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Abstract: We hypothesize a mechanistic model of how negatively-charged exclusion 

zones (EZs) are created. While the growth of EZs is known to be associated with the 

absorption of ambient photonic energy, the molecular dynamics giving rise to this process 

need greater elucidation. We believe they arise due to the formation of oxy-subhydride 

structures (OH−)(H2O)4 with a tetrahedral (sp3) (OH−)(H2O)3 core. Five experimental data 

sets derived by previous researchers were assessed in this regard: (1) water-derived EZ 

light absorbance at specific infrared wavelengths, (2) EZ negative potential in water and 

ethanol, (3) maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4) ability of 

dimethyl sulphoxide but not ether to form an EZ, and (5) transitory nature of melting ice 

derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH) appear to 

adequately account for all of the experimental evidence derived from water or other polar 

solvents. 
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1. Introduction 

In 2003, Zheng and Pollack stated that “solute-solute interactions in aqueous solutions are generally 

thought to occur on a scale in nanometers” [1]. They further presented evidence that attractive and 

repulsive forces exhibited at this scale could extend to distances on the order of 100 µm. Subsequent 

research by Zheng et al. demonstrated the exclusion zones (EZs) these forces generated could extend 

to 360 ± 50 µm [2]. Existing literature does not adequately explain how or why negatively-charged 

EZs form at all [2–8]. Although Pollack has offered what might be termed a trigonal “sp2 bond-type 

offset hexagonal sheet model” as a possible explanation for EZ structures, as illustrated in Figure 1, 

this model is problematic in several regards.   

Figure 1. Representation of Pollack’s suggested sp2 offset hexagonal water sheet model.  

 

It does not offer an irrefutable account for: (1) enhanced absorbance of infrared light at ~3436 nm 

and 2907 nm (equivalent to wavenumbers ~2919 and ~3430 cm−1), (2) EZ negative potential of ~ −160 

to −200 mV in Nafion®-water or Nafion®-ethanol, (3) maximum light absorbance at 270 nm ultraviolet 

wavelength in water, (4) presence of EZs in dimethyl sulphoxide but not ether, and (5) the transitory 

occurrence of EZs in melting ice. We are unaware of any other researchers who have proposed models 

that fully address these issues. Thus arose a need for an explanatory model that could attempt to 

account for all historical experimental data related to EZs.  

2. EZ Growth Model  

We propose an EZ growth model for water, partially melted ice, or polar solvents adjacent to solid 

or gel anchors containing O− or OH functional groups able to hydrogen bond to water or polar 

solvents. Molecules containing OH functional groups include the amino acids serine, threonine and 

tyrosine, components of rabbit muscle protein, plus polyvinyl alcohol shown to form EZs [1,2]. 

Molecules containing O− functional groups include sulphonate in Nafion® [3]. Each of these three 

proposed EZ systems will now be discussed separately in detail. 
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2.1 Water EZs 

Figure 2 illustrates a proposed structure for ice [9]. Exclusion zones derived from water have been 

shown to have negative potentials (charge). Thus it follows that melting ice would also likely exhibit 

transitory exclusion zones with a net negative charge and would also expel protons (H+) to create such 

a negative charge. 

Figure 2. Three dimensional molecular structure for ice showing hydrogen atoms as white 

spheres, oxygen atoms as red spheres, hydrogen to oxygen bonds within a single water 

molecule as solid white lines and hydrogen bonds between adjacent water molecules as 

dashed grey lines. 

 

To illustrate this process, we refer again to Figure 2. The following may occur:  

• An ambient, incident photon (e.g., in the ultraviolet wavelength region), strikes and ruptures a 

non-hydrogen bonded hydrogen atom in a water molecule on the top surface of a block of ice. 

Note that H+ and OH- exist in water free of incident radiation. The addition of specific 

wavelengths of infrared, visible light or ultraviolet light at varying amplitudes to water is 

expected to shift the HOH auto-dissociation in favour of additional proton formation [10,11]. 

