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1. Introduction

Let (X,.A) be a measurable space satisfying |.4| > 2 and p be a o-finite measure on (X, .A4). Let P
be the set of all probability measures on (X, .A) which are absolutely continuous with respect to . For
PQeP,letp = % and g = % denote the Radon—Nikodym derivatives of P and () with respect to f.

Two probability measures P, () € P are said to be orthogonal and we denote this by @) L P if:

P{g=0})=Q{p=0}) =1

Let f : [0,00) = (—00, 00| be a convex function that is continuous at zero, i.e., f (0) = lim, o f (u) .
In 1963, 1. Csiszar [1] introduced the concept of f-divergence as follows.
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Definition 1. Let P, () € P. Then:

ff(Q,P)I/p

X

)7 |28 duta). 1)

is called the f-divergence of the probability distributions () and P.

Remark 1. Observe that, the integrand in the formula (1) is undefined when p (x) = 0. The way to

overcome this problem is to postulate for f as above that:

0f {M} — ¢ (2)lim luf <%)]xEX @

0 ul0

For f continuous convex on [0, c0) we obtain the *-conjugate function of f by:
. 1
[ (u) =uf (a) , u€(0,00)

and:

f7(0) = lim f* (u) .

ul0

It is also known that if f is continuous convex on [0, c0), then so is f*.
The following two theorems contain the most basic properties of f-divergences. For their proofs we

refer the reader to Chapter 1 of [2] (see also [3]).

Theorem 1 (Uniqueness and symmetry theorem). Let f, f1 be continuous convex on [0, 00). We have:
Iy, (@, P) = 1; (Q, P),
forall P,(Q) € P if and only if there exists a constant ¢ € R, such that:
fi(u) = f(u)+c(u—1),
forany u € [0, 00).

Theorem 2 (Range of values theorem). Let f : [0, 00) — R be a continuous convex function on [0, 0).

For any P, () € P, we have the double inequality:
Q) <15 (Q,P) < f(0)+ f7(0). 3)
(i) If P = Q, then the equality holds in the first part of (3).
If f is strictly convex at one, then the equality holds in the first part of (3) if and only if P = Q);
(ii) If Q) L P, then the equality holds in the second part of (3).
If £ (0) + f*(0) < oo, then equality holds in the second part of (3) if and only if Q L P.

The following result is a refinement of the second inequality in Theorem 2 (see Theorem 3 in [3]).
A function f defined on [0, co) is called normalised if f (1) = 0.
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Theorem 3. Let f be a continuous convex and normalised function on [0, 00) with f (0) + f* (0) < co.
Then

0<1I;(Q P) <5 [f(0)+/(0)]V(Q P) )

N | —

forany QQ, P € P.

For other inequalities for f-divergence see [4—15].
We now give some examples of f-divergences that are well-known and often used in the literature
(see also [3]).
(1) The class of xy*-divergences. The f-divergences of this class, which is generated by the function
X%, a € [1,00), defined by:
X () = 1%, we[0,00)

have the form:

dp = / p " g — p|” dp. (5)
X X

From this class only the parameter & = 1 provides a distance in the topological sense, namely the total

ff(Q,P)Z/p‘%—l

variation distance V' (Q, P) = [ |¢ — p| dpu. The most prominent special case of this class is, however,

Karl Pearson’s y2-divergence:
2
q
XQ(Q,P)Z/ —dp—1
x P

that is obtained for o = 2.
(2) Dichotomy class. From this class, generated by the function f, : [0,00) — R:

(

u—1—Inu for a = 0;
fo(u) = a(llfa) [au+1—a—u*] for a € R\{0,1};
| l—u+ulnu for a = 1;

only the parameter «v = 3 ( f% (u) =2 (u— 1)2) provides a distance, namely, the Hellinger distance:

H(Q.P)= [/X(\/_—\/T?)Qdur-

Another important divergence is the Kullback-Leibler divergence obtained for o = 1,

KL(Q,P) = /qun (%) dyu.

(3) Matsushita’s divergences. The elements of this class, which is generated by the function ¢,
« € (0,1] given by:
Yo (u) == |1 —u®e, wue|0,00),
are prototypes of metric divergences, providing the distances [1,,, (Q, P)]".

(4) Puri—Vincze divergences. This class is generated by the functions ®,, o € [1, 00) given by:
1= ul”

Dy (u) == Wi

u € [0, 00).
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It has been shown in [16] that this class provides the distances [I¢, (Q, P)]é :
(5) Divergences of Arimoto-type. This class is generated by the functions:

( T [(1—|—ua)é —25*1(1+u)] for av € (0,00)\ {1};
o (u):=9 (14+u)n2+ulnu—(1+u)n(l+u) for a=1;
[ 5 [1—ul for o = oc.

