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Abstract: Short-term complexity of heart period (HP) and systolic arterial pressure (SAP) 

was computed to detect age and gender influences over cardiovascular control in resting supine 

condition (REST) and during standing (STAND). Healthy subjects (n = 110, men = 55) were 

equally divided into five groups (21–30; 31–40; 41–50; 51–60; and 61–70 years of age). HP 

and SAP series were recorded for 15 min at REST and during STAND. A normalized 

complexity index (NCI) based on conditional entropy was assessed. At REST we found that 

both NCIHP and NCISAP decreased with age in the overall population, but only women were 
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responsible for this trend. During STAND we observed that both NCIHP and NCISAP were 

unrelated to age in the overall population, even when divided by gender. When the variation 

of NCI in response to STAND (ΔNCI = NCI at REST-NCI during STAND) was computed 

individually, we found that ΔNCIHP progressively decreased with age in the overall 

population, and women were again responsible for this trend. Conversely, ΔNCISAP was 

unrelated to age and gender. This study stresses that the complexity of cardiovascular control 

and its ability to respond to stressors are more importantly lost with age in women than in men. 

Keywords: aging; gender; standing; heart rate variability; blood pressure variability; 

complexity; corrected conditional entropy; autonomic nervous system 

 

1. Introduction 

Aging is associated with a reduced ability of the physiological regulatory mechanisms to interact, 

leading to less flexible cardiovascular control [1,2]. These changes are mirrored by a reduction in heart 

period (HP) variability [2–9], by an increase of systolic blood pressure (SAP) variability [10–12], and 

by a reduction in complexity of physiological dynamics [2–4,13–23]. Although the abovementioned 

studies indicate that aging reduces the complexity of the cardiovascular control and prove the gender 

dependence, it is still unclear whether the complexity reduction and the gender relation are similarly 

observable from HP and SAP variabilities and if it persists during a cardiovascular control challenge. 

Indeed, protocols assessing the effect of aging on the complexity of the cardiovascular control are mainly 

limited to the evaluation of the complexity of the HP variability [13–15,19–23] and mostly do not 

deliberately challenge the cardiovascular control according to an experimental maneuver or 

pharmacological intervention [13–19,22,23]. In addition, those studies challenging autonomic nervous 

system regulation have a limited power because age ranges are inadequate [20] or they are mainly based 

on biased indexes of complexity such as approximate entropy [21].  

The aim of this study was to evaluate the effect of a postural challenge on the dependence of the 

cardiovascular control complexity on age. The aging and gender effects on the complexity of HP and 

SAP variability are assessed by means of a univariate approach assessing irregularity as the amount of 

information carried by a series that cannot be derived from the knowledge of its own past values through 

the corrected conditional entropy [24] in several age groups in resting supine condition and during 

sympathetic activation induced by active standing in healthy subjects. 

2. Methods  

2.1. Study Population  

The study was carried out at the Laboratory of Cardiovascular Physiotherapy, Department of 

Physiotherapy of the Federal University of São Carlos, São Carlos, Brazil. The study was performed 

according to the Declaration of Helsinki for medical research involving humans and approved by the 

Human Research Ethics Committee of the Federal University of São Carlos (protocol number 173/2011). 

Written informed consent was obtained from all subjects. 
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One hundred and ten subjects were studied and divided into five groups (n = 22 for each group, 11 men), 

according to the following age ranges: 21–30; 31–40; 41–50; 51–60; 61–70. All subjects were apparently 

healthy, were not taking medicine that influenced cardiovascular system, and had no history and no 

clinical evidence of any disease based on clinical and physical examinations, laboratory tests, a standard 

ECG, and a maximum cardiopulmonary exercise test conducted by a physician. Smokers, habitual 

drinkers, and obese subjects (body mass index larger than 30 kg/m2) were excluded from this study. 

Only women without contraceptive medication or hormone replacement therapy were included. All 

women 51–60 and 61–70 were in the menopausal phase. 

2.2. Experimental Protocol 

All subjects were evaluated in the afternoon. The experiments were carried out in a climatically 

controlled room (22–23 °C), with relative air humidity of 40–60%. Subjects were instructed to not ingest 

caffeinated or alcoholic beverages as well as to not perform strenuous exercise on the day before the 

protocol application. They were also instructed to ingest a light meal at least 2 h prior to the test. On the 

experimental day, the subjects were interviewed and examined before the test to verify that they were in 

good health, had had a regular night’s sleep, and had a heart rate and systemic blood pressure within the 

normal range. Prior to the experiment, the volunteers were familiarized with the equipment and the 

experimental procedure. 

