. So, we have [image: there is no content]. Thus, for C∈[image: there is no content]


[image: there is no content]








which are Bell’s inequalities.



	
Generalizations of Bell’s inequalities: Let us consider [image: there is no content], such that [image: there is no content] is odd. Then, let ε∈[image: there is no content]T. We set:


[image: there is no content]=εiεjfori,j∈T,i≠j0otherwise








we have:


∑i,j[image: there is no content]σiσj=∑i∈Tεiσi2-[image: there is no content]








since, [image: there is no content] is odd, we have:


[image: there is no content]








Thus, [image: there is no content]. As a result, we obtain the inequality


[image: there is no content]-1+∑[image: there is no content]εiεj[image: there is no content]≥0



(7)




We call these the generalized Bell’s inequalities. These, as kindly pointed out by one anonymous reviewer, are special instances of the hypermetric inequalities introduced by M. Deza in the 1960s, (Section 6.1 in [41]). They reduce to Bell’s inequalities for [image: there is no content]. We have seen in the previous section that these inequalities, for [image: there is no content] and [image: there is no content], give the facets of the polytope of spin-correlation matrices for [image: there is no content].



Many other variants of the Bell’s inequalities could be obtained with other choices of the [image: there is no content]. For instance, we can generalize to all even dimensions the inequalities of type (three) for the case [image: there is no content]. Let [image: there is no content] be even, and consider [image: there is no content], such that [image: there is no content]. Then, choose:


[image: there is no content]=εiεjfori,j∈T,i≠j2εiεjfori∈T,j∈[image: there is no content]ori∈[image: there is no content],j∈T0otherwise








We obtain:


∑i,j[image: there is no content]σiσj=∑i∈Tεiσi2-[image: there is no content]+4ε[image: there is no content]∑i∈Tεiσi








where [image: there is no content] is the only element of [image: there is no content]. It is easy to check that the expression:


∑i∈Tεiσi2+4ε[image: there is no content]∑i∈Tεiσi








as a function of σ∈[image: there is no content], attains its minimum at ∑i∈Tεiσi=kε[image: there is no content] with k equal to three or five, and the minimum is [image: there is no content], which gives [image: there is no content], and the family of inequalities:


n+2+∑i≠j;i,j∈Tεiεj[image: there is no content]+4∑i∈Tεiε[image: there is no content]ci[image: there is no content]≥0








These, for [image: there is no content], reduce to the inequality of type (three).






Remark 1 

It is important to note that nowhere in the process of obtaining the maximum entropy measure have we assumed that we are given all the [image: there is no content]. Suppose we are only given a partial matrix. Then, [image: there is no content] can be interpreted as the set of conditions under which the given partial matrix can be extended to a spin correlation matrix. Once we have feasibility, we know that the maximum entropy measure, [image: there is no content], exists and can be used to complete the given matrix to a spin correlation matrix.






4.2. Finding the Minimum of the Dual Functional


We have observed that the maximum entropy method allows us to reduce the problem of realizing a given spin correlation matrix to finding the minimum of the function, [image: there is no content], defined in Equation (5). In this section, we show that this minimum can be obtained by an explicit gradient descent algorithm. Note first that [image: there is no content] has some obvious symmetry properties: [image: there is no content](Λ)=[image: there is no content](Λ′) if [image: there is no content]=λij′ for all [image: there is no content], and [image: there is no content] is indifferent to symmetrization:


[image: there is no content](Λ)=[image: there is no content]Λ+ΛT2








where [image: there is no content] is the transposition of the matrix, A. It is, therefore, enough to deal with the minimization problem within the set of symmetric matrices with zero diagonal elements. These matrices can be identified with elements of [image: there is no content]I, where:


[image: there is no content]








In what follows, we use the usual vector notation for elements of [image: there is no content]I: for v,w∈[image: there is no content]I, [image: there is no content] denotes its transposition, [image: there is no content]w is the scalar product in [image: there is no content]Iand [image: there is no content] is an element of [image: there is no content]I×I.



Proposition 1 

Consider the discrete time dynamical system in [image: there is no content]I, defined by:


λ(t+1)=λ(t)-1K∇[image: there is no content](λ(t))



(8)




For every [image: there is no content], this system has a unique fixed point, [image: there is no content], which is a global attractor, and it is the unique minimum of [image: there is no content].





Proof. 