It has been shown in [17] that this class provides the distances [Iy,, (@, P)}mi“(a’é) for a € (0,00) and
TV (Q, P) for a = .

In order to introduce a quantum f-divergence for trace class operators in Hilbert spaces and study its
properties we need some preliminary facts as follows.

2. Trace of Operators

Let (H, (-,-)) be a complex Hilbert space and {e; },., an orthonormal basis of H. We say that A €
B (H) is a Hilbert—Schmidt operator if:

> [l Aei]|* < oo (6)

el

Itis well know that, if {e;},.; and {f;},_; are orthonormal bases for H and A € B (H), then:

Do llAal® = IALIE =) 1A S (7)

i€l jEI jEI
showing that the definition (6) is independent of the orthonormal basis and A is a Hilbert—Schmidt
operator iff A* is a Hilbert—Schmidt operator.

Let By (H) the set of Hilbert—Schmidt operators in B (H) . For A € B, (H) we define:

1/2
1Al = (Z HAeiHQ> (8)

iel
for {e;},., an orthonormal basis of /. This definition does not depend on the choice of the orthonormal
basis.

Using the triangle inequality in (* (I), one checks that B (H ) is a vector space and that ||-||,, is a norm
on By (H), which is usually called in the literature as the Hilbert—Schmidt norm.

Denote the modulus of an operator A € B (H) by |A| := (A*A)"/2.

Because |||A] z|| = ||Az|| for all x € H, A is Hilbert—Schmidt iff | A| is Hilbert—-Schmidt and || A||, =
ll|Al|l, - From (7) we have that if A € By (H), then A* € By (H) and ||A||, = ||A*], .

The following theorem collects some of the most important properties of Hilbert—Schmidt operators:

Theorem 4. We have:
(i) (B2 (H), ||-|l,) is a Hilbert space with inner product:

(A,B), =) (Ae;, Be;) =Y (B Aej,¢;) 9)

el el
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and the definition does not depend on the choice of the orthonormal basis {e;},

(ii) We have the inequalities:
[A[l < [|A]l, (10)

forany A € By (H) and:
ATl [[TAlly < 7] [l Al (11)

forany A€ By (H)andT € B(H);
(iii) By (H) is an operator ideal in B (H), i.e.,
B(H)B:(H)B(H) € By (H);

(iv) Bgin, (H), the space of operators of finite rank, is a dense subspace of By (H);
(v) By (H) C K (H), where K (H) denotes the algebra of compact operators on H.

If {€;},.,; an orthonormal basis of H, we say that A € B (H) is trace class if:
1Al =D (Al es, e3) < oo, (12)
il
The definition of || Al|,; does not depend on the choice of the orthonormal basis {e;},., . We denote by

B, (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B (H), then the following are equivalent:
(i) A e B (H);
(i) |A|"? € B, (H);
(ii) A (or | Al) is the product of two elements of By (H) .

The following properties are also well known:

Theorem 5. With the above notations:
(i) We have
[A[l, = [|A*[l, and [[All, < [|A], (13)

forany A € By (H);
(ii) By (H) is an operator ideal in B (H), i.e.,

B(H) B (H)B(H) < By (H);

(iii) We have:

(iv) We have:
|All, = sup {(A, B), | B€ By (H), ||B| <1};

(v) (Bi (H),|||;) is a Banach space.

(iv) We have the following isometric isomorphisms:
B (H)XK(H) and B, (H)* < B(H),

where K (H)" is the dual space of K (H) and By (H)" is the dual space of B, (H) .
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We define the trace of a trace class operator A € By (H) to be:

tr(A) := Z (Ae;, e;) (14)

icl
where {¢;},.; an orthonormal basis of /. Note that this coincides with the usual definition of the trace if
H is finite-dimensional. We observe that the series (14) converges absolutely and it is independent from

the choice of basis.
The following result collects some properties of the trace:

Theorem 6. We have:
(i) If A € By (H), then A* € B, (H) and:

tr (A*) = tr (A); (15)
(ii)If A€ By (H)andT € B(H), then AT, TA € B, (H) and:
tr (AT) = tr (T'A) and |tr (AT)| < || Al |7 ; (16)

(iii) tr (-) is a bounded linear functional on By (H) with ||tr|| = 1;
(iv)If A, B € By (H), then AB, BA € By (H) and tr (AB) = tr (BA);
(v) Byin (H) is a dense subspace of By (H) .