2.3. Data Acquisition  

Prior to the experimental procedure, the subjects were maintained in the resting supine condition for 

10 min. Then, signals were acquired for 15 min in the resting supine position (REST) and 15 min in the 

standing position (STAND). The subjects were instructed to breathe spontaneously but they were not 

allowed to talk. All subjects completed STAND without experiencing any sign of pre-syncope. The 

electrocardiographic signal (modified lead I) was captured by a bioamplificator (BioAmp FE132, 

ADInstruments, Sydney, Australia). Noninvasive continuous blood pressure waveform monitoring 

(Finometer-PRO, Finapres Medical System, Amsterdam, The Netherlands) was obtained from the 

middle finger of the right hand, which was maintained at the level of the heart by fixing the subject’s 

arm to his thorax during the whole of the experiment. The auto-calibration procedure of the device was 

switched off after the first automatic calibration at the onset of the protocol. All signals were sampled at 

400 Hz (Power Lab 8/35, ADInstruments, Sydney, Australia).  

2.4. Time Series Extraction 

After detecting the QRS complex of the electrocardiogram and locating the R-wave apex using 

parabolic interpolation, the HP was approximated as the time distance between two consecutive R-wave 

apexes. The maximum of arterial pressure inside HP was taken as SAP. The occurrences of QRS and 

SAP peaks were carefully checked to avoid erroneous detections or missed beats. The series  

HP = {HP(i), i = 1, …, N} and SAP = {SAP(i), i = 1, …, N}, where i is the progressive cardiac beat 

number, were linearly detrended. Since the analysis focuses on short-term cardiovascular control [25], 

the series length N was set to 256 (i.e., recordings of a few minutes). The stationarity of the selected 
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sequence was tested according to [26] over the original series after linear detrending. If the test for the 

steadiness of mean and variance was not fulfilled, a new selection was carried out again until the 

fulfillment of the prerequisites for restricted weak stationarity [26]. Time domain parameters such as the 

HP mean, HP variance, SAP mean, and SAP variance, indicated as μHP, σ2
HP, μSAP, and σ2

SAP, 

respectively, were computed to assess their relation with age.  

2.5. Complexity Analysis  

Complexity was estimated via corrected conditional entropy, as described by Porta et al. [14,24]. The 

approach measures the amount of information carried by a time series that cannot be derived from the 

knowledge of its previous samples. If HP or SAP sequences are regular, the series are more predictable 

and less complex. In the opposite case, if the heart (or vessels) receives a large amount of information 

due to the action of many control subsystems, HP (or SAP) exhibits a higher degree of unpredictability. 

As a function of the number of previous samples, the corrected conditional entropy: (i) remains constant 

in the case of white noise; (ii) decreases to zero in the case of fully predictable signals; and (iii) shows a 

minimum if repetitive patterns are embedded in noise. In the corrected conditional entropy, the number of 

previous conditioning samples was not a priori fixed, as it occurs in sample entropy [27] and approximate 

entropy [28], but it is optimized on a case-by-case basis. Conversely, the level of coarse graining was fixed 

according to the number of levels utilized in the uniform quantization procedure (here, 6). The optimal 

embedding dimension for HP and SAP ranged from 2 to 6 at REST and from 2 to 7 during STAND. The 

minimum of the corrected conditional entropy with respect to the number of past conditioning values 

was taken as a complexity index (CI). CI ranges between 0, indicating null information, and the Shannon 

entropy of the series, indicating the maximum amount of information carried by the sequence of data. 

This index was normalized by the Shannon entropy to obtain a normalized CI (NCI), thus expressing 

complexity in terms of dimensionless units. This index ranges from 0 (null information, maximal 

predictability) to 1 (maximum information, minimal predictability) [29]. The greater the CI and NCI, 

the less predictable and regular the time series. 