• In our example, we use the topmost central water molecule in Figure 2 as it has 2 hydrogen 

bonds plus 2 hydrogen atoms which are non-hydrogen bonded to other water molecules. We 

believe this configuration is the most susceptible to rupture and formation of H+. Rupture at this 

site should occur prior to the water molecule directly below it, to which it is hydrogen bonded 

and which has 3 hydrogen bonds, since it should take more energy to rupture a combination  

O-H-HOH bond than a single O-H bond.  

• The OH− functional group remaining after H+ ejection then forms a hydrogen bond with a new 

water molecule to make it more stable via a fourth tetrahedral bond. 

This hypothesized two-step process is illustrated in Figures 3 to 5 below: 
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Figure 3. Non-EZ ice sub-structure (oxygen atoms as red circles, hydrogen atoms as white 

circles, solid black lines as oxygen-hydrogen bonds within a single water molecule, dashed 

black lines as hydrogen bonds between oxygen and hydrogen atoms in adjacent water 

molecules). Water molecule “A” corresponds to Figure 2’s topmost central water molecule. 

 

Figure 4. Ruptured ice-substructure containing an OH− function group at “A” and an 

ejected proton H+ after a photon absorption event of sufficient energy. 

HH+

+ 

Figure 5. Anticipated hydrogen bonding of the hydroxyl species containing oxygen atom 

“A” with a new non-ice water molecule “E”. 

HH+

+ 

The proposed ABCE structure of Figure 5 precisely matches the hydroxyl-tetrawater cluster designated 

“OHW4I” (a), containing a tetrahedral (sp3) (OH−) (H2O)3 core, shown by Chaudhuri et al. [12] (p. 1164). 

This particular structure highly absorbs infrared light at both ~3436 nm and 2907 nm (i.e., 2910 and  
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3440 cm−1), which closely matches the ~3426 nm and 2914 nm (i.e., 2919 and 3432 cm−1) for water-

derived EZs [3]. Chaudhuri shows that different isomers of (OH−)(H2O)4 have different infrared 

spectra. What is of additional significance is that Novoa et al. describe and show under “2” that the 

infrared absorbance peaks in the structures Chaudhuri identified as OHW4I happen to be the most 

stable of all the possible variants for (OH−)(H2O)4 [13] (p. 7845). It is therefore likely that  

water-derived EZs contain a negatively-charged specific hydroxy-tetrawater isomer containing a 

tetrahedral (sp3) (OH−)(H2O)3 core with an H4O− sub-core.  

Another possible structure for Figure 5 is shown in Figure 6 in which the three hydrogen bonds 

from water molecules “B”, “C” and “E” to the oxygen in “A” and the hydrogen to oxygen bond in “A” 

undergo resonance to make them equivalent (dashed lines from “A” oxygen). Such resonance, if it 

occurs, could establish TOSH structures as EZ anchors inside the EZ field due to enhanced bond 

strength of three of the four TOSH O to H bonds (see Figure 5 vs. Figure 6). 

Figure 6. Potential anticipated resonance of hydrogen bonds (dark dashed lines) adjacent 

to hydroxyl oxygen to make their bond strengths equal.  

 

The electrical potential for a single hydride ion (1s2)/single hydrogen atom (1s1) couple is estimated 

at −0.83 ± 0.11 V (i.e., 0.83 ± 0.11 V for the H-/H one electron reaction couple) [14]. If the four 

hydrogen atoms attached to oxygen “A” as H4O− (oxytetrasubhydride) equally share the one electron 

of OH− in a pseudo 1s2 orbital (i.e., less swollen than a normal 1s2 orbital), they should have a 

potential of −0.208 ± 0.028 V, ¼ of 0.83 ± 0.11 V, which overlaps the potentials ~ −0.16 to ~ −0.20 V 

measured in EZs in water next to Nafion® by Zheng et al. [2,8]. The redox couple for this potential 

could be given by the following reaction: 

5HOH = OH-(HOH)4 + H+ (1)

Figure 7 illustrates phenol and gallic acid, respectively. Both of these molecules and water-derived 

EZs show maximum UV absorbance at 270 nm [15,16]. 
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Figure 7. Phenol (a) and gallic acid (b). 

