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Abstract:



The aim of this short note is to compute the topological entropy for a family of skew-product maps, whose base is a subshift of finite type, and the fiber maps are homeomorphisms defined in one dimensional spaces. We show that the skew-product map does not increase the topological entropy of the subshift.
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1. Introduction


Let [image: there is no content], and let [image: there is no content]. Consider the shift map, [image: there is no content], given by [image: there is no content]. Let [image: there is no content] be a [image: there is no content] matrix, where the [image: there is no content] are [image: there is no content] or [image: there is no content] for any [image: there is no content]. A subshift of finite type (SFT in short) is the restriction of σ to the set, [image: there is no content]. Note that [image: there is no content] is compact and metrizable and σ([image: there is no content])=[image: there is no content], that is, [image: there is no content] is invariant by σ.



Let X be a metric space and consider continuous maps, [image: there is no content]. Let φ:[image: there is no content]×X→[image: there is no content]×X be the skew-product map given by:


φ((sn),x)=(σ(sn),fs0(x)),forall((sn),x)∈[image: there is no content]×X



(1)







Recently, this class of skew-product maps has been studied by several authors (see [1,2,3,4,5]). The interest for studying systems that are generated by alternative iterations of a finite number of maps comes from several fields, like population dynamics (see, e.g., [6,7]) and economic dynamics (see, e.g., [8,9]), where the systems are generated by SFT with many finite elements. For SFT with infinitely many elements, the term crazy dynamics was introduced in [1]. Let us also point out that this kind of skew-product has been useful for analyzing difference inclusions used in discrete control systems (see, e.g., [10]).



Recently, in [2], the topological entropy of φ was analyzed when [image: there is no content] and [image: there is no content]={0,1}Z, proving that when [image: there is no content] and [image: there is no content] belong to a family of contractive homeomorphisms on the real line, the topological entropy of some invariant set agrees with that of the full shift, [image: there is no content]. Additionally, in [3], they extend their results to homeomorphisms on higher dimension spaces. The aim of this paper is to analyze the same question under different conditions. Let [image: there is no content] and [image: there is no content] denote the topological entropy and a variant valid for non-compact spaces introduced in Section 2. The main aim of this paper is to state the following results.



Theorem 1 

Let [image: there is no content],[image: there is no content]:X→X be homeomorphisms on [image: there is no content], [image: there is no content] or [image: there is no content]. Let φ:[image: there is no content]×X→[image: there is no content]×X, [image: there is no content]⊆{0,1}Z be the skew-product map defined in Equation (1). Then:

	(a) 

	
If [image: there is no content] or [image: there is no content], then [image: there is no content].




	(b) 

	
If X=[image: there is no content], then [image: there is no content]. If there exists a compact subset, K⊂[image: there is no content], such that φ([image: there is no content]×K)⊆[image: there is no content]×K, then [image: there is no content].











Note that homeomorphisms on the circle, the compact interval and the real line have zero topological entropy, and therefore, one might wonder whether the above result remains true for simple maps, that is, for zero entropy maps. The next result, in the spirit of the dynamic Parrondo paradox (see, e.g., [11,12,13,14]), shows that this is not true in general.



Theorem 2 

Let φ:[image: there is no content]×[0,1]→[image: there is no content]×[0,1], [image: there is no content]⊆{0,1}Z be the skew-product map defined in Equation (1). Then, there are zero topological entropy continuous maps, [image: there is no content],[image: there is no content]:[image: there is no content]→[image: there is no content], such that [image: there is no content].





The maps used in the proof of Theorem 2 are constructed by gluing different continuous interval maps, which usually do not appear in discrete models from natural or social sciences. The next result shows that a similar result holds for a well-known one-parameter family of interval maps.



Theorem 3 

Let [image: there is no content], [image: there is no content] and [image: there is no content]. Fix [image: there is no content], and let φ:[image: there is no content]×[0,1]→[image: there is no content]×[0,1], [image: there is no content]⊆{0,1}Z be the skew-product map defined in Equation (1) with [image: there is no content]=ga and [image: there is no content]=gb. Then, there are parameter values, [image: there is no content], such that [image: there is no content] and [image: there is no content] for a suitable SFT.