Utilising the trace notation, we obviously have that:
(A, B), = tr (B*A) = tr (AB*) and || A = tr (A" A) = tr (|A]%)

forany A, B € By (H) .
The following Holder’s type inequality has been obtained by Ruskai in [18]:

—Q

0 (AB)| < tr (14B]) < [ir (]417)]" [ (|B\1/<1—a>)]1 (17)

where o € (0,1) and A, B € B(H) with [A|Y*, |B|Y"™ ¢ B, (H).
In particular, for o = % we get the Schwarz inequality:

tr (AB)| < tr (|AB]) < [tr (|A%)]"* [tr (1B%)]"? (18)

with A, B € B, (H).
If A>0Oand P € By (H) with P > 0, then:

0 < tr(PA) < A tr(P). (19)
Indeed, since A > 0, then (Az, ) > 0 for any x € H. If {ei}iE ; an orthonormal basis of H, then:
0 < (APY2¢;, PV%¢;) < ||A||||PY2e:|” = || All (Pes, e)
for any 7 € I. Summing over ¢ € I, we get:

0 <Y (APY2e, PY%e) < A (Peses) = || All tr (P)

el el
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and since:
> (APY2e¢;, P'Pe;) =) (PYVPAPY?e; ;) = tr (P2 APY?) = tr (PA)
il iel
we obtain the desired result (19).
This obviously imply the fact that, if A and B are self-adjoint operators with A < Band P € B, (H)

with P > 0, then:
tr (PA) <tr(PB). (20)

Now, if A is a self-adjoint operator, then we know that:
|(Az,z)| < (|A|x,z) forany x € H.

This inequality follows by Jensen’s inequality for the convex function f (¢) = |¢| defined on a closed
interval containing the spectrum of A.

If {€;},c; is an orthonormal basis of H, then:

tr (PA)| = Y (AP2¢;, P'e;)| <Y " |(AP'?¢;, P'¢;)| (21)
i€l i€l
< Y (JA|PYe;, PPe;) = tr (P|A]),
el

for any A a self-adjoint operator and P € By (H) := {P € B, (H) with P > 0}.

For the theory of trace functionals and their applications the reader is referred to [19].

For some classical trace inequalities see [20—24], which are continuations of the work of Bellman [25].
For related works the reader can refer to [20,24,26-32].

3. Classical Quantum f-Divergence
On complex Hilbert space (B2 (H), (-, -),), where the Hilbert—-Schmidt inner product is defined by:
(U, V), =tr (V*U)

for A, B € B" (H) consider the operators £4 : By (H) — By (H) and Rp : By (H) — By (H) defined
by:
AT .= AT and RpT :=TB.

We observe that they are well defined and since:
(AT, T), = (AT, T), = tr (T*AT) = tr (|T*|* A) >0

and:
(RpT,T)y = (TB,T)y=tr (T"TB) = tr (|T|*B) > 0

for any 7' € B, (H), they are also positive in the operator order of B (B (H)), the Banach algebra of all
bounded operators on B, (H ) with the norm ||-||, where |||, = tr (|T|2), TebB,(H).
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Since tr (|X*|2) = tr (|X|2) for any X € B, (H), then also:

tr (T"AT) = tr (T* A2 AY2T) = tr ((AV°T)" AY2T )

2) = o (|77 av2[")
for A>0andT € By (H).

We observe that £, and PR are commutative, therefore the product £ 4R g is a self-adjoint positive

e ()

operator on 3, (H ) for any positive operators A, B € B(H).
For A, B € BT (H) with B invertible, we define the Araki transform A4 5 : By (H) — By (H) by
A4 p = L4MRp-1. We observe that for T' € B, (H), and we have A4 5T = ATB~! and:

(Aa T, T), = (ATB',T), =tr (T*"ATB™").
Observe also, by the properties of trace, that:

tr (T*ATB™") = tr (B~'/*T*A'?AV2TB™1/?)
— e (AVTB ) (ARTER)) = e (|ATE )

giving that:
Q5T T), = tx (|A2TB2) > 0 (22)

forany 7" € By (H).

Let U be a self-adjoint linear operator on a complex Hilbert space (K;(-,-)). The Gelfand map
establishes a x-isometrically isomorphism ® between the set C'(Sp (U)) of all continuous functions
defined on the spectrum of U, denoted Sp (U), and the C*-algebra C* (U) generated by U and the
identity operator 1 on K as follows:

For any f,g € C'(Sp (U)) and any «, 5 € C we have

i) @(af +Ag) = ad () + 59 (g):

(i) @(fg) =@ (f)P(g)and @ (f) = & (f)"

Gii) 9 (F)] = 171 == suprespon 1 ()

(iv) @ (fo) =1k and @ (f1) = U, where fo (t) = L and f, (t) =t,fort € Sp (U).