 
 

(a) (b) 

The resonant frequency of un-hybridized and un-bonded electrons (designated “n”→π*) has been 

estimated as 270 nm [17]. There is one un-hybridized and un-bonded “n” type 2pz electron in each 

carbon of a C-O phenol and gallic acid sub-cluster. There is also one un-hybridized and un-bonded “n” 

type 1s2 electron in the four hydrogen atoms of an HO4
− oxytetrasubhydride structure (TOSH). 

Identical numbers of additional “n” electrons are contained in the oxygen atoms of C-O and H4O−. The 

resonant ultraviolet frequencies of C-O in phenol and gallic acid and TOSH structures are therefore 

expected to match.  

2.2. Non-Water EZs 

Experimental data on heavy water and non-aqueous polar solvent (e.g., ethanol) EZs suggests 

oxytetrasubhydride structures are analogous to those in EZs suggested for water. Figures 8 to 10 are 

the ROH polar solvent analogues of Figures 3–5 (e.g., R shown in green is C2H5 and, R+ is C2H5
+ for 

ethanol). Further credence to the oxytetrasubhydride structure hypothesis is suggested by their  

super-imposable electrode potentials of ~ −160 to ~ −200 mV.  

Figure 8. ROH solvent sub-structure [oxygen in red, R group (e.g. C2H5) in green and 

hydrogens in white, dotted lines indicate hydrogen bonding between ROH molecules]. 
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Figure 9. ROH solvent sub-structure [oxygen in red, R group (e.g., C2H5) in green and 

hydrogens in white, dotted lines indicate hydrogen bonding between ROH molecules]. 

+ R+ 

Figure 10. ROH solvent sub-structure [oxygen in red, R group (e.g., C2H5) in green and 

hydrogens in white, dotted lines indicate hydrogen bonding between ROH molecules, plus 

H4O− oxytetrasubhydride cluster]. 

+ R+ 

Figure 11 shows that dimethyl sulphoxide, unlike diethyl ether, can form a ROH isomer and a 

subsequent EZ via: 

Figure 11. Dimethyl sulphoxide isomers. 

 O  OH
 ||  |

CH3-S-CH3 = CH3-S=CH2 where: CH3S=CH2 is ‘R’ 

2.2. EZ Anchors 

It is believed that EZ water containing tetrahedral oxy-subhydride sub-clusters is stabilized by the 

presence of solid or gel-like non-billowable anchors containing OH (e.g., polyvinyl alcohol, 

polyacrylic acid, protein, amino acids, O− [Nafion®] functional groups). Once the solid ice OH 
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functional group anchors melt with or without additional photonic energy inputs, they cease to be 

anchors. We believe this is responsible for the subsequent destruction of the EZ fields as evidenced by 

their lack of UV absorbance at 270 nm. This would suggest that intermediate TOSH anchors are of 

insufficient strength to sustain an EZ field in the absence of a stronger anchor such as Nafion®, 

polyacrylic acid, polyvinyl alcohol or amino acids in protein (e.g., rabbit muscle). 

4. Conclusions  

The following experimentally-derived empirical data sets from previous investigators have been 

assessed to validate the proposition that tetrahedral H4O− oxy-subhydride (TOSH) structures account 

for the properties observed in water, heavy water or polar solvent derived EZs: 

(1) Water-derived EZ light absorbance at specific infrared wavelengths. 

(2) EZ negative potential in water and ethanol. 

(3) Maximum EZ light absorbance at 270 nm ultraviolet wavelength. 

(4) Ability of dimethyl sulphoxide but not ether to form an EZ. 

(5) Transitory nature of melting ice derived EZs. 

The mechanism of formation of the suggested TOSH structures has been described in 

detail. The likelihood of the proposition being valid is high since correlations with a wide 

variety of experimental data are good. 
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