2.6. Statistical Analysis  

Normality of the distributions was tested by the Kolmogorov–Smirnov test. One-way analysis of 

variance (Tukey test for multiple comparisons), or Kruskal–Wallis one-way analysis of variance on 

ranks (Dunn’s method for multiple comparisons) when appropriate, was applied to check the 

significance of the differences among parameters in different age groups. Assigned the age group, 

unpaired t-test, or the Mann–Whitney rank sum test when appropriate, was applied to test the significance 

of the difference between genders. Bonferroni’s correction was utilized to account for multiple comparisons. 

The Pearson correlation analysis was performed to check the linear association of any parameter on age. The 

same analysis was also used to assess the association between NCI and time domain parameters.  

Linear regression analysis on age was performed only if a significant difference between the 21–30 

and 61–70 groups was detected according to one-way analysis of variance. A p < 0.05 was considered 

significant. Statistical analyses were carried out using a commercial statistical program (SigmaPlot 11.0, 

Systat, Chicago, IL, USA). Data are shown as median (1st quartile–3rd quartile) in all tables and figures. 
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3. Results  

3.1. Characteristics of the Population 

Table 1 shows the anthropometric characteristics and aerobic capacity of our 110 studied subjects. 

Males and females are equally divided into five groups. The anthropometric characteristics (height and 

weight) did not show significant differences among groups. The body mass index (BMI) was 

significantly higher in the 41–50 and 61–70 groups compared to 21–30. The VO2 peak was lower in the 

older groups (51–60 and 61–70) compared to 31–40.  

When the data were analyzed by gender, only women exhibited a difference in BMI (41–50 and 61–70 

were different compared to 21–30, and 61–70 was different in relation to 31–40). Men showed lower 

values of VO2 peak in 41–50, 51–60, and 61–70 compared to 31–40, while women had lower values in 

51–60 and 61–70 compared to 21–30 and 31–40, and also lower values in 61–70 compared to 41–50. 

Table 1. Characteristics of the population. 

Age bin 21–30 31–40 41–50 51–60 61–70 

110 volunteers 11 M/11 F 11 M/11 F 11 M/11 F 11 M/11 F 11 M/11 F 

Age (years) 26 (24–29) 33 (32–37) 44 (43–46) 55 (51–57) 64 (62–66) 

Height (cm) 169 (164–178) 168 (163–174) 170 (160–174) 168 (159–172) 163 (155–167) 

Weight (kg) 67.5 (59.5–73.0) 65.1 (60.0–75.0) 73.0 (64.1–83.0) 65.2 (58.0–73.0) 67.5 (62.0–73.0) 

BMI (kg/m2) 23 (21–24) 24 (22–25) 26 (23–28) *§ 25 (23–25) 25 (24–27) * 

VO2 peak (mL/kg/min) 34 (28–40) 36 (28–43) 29 (24–38) 27 (23–34)§ 24 (19–30) § 

Men 11 M 11 M 11 M 11 M 11 M 

Age (years) 26 (25–30) 33 (32–37) 44 (43–47) 55 (51–56) 64 (63–66) 

Height (cm) 174 (170–182) 172 (168–178) 174 (170–181) 171 (168–177) 166 (164–176) 

Weight (kg) 73.0 (68.6–80.0) 75.0 (69.1–78.2) 80.0 (76.1–86.7) 72.0 (69.0–80.9) 68.2 (65.5–76.6) 

BMI (kg/m2) 24 (23–26) 24 (23–26) 26 (25–28) 25 (22–25) 24 (24–27) 

VO2 peak (mL/kg/min) 37 (36–41) 42 (36–45) 38 (30–42) § 33 (30–38) § 29 (26–31) § 

Women 11 F 11 F 11 F 11 F 11 F 

Age (years) 25 (24–27) 33 (31–37) 44 (43–46) 56 (52–59) 65 (62–66) 

Height (cm) 164 (159–167) 163 (159–165) 160 (158–165) 159 (151–165) 155 (148–162) 

Weight (kg) 59.5 (51.9–63.5) 60.0 (53.1–62.7) 64.1 (62.0–71.5) 58.5 (57.1–61.1) 66.3 (56.5–70.1) 

BMI (kg/m2) 22 (20–23) 22 (20–25) 25 (24–26) * 24 (23–25) 27 (25–27) *§ 

VO2 peak (mL/kg/min) 28 (25–31) 27 (25–36) 27 (22–29) 22 (20–25) *§ 19 (18–21) *§# 

Values are expressed as median (1st quartile–3rd quartile). F: female; M: male; BMI: body mass index; VO2 peak: 

peak oxygen uptake. * p < 0.05 compared to 21–30; § p < 0.05 compared to 31–40; # p < 0.05 compared to 41–50. 