With this notation we define:

fU):=d(f) forall feC(Sp(U))

and we call it the continuous functional calculus for a self-adjoint operator U.

If U is a self-adjoint operator and f is a real valued continuous function on Sp (U), then f (t) > 0 for
any t € Sp (U) implies that f (U) > 0, i.e., f (U) is a positive operator on K. Moreover, if both f and g
are real valued functions on Sp (U), then the following important property holds:

f(t)>g(t) forany ¢e€Sp(U) impliesthat f(U)>g(U) P)

in the operator order of B (K) .
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Let f : [0,00) — R be a continuous function. Utilising the continuous functional calculus for the
Araki self-adjoint operator 2o p € B (B2 (H)) we can define the quantum f-divergence for (), P €
S(H):={P € By (H), P>0with tr (P) = 1} and P invertible, by:

Sp(Q,P) = (f Aq,p) P'/? P =tr (P'?f (Aqp) P'?).

If we consider the continuous convex function f : [0,00) — R, with f (0) := 0 and f (¢t) = ¢Int for
t > 0, then for Q, P € S (H) and @, P invertible, we have:

Sp(@Q,P)=tr[@Q(InQ —InP)] = U(Q,P),

which is the Umegaki relative entropy.
If we take the continuous convex function f : [0,00) — R, f(t) = [t — 1| for ¢ > 0, then for
Q, P € S (H) with P invertible, we have:

S(Q,P) = tr (P?|Ag p — g, P?) = tr (|Q — P|) =V (Q, P),

where V' (@), P) is the variational distance.
If we take f : [0,00) = R, f(t) = t* — 1 fort > 0, then for Q, P € S (H) with P invertible, we
have:

S;(Q,P)=tr (Q°P7") —1=:x*(Q, P), (23)

which is called the y>-distance.

Let g € (0, 1) and define the convex function f, : [0,00) — R by f, (t) = llit;. Then:

1 — tr (QIP'9)

Sp, (@ P) =~ =

?

which is Tsallis relative entropy.
If we consider the convex function f : [0,00) — Rby f (t) = 3 (Vi — 1)2, then:

S;(Q,P)=1—1tr (Q'*P'?) = r*(Q, P),

which is known as Hellinger discrimination.
If we take f : (0,00) = R, f (t) = —Int, then for Q, P € S (H) and @, P invertible, we have:

S;(Q,P)=tr[P(InP—1nQ)] =U(P,Q).

In the important case of finite dimensional space H and the generalized inverse P~!, numerous
properties of the quantum f-divergence have been obtained in the recent papers [33-36] and the
references therein. We omit the details.
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4. A New Quantum f-Divergence

In order to simplify the writing, we denote by S; (H) the set of all density operators which are
elements of B, (H) having unit trace.

We observe that, if P, () are self-adjoint with P, ) > 0 and P is invertible, then P*%QP*% > 0.

Let f : [0,00) — R be a continuous convex function on [0, c0). We can define the following new

quantum f-divergence functional:
Dy(Q,P) = tx |Pf (P3P )] (D)

for Q, P € S; (H) with P invertible. The definition can be extended for any continuous function.
If we take the convex function f (t) =t — 1, ¢ > 0, then we get:

Dy (Q,P) :=tr [P [(P—%QP—%)z - 1” =tr (Q°P7") —1=:x*(Q. P),

for Q, P € S, (H) with P invertible, which is the Karl Pearson’s x2-divergence version for trace class
operators. This divergence is the same as the one generated by the classical f-divergence, see (23).

More general, if we take the convex function f (t) = t" —1, ¢ > 0 and n a natural number with n > 2,
then we get:

D;(Q,P) = tr [P [(P—%QP—%)" _ 1” —tr (Q (QP*)”*) 1
=: D3 (Q, P)

for @, P € S; (H) with P invertible.
If we take the convex function f (t) = ¢tInt for ¢ > 0 and f (0) := 0, then we get:

Dy (@.P) =[P [Pirim(Pigrt)]
= [PiQP i (P iQPH)]| = Dir (@, P)

for Q, P € & (H) with P and @ invertible. We observe that this is not the same as Umegaki relative
entropy introduced above.
If we take the convex function f (¢) = — Int for ¢ > 0, then we get:

Dy (Q,P) = —tr [Pln <P‘%QP—%>} — tr {Pln <P‘§QP—§>1}
- wlrin(riop1)] < Do p

for Q, P € S; (H) with P and () invertible.
If we take the convex function f (¢) = |t — 1], t > 0, then we get:

D; (Q,P) = tr [P ‘P—%QP—% _ 1HH —: Dy (Q, P)

for Q, P € S; (H) with P invertible.
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If we consider the convex function f (¢) = % —1,t >0, then:

D;(Q,P) = tr {P (P—éQP—%>1 — 1HH

for Q, P € §; (H) with P and () invertible.