Let us remark that there are a wide ranges of parameters, [image: there is no content], satisfying Theorem 3. However, we can give some positive results if we strengthen our hypothesis. Recall that a continuous interval map is piecewise monotone if there are [image: there is no content], such that [image: there is no content] is monotone for [image: there is no content]. Recall that two maps, [image: there is no content] and [image: there is no content], commute if [image: there is no content]∘[image: there is no content]=[image: there is no content]∘[image: there is no content]. Then, we can prove the following result, which gives a partial positive answer to our previous question.



Theorem 4 

Let [image: there is no content],[image: there is no content]:[image: there is no content]→[image: there is no content] be commuting continuous piecewise monotone with zero topological entropy. Let φ:[image: there is no content]×[0,1]→[image: there is no content]×[0,1], [image: there is no content]⊆{0,1}Z be the skew-product map defined in Equation (1). Then, [image: there is no content].





Remark 1 

Theorem 4 is not true in general if both maps, [image: there is no content] and [image: there is no content], are not piecewise monotone. Namely, in [15], two commuting maps, [image: there is no content] and [image: there is no content], with zero topological entropy are constructed, such that h([image: there is no content]∘[image: there is no content])>0, and so, following the proof of Theorem 3, we can conclude that [image: there is no content].





The paper is organized as follows. The next section is devoted to introduce basic notation and useful definitions. Then, we give a proof of Theorem 1. The last section is devoted to proving Theorems 2–4.




2. Basic Definitions


Firstly, we will introduce Bowen’s definition of topological entropy (see [16]). Let X be a compact metric space with metric d, and let [image: there is no content] be a continuous map. Let K be a compact subset of X, and fix [image: there is no content] and [image: there is no content]. A subset, [image: there is no content], is said to be [image: there is no content]-separated if for any [image: there is no content], [image: there is no content], there is [image: there is no content], such that [image: there is no content]. Denote by [image: there is no content] the cardinality of an [image: there is no content]-separated set with maximal cardinality. The topological entropy is defined as:


[image: there is no content]








We say that a continuous map, f, is topologically chaotic if [image: there is no content]. In particular, topologically chaotic maps are chaotic in the sense of Li and Yorke (see [17,18]), which is one of the most accepted notions of chaos. In addition, the topological entropy of the skew-product map, φ, defined in Equation (1), satisfies the following Bowen’s inequalities:


maxh(σ),sup(sn)∈[image: there is no content]h(φ,X,(sn))≤h(φ)≤h(σ)+sup(sn)∈[image: there is no content]h(φ,X,(sn))



(2)




where for any (sn)∈[image: there is no content]:


[image: there is no content]








which can be meant as the topological entropy of the non-autonomous discrete system given by the sequence of maps, [image: there is no content] (see [19] for the definition).



When X is not compact, the above definition of topological entropy makes sense when f is uniformly continuous. Then, we need to add a new limit in the definition as follows:


[image: there is no content]








We stress the metric, d, now, because this definition is metric-dependent. However, it is known (see, e.g., [20]) that, although the dynamics of the map, [image: there is no content], x∈[image: there is no content], is simple, we have that [image: there is no content] for the standard Euclidean metric on [image: there is no content]. To solve this problem, in [21], a notion of topological entropy for non-compact spaces has been introduced, such that it can be computed for any continuous map and keeps the above property, that positive entropy maps have a complicated dynamic behavior. Denote by [image: there is no content] the family of compact subsets, K of X, such that [image: there is no content], and define:


[image: there is no content]








Note that, clearly, [image: there is no content], and for [image: there is no content], we easily see that [image: there is no content], because the only invariant compact subset is [image: there is no content]. Additionally, [image: there is no content] when [image: there is no content].



Now, we concentrate our efforts in proving our main results.




3. Proof of Theorem 1


Proof of case (a). Let [image: there is no content] be a sequence of homeomorphisms with [image: there is no content] or [image: there is no content]. It can be seen in [19] that if we denote by [image: there is no content] the sequence of maps, ([image: there is no content],f2,....), then h([image: there is no content])=0. To finish the proof, we apply Bowen’s inequality (2) to conclude that, since:


sup(sn)∈[image: there is no content]h(φ,X,(sn))=0








we have that [image: there is no content].