3.2. Time Domain Parameters: Aging and Gender Effects 

Table 2 shows the results of the linear regression analysis of time domain parameters (i.e., μHP, σ2
HP, 

μSAP, and σ2
SAP) on age in the overall group of subjects and after the separation of the two genders. At 

REST in the entire group we found that σ2
HP, μSAP, and σ2

SAP were significantly correlated with age, 

while μHP was not. The correlation coefficient was positive in the case of μSAP and σ2
SAP and negative in 
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the case of σ2
HP. Similar results were obtained in women. In men the positive correlations of μSAP and 

σ2
SAP were lost. During STAND in the whole group we found that μHP, σ2

HP, and μSAP were linearly 

related to age and the sign of the correlation coefficient was positive in the case of μHP and μSAP and 

negative in the case of σ2
HP. Similar results were obtained in women. In men the positive correlations of 

μHP and μSAP were lost. 

Table 2. Linear regression analysis of time domain parameters on age. 

Experimental Condition REST STAND 

Index r significance r significance 

All  
(55 M/55 F) 

μHP 0.027 No 0.258 Yes 

σ2
HP −0.378 Yes −0.433 Yes 

μSAP 0.287 Yes 0.324 Yes 

σ2
SAP 0.339 Yes −0.003 No 

Men  
(55 M) 

μHP −0.037 No 0.015 No 

σ2
HP −0.415 Yes −0.546 Yes 

μSAP 0.064 No 0.153 No 

σ2
SAP 0.220 No −0.137 No 

Women  
(55 F) 

μHP 0.106 No 0.579 Yes 

σ2
HP −0.348 Yes −0.326 Yes 

μSAP 0.477 Yes 0.480 Yes 

σ2
SAP 0.424 Yes 0.148 No 

μHP: HP mean; σ2
HP: HP variance; μSAP: SAP mean; σ2

SAP: SAP variance; r: Pearson correlation coefficient; 

Yes/No: detection of a significant correlation with p < 0.05.  

3.3. NCIHP and NCISAP at REST: Aging and Gender Effects  

Figure 1 shows that NCIHP decreased with age in the overall population at REST. However, when the 

groups were divided by gender, a significant negative correlation of NCIHP on age was observed only in 

women. These data suggest that the decrease of HP complexity in women was the main cause of the 

decrease of NCIHP in the overall population. 

In men there was a tendency for NCIHP to decrease, as suggested by the decreasing tendency in 41–50 

compared to 31–40 and by the significantly lower values of 51–60 compared to 31–40, but this tendency 

was weak and finally did not produce a significant change from 21–30 to 61–70. Conversely, in women 

NCIHP was significantly lower in 61–70 compared to 21–30, 31–40 and 41–50 and a clear crossover was 

observed at 51–60 (NCIHP remained stable in 21–30, 31–40 and 41–50). 

Similarly, Figure 2 shows that NCISAP decreased with age in the overall population. Again the analysis 

by gender showed that the decrease of NCISAP in women was responsible for the decrease of this variable 

in the overall population (NCISAP did not decrease in men). In women the decrease of NCISAP was 

particularly relevant in 61–70.  
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Figure 1. Box-and-whisker plots of NCIHP at REST (upper panels) and linear regression of NCIHP on 

age (lower panels). The linear regression over all values (i.e., solid circles: age 21–30; open circles: 

age 31–40; solid triangles pointing down: age 41–50; open triangles pointing up: age 51–60; solid 

squares: age 61–70) and its 95% confidence interval are plotted when a significant change from 21–30 

to 61–70 is detected according to one-way analysis of variance. The symbol * indicates p < 0.05. 

 

Figure 2. Box-and-whisker plots of NCISAP at REST (upper panels) and linear regression of NCISAP on 

age (lower panels). The linear regression over all values (i.e., solid circles: age 21–30; open circles: age 

31–40; solid triangles pointing down: age 41–50; open triangles pointing up: age 51–60; solid squares: 

age 61–70) and its 95% confidence interval are plotted when a significant change from 21–30 to 61–70 

is detected according to one-way analysis of variance. The symbol * indicates p < 0.05. 