If we take the convex function f (t) = f, (t) = 724

,q € (0,1), then we get:

Dy, (Q,P) = % (1 —tr [P <P*%QP*%)(ID ,

which is different, in general, from the Tsallis relative entropy introduced above.

Other examples may be considered by taking the convex functions from the introduction. The details
are omitted.

Suppose that [ is an interval of real numbers with interior I and f + 1 — Ris aconvex function
on [. Then, f is continuous on I and has finite left and right derivatives at each point of I. Moreover,
ifz,y € landz <y, then f. (x) < fl(z) < fL(y) < fi (y) which shows that both f’ and f’ are
nondecreasing function on I. Tt is also known that a convex function must be differentiable except for at
most countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Jf is the set of all functions
¢ : I — [—00, 00], such that ¢ <I> C R and:

f(x)>f(a)+ (x—a)p(a) forany x,a € I. (24)
It is also well known that if f is convex on I, then Jf is nonempty, ', i € 0f and if ¢ € Of, then:
fL(z) <@(x) < fi(z) forany z € I

In particular, ¢ is a nondecreasing function.
If f is differentiable and convex on I, then 8f = {f'}.

Theorem 7. Let f be a continuous convex function on [0, 00) with f (1) = 0. Then, we have:
0<D;(Q,P) (25)

forany Q, P € S (H) with P invertible.

If f is continuously differentiable on (0, c0), then we also have:
Dy (Q, P) < Doypy (@, P) = Dy (Q, P). (26)
Proof. For any = > 0, we have from the gradient inequality (24) that:
f)zfD)+ -1 1)

and since f is normalised, then:

flx)>(@—=1)f (1) (27)
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Utilising the property (P) for the positive operator A = P_%QP_% where ), P € & (H) with P
invertible, then we have the inequality in the operator order:

f(PriQp3) = (Preri—1) rL(1). (28)
Utilising the property (20) for the inequality (28), we have:
tr [pf (p-%@p-%)} > tr [P <P—%QP—% - 1) £l (1)}
— (1) [tr (PP*%QP*%> —tr (P)]
— 7L (@~ (P)) =0

and the inequality (25) is proven.
From the gradient inequality, we also have for any z > 0:

(z—=1) f () +f(1) =2 f(2)
and since f is normalised, then:
(x=1) f'(z) = [ (x)
which, as above, implies that:
(PriQPt—14) f(PiQP2) = f (PiQPTH). (29)

Making use of the property (20) for the inequality (29), then we get:

tr [P (PAQP 3 —1y) f (P2QP3)| >t [Pr (PiQP3)] (30)
which is the required inequality (26). 1

Remark 2. If we take f (t) = —1Int, t > 0 in Theorem 7, then we get:
0 < Dk (@, P) < x*(P,Q) (31)

forany Q, P € S, (H) with P and () invertible.

If we take the convex function € (t) = e~ — 1, then:
D.(Q,P) = tr [Pexp (P*%QP*% _ 1H)] 1,
where Q, P € S (H) with P invertible.
By Theorem 7, we get:
0<D.(Q,P)<tr [P (P—%QP—% — 1H) exp (P—%QP—% _ 1H)] , (32)
where QQ, P € S, (H) with P invertible.
The inequality in (32) is equivalent to:

0<D.(Q,P)< % [tr [P%QP*% exp (P*%QP*% . 1H)] + 1] ,

where Q, P € S (H) with P invertible.
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The following lemma is of interest in itself:

Lemma 1. Let S be a self-adjoint operator such that y1y < S < I'ly for some real constants I' > .
Then, for any P € Bf (H) \ {0}, we have:

tr (PS?)  [tr(PS)\?
=Tup) (  (P) >
1 tr (PS)
(F—v)mtr <P‘S— (D) 1y

tr (PS?)  [tr(PS)\?
tr (P) _<HGU>

(33)

IA
Do

1/2

g%(F—v)

Proof. Observe that:

wm (7 (o) (5 ) s
)
el ()

_tr(PS?)  [(tr(PS))?
(P _(tr(P))

tr (P (S - t;(gf;) 1H)) = 0.