When X=[image: there is no content], we cannot apply Bowen’s inequality, and therefore, the proof requires extra work.



Proof of case (b). Note that [image: there is no content]=(−∞,+∞). We add two symbols to [image: there is no content] and construct the compact space, [image: there is no content], which is homeomorphic to a compact interval. Since [image: there is no content] and [image: there is no content] are homeomorphisms, we can extend them continuously and construct maps, fi*:[image: there is no content]→[image: there is no content], such that [image: there is no content], [image: there is no content]. Note that [image: there is no content] and [image: there is no content] are homeomorphisms, as well, and therefore:


[image: there is no content]








for all (sn)∈[image: there is no content].



On the other hand, we consider the continuous extension of φ:


[image: there is no content]:[image: there is no content]×[image: there is no content]→[image: there is no content]×[image: there is no content]








given by:


[image: there is no content]((sn),x)=(σ(sn),fs0*(x)),forall((sn),x)∈[image: there is no content]×[image: there is no content]








Since any compact subset of [image: there is no content]×(−∞,+∞) is a compact subset of [image: there is no content]×[−∞,+∞], we conclude that:


[image: there is no content]








Applying Bowen’s inequality to [image: there is no content], we conclude that:


h([image: there is no content])≤h(σ)+sup(sn)∈[image: there is no content]h([image: there is no content],[image: there is no content],(sn))








and since:


h([image: there is no content],[image: there is no content],(sn))=h(fs0*,fs1*,...)=0








we conclude that:


ent(φ)≤h([image: there is no content])=h(σ)








Now, we assume that there exists a compact set, K⊂[image: there is no content], such that φ([image: there is no content]×K)⊆[image: there is no content]×K. Applying Bowen’s inequality to φ|[image: there is no content]×K, we conclude that:


h(σ)≤h(φ|[image: there is no content]×K)≤ent(φ)








which concludes the proof.



Remark 2 

The existence of compact subsets, K, holding the conditions of Theorem 1 (b) can be seen in [2,10]. The following example shows that the equality, [image: there is no content], is not true in general when such compact subsets do not exist. We just consider the real maps, [image: there is no content], [image: there is no content], and construct the map, φ. Clearly K(ΣZ×[image: there is no content],φ)=∅, which implies that [image: there is no content]. If we take as a base map, σ:[image: there is no content]→[image: there is no content], with positive topological entropy, then we find that [image: there is no content].






4. Proof of Theorems 2–4


Proof of Theorem 2. Let [image: there is no content]={0,1}Z, and define the maps, [image: there is no content] and [image: there is no content], as follows:


[image: there is no content](x)=(g2∘t2∘g1−1)(x)ifx∈[0,1/2]1/2ifx∈[1/2,1]








and:


[image: there is no content](x)=1/2ifx∈[0,1/2](g1∘ϕ∘t2∘ϕ∘g2−1)(x)ifx∈[1/2,1]








where [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content], and t is the standard tent map, [image: there is no content], [image: there is no content], which holds that [image: there is no content]. Figure 1 shows the graph of [image: there is no content] and [image: there is no content] on the interval, [image: there is no content].


Figure 1. We show the graphic on [image: there is no content] of maps [image: there is no content] (left), [image: there is no content] (center) and [image: there is no content]∘[image: there is no content] (right), defined in the proof of Theorem 2.



[image: Entropy 15 03100 g001]








Note that fi2([image: there is no content])=1/2, [image: there is no content], and thus, h([image: there is no content])=h([image: there is no content])=0. Let (0,1,0,1,...)∈[image: there is no content], and note that, by [19]:


h(φ,[image: there is no content],(0,1,0,1...))=h([image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],...)=12h([image: there is no content]∘[image: there is no content])








On the other hand, we have that:


([image: there is no content]∘[image: there is no content])(x)=(g1∘ϕ∘t4∘ϕ∘g1−1)(x)ifx∈[0,1/2]1/2ifx∈[1/2,1]








whose graphic can be seen in Figure 1. By [22], h([image: there is no content]∘[image: there is no content])=log16. By Bowen’s inequalities:


[image: there is no content]








and the proof concludes.