 



Entropy 2014, 16 6693 

 

 

3.4. NCIHP and NCISAP during STAND: Aging and Gender Effects  

Figure 3 shows that during STAND NCIHP did not vary with age and this result was independent of 

gender (i.e., NCIHP did not show any relation to age in either men or women). The same finding held in 

the case of NCISAP (Figure 4).  

3.5. ΔNCIHP and ΔNCISAP: Aging and Gender Effects  

Figure 5 shows the correlation of ΔNCIHP (upper panel) and ΔNCISAP (lower panel) to age. ΔNCI was 

assessed as the NCI at REST minus NCI during STAND and represents the individual response of 

complexity to the orthostatic challenge.  

A significant change between 21–30 and 61–70 was detected in the case of ΔNCIHP in the overall 

population and in the subgroup of women. Linear correlation analysis of ΔNCIHP on age confirmed that 

the change of ΔNCIHP between 21–30 and 61–70 was related to aging. Therefore, the decrease of ΔNCIHP 

with age in the overall population was explained by the decrease of ΔNCIHP in women. Since no 

significant change between 21–30 and 61–70 was detected in the case of ΔNCISAP, linear association 

with age was not tested. 

Figure 3. Box-and-whisker plots of NCIHP during STAND (upper panels) and linear regression of 

NCIHP on age (lower panels). The linear regression over all values (i.e., solid circles: age 21–30; open 

circles: age 31–40; solid triangles pointing down: age 41–50; open triangles pointing up: age 51–60; 

solid squares: age 61–70) and its 95% confidence interval are plotted when a significant change from 

21–30 to 61–70 is detected according to one-way analysis of variance. The symbol * indicates p < 0.05. 
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Figure 4. Box-and-whisker plots of NCISAP during STAND (upper panels) and linear regression of 

NCISAP on age (lower panels). The linear regression over all values (i.e., solid circles: age 21–30; open 

circles: age 31–40; solid triangles pointing down: age 41–50; open triangles pointing up: age 51–60; 

solid squares: age 61–70) and its 95% confidence interval are plotted when a significant change from 

21–30 to 61–70 is detected according to one-way analysis of variance. The symbol * indicates p < 0.05. 

 

Figure 5. Linear regression of ΔNCIHP (upper panels) and ΔNCISAP (lower panels) on age. The linear 

regression over all values (i.e., solid circles: age 21–30; open circles: age 31–40; solid triangles pointing 

down: age 41–50; open triangles pointing up: age 51–60; solid squares: age 61–70) and its 95% 

confidence interval are plotted when a significant change from 21–30 to 61–70 is detected according to 

one-way analysis of variance. ΔNCI is assessed as NCI at REST minus NCI during STAND.  
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3.6. Linear Correlation Analysis between NCI and Time Domain Parameters  

Table 3 shows the results of the linear regression analysis of time domain parameters (i.e., μHP, σ2
HP, 

μSAP, and σ2
SAP) on NCI in the overall group of subjects and after separation of the two genders. The 

correlation analysis was performed in the planes (μHP, NCIHP), (σ2
HP, NCIHP), (μSAP, NCISAP), and (σ2

SAP, 

NCISAP). At REST in the entire group we found that μHP and σ2
HP are significantly correlated with NCIHP, 

while σ2
SAP were significantly correlated with NCISAP. The correlation coefficient was positive in the 

case of μHP and σ2
HP and negative in the case of σ2

SAP. The same findings were obtained after separation 

of the two genders. During STAND in the overall group and in men the relations between μHP and NCIHP 

and between σ2
SAP and NCISAP were confirmed. In women the correlation between σ2

SAP and NCISAP 

was lost.  

Table 3. Linear regression analysis of time domain parameters on NCI. 