Now, since y1y < .S < I'ly, then:

since, obviously:

s%(F—v)-

'+~

Iy

-

Taking the modulus in (34) and using the properties of trace, we have:

tr (PS?)  [tr(PS)\?
r(P) < tr<P))

w(P(s-5500) (- )
< - (IP) r (P (S L ; 71H> (S _ t;(giﬁH) )

(o)

(35)

<

which proves the first part of (33).
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By Schwarz inequality for trace, we also have:

1 _ tr (PS)
w ) (P ‘S w(P) "

) (36)

o\ 11/2
1 _ tr (PS5)
S lwm ™ (P (S or (P) 1H) )]

- 97 1/2
| tr(PS?) tr (PS)
| w(P) _(tr(P)>
From (35) and (36), we get:
tr(PS?)  (tr(PS)\?
tr (P) ( tr (P) )
97 1/2
1 tr (PS?) tr (P.S)
<=\ %my - ( o (P) ) ’
which implies that: )
w(Ps?) (PN 1
tr (P) _<tr(P)) <3 IT=7)
By (36), we then obtain:
1 : _ tr (PS)
= (75T l)
97 1/2
tr (PS?) tr (PS) 1
tr (P) _<tr(P)) <=

that proves the last part of (33). 1

Corollary 1. Let ), P € S, (H) with P invertible and such that there exists 0 < r < 1 < R satisfying
the condition (38). Then.

0

VAN
B~ = <

(R—r)2.

(R—r)Dy(Q,P) <

N | —
N —

IN

Proof. Utilising the inequality (33) for S = P_%QP_%, we have:

(0 <)x2(Q,P) < = (R—7)tr (P’P—%QP—%—lHD

(R—=r)x(Q,

B! DN —

< )<< (R=r),

N Rl VAN

and the inequality (37) is proved. 1

We observe that if ), P € S; (H) with P invertible and there exists r, R > 0 with:

rlg < P72QP% < Rly, (38)
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then by the property (20), we get:
rtr(P) < tr (PP*%QP*%) < Rtr (P)

showing that r < 1 < R.
The following result provides a simple upper bound for the quantum f-divergence D (Q, P) .

Theorem 8. Let f be a continuous convex function on [0, 00) with f (1) = 0. Then, we have:

0< DpQP) < 5 [ (B) — ()] Dy (Q.P) 3
<SR- L] x(@.P)
1

< (R=n) [fL(R) = £ ()]

forany Q, P € S (H) with P invertible and satisfying the condition (38).

Proof. Without loosing the generality, we prove the inequality in the case when f is continuously
differentiable on (0, 00) .
We have:

tr [P (P*%QP*% . 1H> [f’ (P*%QP*%> . )\1HH (40)
—tr [P (P—%QP—% _ 1H) 7 (P‘%QP‘%H
for any A € R and for any @, P € S; (H) with P invertible.

Since f’ is monotonic nondecreasing on [r, R], then:
fLr) < f'(z) < fL(R) forany z € [r, R].
This implies in the operator order that:

o) < (PRQPE) < L (B) 1y,

therefore: o B 7 (R) +f'+ " - ,
f (P 2QP ) - 5 1y §§[f_ (R) — f1 (r)] 1. (41)
From (30) and (40), we have:
0< tr [Pf (P—%QP—%>] < tr [P (P—%QP—% _ 1H> 7 (p—an—gﬂ

. [P (P topt _1H> [f’ P_%QP_%> e (R);f#(r)l H

=t {P (PriQPi —14) {f’ (Pior3) - B (R);ﬁ ) 1H: ‘

<ir {PKP_;QP . _1H> [f’ (P_%QP_%) e (R);fi (r)lH: }

—tr [P‘(p—éQp P 1H>‘ (PP - B <R)2+fl+ Dy,
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which proves the first inequality in (39).
The rest follows by (37). 1
Example 1. 1) If we take f (t) = —1Int, t > 0 in Theorem 8, then we get:

. R—
0 < Dri(Q,P)< QTRTDV@,P) (42)

R—r (R—r)°
< X
ok N @)=

forany Q, P € S (H) with P, () invertible and satisfying the condition:

<

rly < P72QP"z < Rly, (43)

with r > 0.
2) With the same conditions as in 1) for Q), P and if we take f (t) = tInt, t > 0 in Theorem 8, then
we get:

0 < Dr(@P)< g (5) Dy (@, P) (44)

< ln (E>X(Q,P) < TR (5)

T T

3) If we take in (39) f (t) = [, (t) = 1‘};, then we get:

1t
q R'=9 — pl=a
21— q) \ Ri-aria

q Rl—q _ Tl—q
=20—9) ( Riari )X(Q’P)
q Rl—q _ Tl—q

provided that QQ, P € Sy (H), with P, () invertible and satisfying the condition (43).