Proof of Theorem 3. Let [image: there is no content], [image: there is no content] and [image: there is no content]. It is well-known that [image: there is no content] increases when a increases (see, e.g., [23]), and it is positive for [image: there is no content]Figure 2 shows the computation of [image: there is no content] with accuracy [image: there is no content] by using an algorithm from [24]. However, for [image: there is no content], [image: there is no content], the computation of topological entropy with prescribed accuracy is more complicated. For doing it, we use the recently developed algorithm from [25]. Figure 3 shows the entropy computations with prescribed accuracy, [image: there is no content]. From the shown computations, we may find parameter values, a and b, a bit smaller than [image: there is no content] with zero topological entropy for maps [image: there is no content] and [image: there is no content], such that h([image: there is no content]∘[image: there is no content]) is positive (for instance, [image: there is no content] and [image: there is no content] gives positive values of h([image: there is no content]∘[image: there is no content])).


Figure 2. We compute the topological entropy (ent in the figure) for [image: there is no content] with accuracy, [image: there is no content]. We note that the first parameter value providing positive topological entropy is [image: there is no content]



[image: Entropy 15 03100 g002]





Figure 3. We compute the topological entropy (ent in the figure) for [image: there is no content] and [image: there is no content] with accuracy, [image: there is no content]. The darker region represents those parameter values providing zero topological entropy.



[image: Entropy 15 03100 g003]










Now, we consider the matrix:


[image: there is no content]








and notice that the SFT, σ:[image: there is no content]→[image: there is no content], generated by A is composed of two periodic sequences, [image: there is no content] and [image: there is no content], which implies that [image: there is no content]. On the other hand, if [image: there is no content]=[image: there is no content] and [image: there is no content]=[image: there is no content], notice that:


h(φ,X,(0,1,0,1,...))=h([image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],...)=12h([image: there is no content]∘[image: there is no content])h(φ,X,(1,0,1,0,...))=h([image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],...)=12h([image: there is no content]∘[image: there is no content])








It is easy to check that:


h(φ)=12h([image: there is no content]∘[image: there is no content])=12h([image: there is no content]∘[image: there is no content])>0=h(σ)








which concludes the proof.



Proof of Theorem 4. Let [image: there is no content] denote the number of monotonicity pieces of a piecewise monotone map, f. By the Misiurewicz-Szlenk (see [22]) formula:


[image: there is no content]








Fix (sn)∈[image: there is no content] and note that:


[image: there is no content]








where [image: there is no content]. Since the sequence, [image: there is no content], contains two maps, it is equicontinuous, and then, the Misiurewicz-Szlenk formula is valid in this setting (see [26]). Thus:


h(fs0,fs1,...)=lim supn→∞1nlogc(fsn−1∘fsn−2∘...∘fs0)≤lim supn→∞knn1knlogc(f1kn)+lim supn→∞n−knn1n−knlogc(f0n−kn)≤h([image: there is no content])lim supn→∞knn+h([image: there is no content])lim supn→∞n−knn








and since h([image: there is no content])=h([image: there is no content])=0, we find that for any (sn)∈[image: there is no content], we have that [image: there is no content]. By Bowen’s inequality:


h(φ)≤h(σ)+sup(sn)∈[image: there is no content]h[image: there is no content]=h(σ)








Since the inequality, [image: there is no content], also holds, we conclude the proof.




5. Conclusions


We prove that skew-product maps with the form of Equation (1), such that the fiber maps are homeomorphisms on one dimensional spaces, do not increase the topological entropy of its base map, and then, the behavior of the space, X, is not dynamically complicated, generalizing a result from [2]. On the other hand, we also prove that a similar situation does not hold when zero topological entropy continuous interval maps are considered. Still, the question remains open of whether our results can be extended to homeomorphisms defined on topological spaces with dimensions greater than one.
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