Experimental Condition REST STAND 

Index r significance r significance 

All  

(55 M/55 F) 

μHP 0.422 Yes 0.394 Yes 

σ2
HP 0.343 Yes –0.046 No 

μSAP –0.161 No 0.070 No 

σ2
SAP –0.493 Yes –0.333 Yes 

Men  

(55 M) 

μHP 0.585 Yes 0.546 Yes 

σ2
HP 0.432 Yes 0.090 No 

μSAP –0.143 No –0.034 No 

σ2
SAP –0.503 Yes –0.550 Yes 

Women  

(55 F) 

μHP 0.388 Yes 0.401 Yes 

σ2
HP 0.294 Yes –0.127 No 

μSAP –0.178 No 0.109 No 

σ2
SAP –0.5 Yes –0.205 No 

μHP: HP mean; σ2
HP: HP variance; μSAP: SAP mean; σ2

SAP: SAP variance; r: Pearson correlation coefficient; 

Yes/No: detection of a significant correlation with p < 0.05. μHP and σ2
HP were tested against NCIHP, while μSAP 

and σ2
SAP against NCISAP. 

4. Discussion 

The main findings of this study are: (i) at REST NCIHP and NCISAP decreased with age in the overall 

population and only women was responsible for this decrease; (ii) in women at REST the decrease of 

NCIHP started in 51–60 and became significant in 61–70, while in men a tendency toward a decrease 

was observable in 41–50; (iii) during STAND NCIHP and NCISAP was unrelated to age in the overall 

population and this trend held in both men and women; (iv) ΔNCIHP decreased with age in the overall 

population and again only women were responsible for this decrease; and (v) ΔNCISAP was unrelated to 

age in the overall population and analysis by gender confirmed this trend. 

4.1. Selection of the Population  

No remarkable differences among groups were detectable. Only a tendency to decrease the functional 

capacity evaluated by VO2 peak in both genders and a trend towards the increase of BMI in women were 
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observed. These tendencies are expected, because the normal aging process is associated with a reduction 

in functional capacity of the main organs (lung, heart, and skeletal muscles) involved in oxygen 

transportation, delivery, and utilization beyond the loss of ability to perform aerobic exercise [30–32] 

and with a propensity to overweight in women in the menopause period [33]. 

4.2. Complexity of the HP Variability at REST: Aging and Gender Effects 

A significant decrease of HP variance and complexity was observed. These findings suggest that the 

magnitude of the HP changes became smaller and HP dynamics turned out to be more regular and 

predictable as a function of age. These results are in agreement with previous studies regardless of 

whether they are based on entropy rates [14,15,17,18,22,23,28,34] or on different metrics 

[2,13,15,16,19,22,23,29,34].  

The most striking result of this study came out when the overall group was divided by gender: indeed, 

we found that the negative correlation of NCIHP at REST was present only in women, thus suggesting 

that the decrease of HP complexity in women is responsible for the decrease of HP complexity in the 

overall population. Men had a tendency to decrease NCIHP but this tendency did not lead to a significant 

change from 21–30 to 61–70. This observation is in agreement with the conclusion drawn by a recently 

proposed symbolic analysis approach [19]. Some studies using different nonlinear HP variability indexes 

detected the gender dependency of the relation of cardiac control complexity to age [13,16,17] but they 

rejected the statement that women have a significantly steeper negative relation with age than men. This 

discrepancy might be mostly the effect of the calculation of a biased entropy rate (i.e., ApEn) that might 

limit the statistical power in distinguishing groups [35]. It is worth noting that, despite the decrease of 

functional capacity evaluated by VO2 peak was observed in both men and women, the decline of the HP 

complexity was found only in women, thus suggesting that the changes of the HP complexity with age 

cannot be completely explained by modifications of the functional capacity. In addition, although in 

women there was a clear tendency to increase BMI (below the obesity threshold), the BMI variation was 

not significantly correlated with HP complexity modifications (REST: r = −0.10, p = 0.278; STAND:  

r = −0.01, p = 0.898).  

It is not surprising to find out that gender is a factor modulating the relation of the complexity of the 

cardiac control with age at REST. Previous studies have reported that gender is one of the factors that 

influence cardiovascular autonomic regulation. Differences in adrenoreceptor responsiveness, arterial 

baroreflex sensitivity, cardiopulmonary baroreflex, and cardiac vagal and sympathetic activity and/or 

modulation [20,36–40] contribute to differentiating the cardiovascular control of men and women. These 

differences might play a role in the different relation of complexity of the cardiac control with age. We 

attribute to menopause the main responsibility of the observed difference between genders. Ryan et al. [21] 

observed difference in HP complexity between men and women at REST. Women showed a HP 

complexity greater than men. This result was interpreted as the effect of estrogen in women, making 

cardiac control in women more complex than that in men. Since the level of estrogen in women 

dramatically drops during menopause, it is not surprising to find that this decrease is mirrored by a 

decrease of HP complexity in women. Since the decrease of estrogen is associated to a reduction in vagal 

function as well [38,42], the vagal withdrawal might have driven the observed reduction of HP 

complexity [35,43]. The analysis of the differences between men and women in a specific age group 
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corroborated the observation that menopause is a key factor in decreasing HP complexity in women. 