0< Dy, (Q,P) <

) V(©Q.P) 45)

We have the following upper bound, as well:

Theorem 9. Let f : [0, 00) — R be a continuous convex function that is normalized. If (), P € S, (H),
with P invertible, and there exists R > 1 > r > 0 such that the condition (38) is satisfied, then:

(R=1)7 () +(1=7) f (B)

0<D P) < 46
Proof. By the convexity of f, we have:
R—-t)r+(t—7r)R R—t)f(r)+({t—r)f(R
f(t):f( Jre(t-nR\ _(R-tf0)+({E-r)f(R)
R—r R—r
forany t € [r, R].
This inequality implies the following inequality in the operator order of B (H):
o (R = PP ) p o)+ (PRRQPTE <1y ) £(R)
fF(PriQprt) < — SN
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for QQ, P € Sy (H), with P invertible, and R > 1 > r > 0 such that the condition (38) is satisfied.
Utilising the property (20), we get from (47) that:

tr [p f (p—%@p—%)} (48)
< j{f(_r)r tr [P (R1H — P‘%QP‘%H + {%(fi tr [P (P—%QP—% _ 7~1H>}
C(R-DF0) (-1 (R)

R—7r ’

and the inequality (46) is thus proven. 1
Remark 3. [f we take in (46) f (t) = t*> — 1, then we get:

R 2
0<x*(@P) < (R-1)(1-r) "= 49)
—r
for Q, P € S, (H), with P invertible and satisfying the condition (38).
If we take in (46) f (t) = tInt, then we get the inequality:

(R—1)r R(1—7r)
0 < Dgyp (Q,P) <In |:T R—r R R-r i| (50)

provided that QQ, P € Sy (H), with P, ) invertible and satisfying the condition (38).
With the same assumptions for P, Q, if we take in (46) f (t) = — Int, then we get the inequality:

r—1

0< Dyt (@, P) < In |7 Rir | (51)

5. Further Upper Bounds

We also have:

Theorem 10. Let f : [0,00) — R be a continuous convex function that is normalized. If Q, P € Sy (H),
with P invertible, and there exists R > 1 > r > 0 such that the condition (38) is satisfied, then:

OSDf(va)S
_(R-1(1-7)

(R—1)(1—r)
R

— U (1;r, R) (52)

sup Uy (t;7, R)

- R—r te(r,R)
<(R-1)(1-7) fL (R]%:fr(r)
< J(R=7) [fL(R) ~ £1.(r)]

where Vs (+;1, R) : (r, R) — R is defined by:

= LR LO_JO-10) )
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We also have:

(R—1)(1—7)

0<5;(Q,P) < T Uy (1;r, R) (54)
< ;l(R—r) Uy (17, R)
< T(R—7) swp Wy (. R)
4 te(r,R)
< J(R-) [ (R) - £10)].
Proof. By denoting:
_ R R—
At ) = DI HEZOTO)_py ey py
we have:
Aty = LIRS 0) = (R=1)f () 55)
=) fR) AR f(r) - T—t+t—7)f(t)
R—r
=) fB)-fOI-(R=D[f ) - f()]
M —m
— (7 _Bf)—(i”_ ) Uy (t;r, R)
forany ¢t € (r, R).
From the proof of Theorem 9 and since f (1) = 0, we have:
1 1 R — — R
tr [Pf (P‘EQP‘E)] < (B f(?;:(: NIB ra
R—1)(1-
= Af(l;r,R):( R)—(r T)\Iff(l;r,R)
for any @), P € S; (H), with P invertible, and R > 1 > r > 0 such that the condition (38) is valid.
Since:
Us(l;r,R) < sup Yy (t;r, R) (56)
te(r,R)
o [L0=10_ SO =10
_te(r,ll)%)_ R—1t t—r
f(R)—f(t) f@)—f(r)
Stesgg%) | Rt } +tes(1:5)%) {_ t—r }
B f(R) - () o SO = f(r)
—tes(g%) | R—t ] _tel(rr%,fR){ t—r ]
= fL(R) = fi(r),
and, obviously: . .
7, B-DA-r) < (B-1), (57)

then by (55)—(57), we have the desired result (52).