Let G:[image: there is no content]n→[image: there is no content]I be defined by:


[image: there is no content]








for [image: there is no content]. Moreover, [image: there is no content] are also obviously identified with elements of [image: there is no content]I. In particular, in what follows, [image: there is no content] denotes the transposition of C as a vector in [image: there is no content]I, rather than a matrix in Mn([image: there is no content]. With these notations, [image: there is no content] can be rewritten as:


[image: there is no content](λ)=[image: there is no content]λ+log∑σeGT(σ)λ













By elementary computations, we can compute the gradient, ∇[image: there is no content], and the Hessian, ∇2[image: there is no content]:


∇[image: there is no content](λ)=[image: there is no content]-∑σGTeGT(σ)λ∑σeGT(σ)λ










∇2[image: there is no content](λ)=∑σGGTeGT(σ)λ∑σeGT(σ)λ-∑σGeGT(σ)λ∑σeGT(σ)λ∑σGTeGT(σ)λ∑σeGT(σ)λ








It follows, in particular, that ∇2[image: there is no content](λ) is the covariance matrix of the vector, G, with respect to the probability:


[image: there is no content]



(9)




and it is, therefore, nonnegative. Thus, [image: there is no content] is convex. In the next steps, we establish more detailed properties of [image: there is no content], including its strict convexity.



Step 1: the elements of G are linearly independent functions. Suppose [image: there is no content] for [image: there is no content], such that:


[image: there is no content]



(10)




for every σ∈[image: there is no content]n. We show that:


[image: there is no content]



(11)




for every [image: there is no content]. We proceed by induction on n. There is nothing to prove for [image: there is no content]. We can write, assuming Equation (10):


[image: there is no content]



(12)




Since the second summand in Equation (12) does not contain [image: there is no content], this implies:


[image: there is no content]



(13)




and:


[image: there is no content]



(14)




Identity in Equation (13) implies [image: there is no content] for [image: there is no content], as can be shown, for instance, again by induction on n. Identity in Equation (14) implies [image: there is no content] for [image: there is no content] by the inductive assumption.



Step 2: for every λ∈[image: there is no content]I, ∇2[image: there is no content](λ) is strictly positive definite. Denote by [image: there is no content] the covariance matrix of G with respect to the probability in Equation (9). We have:


∇2[image: there is no content](λ)=V(GGT)








Thus, for b∈[image: there is no content]I:


bT∇2[image: there is no content](λ)b=0⇒V(bTG)=0








that, since [image: there is no content] is fully supported, gives:


[image: there is no content]








for every σ∈[image: there is no content]n. By Step 1, this implies that [image: there is no content], which proves the claim.



Step 3: λ∈[image: there is no content]I, the largest eigenvalue of ∇2[image: there is no content](λ) is less than or equal to [image: there is no content]. Let δ denote this largest eigenvalue and v∈[image: there is no content]I, a corresponding eigenvector with [image: there is no content]v=1. We have:


δ=[image: there is no content]∇2[image: there is no content](λ)v=V([image: there is no content]G)≤supσ[image: there is no content]G(σ)2≤supσGT(σ)G(σ)=|I|=[image: there is no content]











Step 4: For [image: there is no content], the map, λ↦λ-1K∇[image: there is no content](λ), is a strict contraction, and therefore, it has a unique fixed point. Let:


ϕ(λ):=λ↦λ-1K∇[image: there is no content](λ)








We have:


ϕ(λ)-ϕ(μ)=λ-μ-1K∇2[image: there is no content](ξ)(λ-μ)








for some ξ in the segment joining λ and μ. Thus, setting ∥v∥2=[image: there is no content]v:


ϕ(λ)-ϕ(μ)2=I-1K∇2[image: there is no content](ξ)(λ-μ)2








The conclusion now follows from the fact that, by Steps 2 and 3, the symmetric matrix, I-1K∇2[image: there is no content](ξ), has all eigenvalues in [image: there is no content].



Step 5: Conclusion. By Step 4, the system, Equation (8), has a unique fixed point, λ, for which, necessarily, ∇[image: there is no content](λ)=0.



It should be observed that the computation of [image: there is no content](λ) and of its gradient involves computing a sum over σ∈[image: there is no content]n. This may be hard or even practically unfeasible for large n; this difficulty may be made less severe by the use of Monte Carlo methods. This and other computational aspects of this algorithm will be discussed in a forthcoming paper.
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