The rest is obvious. §
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Remark 4. If we consider the convex normalized function f (t) = t*> — 1, then:

R2 2 2 _ ;2

\If ] = — = —
and we get from (52) the simple inequality:
0<x*(QP)<(R—1)(1—r) (58)

for Q, P € S, (H), with P invertible and satisfying the condition (38), which is better than (49).

If we take the convex normalized function f (t) =t~ — 1, then we have:

Rt —¢ b ¢t pt R—r
\I/f(t,T,R): R—1t - F_ = rRtatE[TJR]‘

Furthermore:
Dy (Q,P)=x*(P,Q).

Using (52), we get:

1) (1 —
0<)¢ P <® ]i,( ") (59)
r
for Q, P € Sy (H), with () invertible and satisfying the condition (38).
If we consider the convex function f (t) = — Int defined on [r, R] C (0, 00), then:
—InR+Int —Int+1Inr
Ue(t;r, R) = —
s (t;r, R) - P
 (R—=r)nt—(R—t)lnr —(t—r)InR
B (M —t) (t —m)
(Rer N\ WOEH
= IH(W> ,tE(T,R).
Then, by (52), we have:
~ 1— r—1 R - 1 1 -
0<) Dy (Q.P) < n [rit i ] < =D ULZT) (60)
rR
or Q, P € S1 (H), with P, () invertible and satisfying the condition (38).
J fying
If we consider the convex function f (t) = tInt defined on [r, R] C (0, 00), then:
RInR—tlnt tlnt—rlnr
W, (¢ = — t
f(7T7R) R_+ f_r ) €(T7R)7
which gives that:
RInR rlnr
U, (1 = — .
f ( 7T7 R) R _ 1 1 —r
Using (52), we get:
(1-r)R (1—R)r
(0 <) Dgr (Q,P) < In |RFF i7" } 61)

o

for Q, P € S (H), with P, Q invertible and satisfying the condition (38).

<(R-1)(1-=r)ln
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We also have:

Theorem 11. Let f : [0,00) — R be a continuous convex function that is normalized. If Q, P € S, (H),
with P invertible, and there exists R > 1 > r > 0 such that the condition (38) is satisfied, then:

0<D;(Q,P) °
§2max{£:71a,]1%__:;} [f(r);f(m _f(rJ;RH
itz ]

Proof. We recall the following result (see for instance [37]) that provides a refinement and a reverse for

the weighted Jensen’s discrete inequality:

n min {p;} [% Z flz)—f (% Zx)] (63)

.....

.....

where f : C' — R is a convex function defined on the convex subset C' of the linear space X,
{xi}i€{17.”n} C C are vectors and {pi}ie{l,...n
For n = 2, we deduce from (63) that:

2 min {s,1 — s} [f(:”)_gf( )—f(xﬂ/)} (64)

<sf(x)+(1—s)f(y)—f(sz+(1-3s)y)
< 2max{s,1— s} J@) /) —f(ﬂ)l

forany z,y € C'and s € [0, 1].

y are nonnegative numbers with P, := S pi>0.

Now, if we use the second inequality in (64) forx =7,y = R, s = R—j with ¢ € [r, R], then we have:

(R=t) f(r)+(t—r)f(R)
e — 1) (65)

(
(e

<[ ()]

forany ¢t € [r, R].
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This implies that:

tr [Pf (P*%QP*%)]
(R=Df(r)+A-r)f(R)

= R—r
R—1 1—r)T[f(r)+ f(R) r+ R
SQmaX{R—r’R—rH 2 _f( 2 >]
§2[f<r>+f<R>_f<r+R>]
2 2
and the proof is completed. 1
Remark 5. If we take in (62) f (t) = t~' — 1, then we have:
OSXQ(P,Q)SmaX{R—l,l—T}% (66)

for Q, P € S, (H), with P invertible and satisfying the condition (38).
If we take in (62) f (t) = — Int, then we have:

2
OSDKL(Q,P)SmaX{R_l 1_T}IH<M) (67)

R—r"R—r 4rR
(R+7")2
<1 -_—
- n( 4rR

for Q, P € Sy (H), with P invertible and satisfying the condition (38).
From (42), we have the following absolute upper bound:

(R—r)*

0 < Dg(Q,P) < (68)

for Q, P € Sy (H), with P invertible and satisfying the condition (38).
Utilising the elementary inequality Inx < x — 1, x > 0, we have that:

m(uuwf>§<3—n2

4rR 4rR

which shows that (67) is better than (68).

6. Conclusions

In this paper we have introduced a new quantum f-divergence for trace class operators in Hilbert
Spaces. It is shown that for normalised convex functions it is nonnegative. Some upper bounds are

provided. Applications for some classes of convex functions of interest are also given.
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