Indeed, although no significant statistical differences between HP complexity in men and women were 

detected in any age group, likely as a result of the low statistical power of the study for this specific 

endpoint, we observed that NCIHP was systematically larger in women than in men in any age group 

except 61–70, thus suggesting that after menopause complexity of the HP series in women dramatically 

dropped. This result confirmed the progressive decrease of gender differences with age reported in 

[13,19,23,38,41]. 

Additionally, our data suggest that, while women showed a relevant drop in 51–60, men started to 

exhibit a tendency toward a decrease of NCIHP one decade before. Although this tendency was clear in 

men, it did not result in a significant change of NCIHP from 21–30 to 61–70. The more stable behavior 

of HP complexity with age in women in the decades before 51–60 suggests that until menopause the 

preserved levels of estrogen might contribute to keeping the HP complexity high, thus playing a 

protective role against adverse cardiac events in women [13,21,44,45]. Therefore, our data support the 

view that menopause identifies a significant turning point in cardiovascular physiology in women [46]. 

Indeed, it is known that women have lower incidence of cardiovascular disease compared to men until 

menopause [46], and this protective effect is mirrored by a tendency to have a higher complexity of cardiac 

control. After menopause an increased incidence of cardiovascular disease has been observed [46,47], and 

the observed significant reduction of complexity of cardiac control in women might be a hallmark of the 

increased risk of occurrence of cardiovascular events [5]. 

4.3. Complexity of the SAP Variability at REST: Aging and Gender Effects 

Earlier studies described an increase of SAP mean [7,48] and SAP variability with aging [10–12,49–51]. 

These results have been interpreted as a consequence of the increase of sympathetic activity and/or 

modulation directed to the vessels with age [48]. However, a modified cardiac reserve [7], changes of the 

structure of the arteries (i.e., increased stiffness, decreased compliance, and endothelial dysfunction) [52], 

and changes of diastolic filling and increases in collagen in the left ventricle might play a role in the 

modification of SAP mean and variance with age [7,31]. Due to the abovementioned modifications all 

having a possible impact on SAP dynamics, a modification of the complexity of the SAP series at REST 

with age is expected.  

In the present study we observed at REST a decrease of NCISAP with age in the overall population. 

This finding is in agreement with [18]. However, after separating women from men we found that the 

negative correlation of NCISAP with age was significant only in women. Therefore, it appears that the 

decrease of SAP complexity in women seems to be mainly responsible for the decrease of NCISAP in the 

overall population because the SAP complexity in men did not significantly decrease. The observed 

decrease in women is relevant as emphasized by the significantly lower NCISAP in 61–70 compared to 

21–30. Similarly to the HP complexity, the relation of the SAP complexity with age observed in women 

cannot be fully explained as a result of the reduction of the functional capacity evaluated by VO2 peak 

with age, given that a similar VO2 peak decrease in men did not produce a significant change of the SAP 

complexity from 21–30 to 61–70. Again similarly to the HP complexity, the increase of BMI in women 

was not found to be correlated to SAP complexity variations (REST: r = −0.08, p = 0.405; STAND:  

r = −0.02, p = 0.800). 
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We speculate that, with the advent of menopause, the decrease in estrogen production leads to an 

increase in sympathetic tone [44,45,53,54] and sympathetic overactivity is mainly responsible for the 

reduction of SAP complexity with age in women [18]. Since the sympathetic drive increased with age 

even in men but was not associated to a reduction of the SAP complexity with age, we conclude that 

sympathetic control directed to the vessel is different in old men and women and this difference might 

be related to the sensitivity of cardiovascular control mechanisms to estrogen levels in women. Even 

though the abovementioned explanations are plausible, we cannot exclude the possibility that the 

progressive reduction of the SAP variability complexity with age might simply be a reflection of the 

decrease of HP variability complexity transferred to the SAP variability via the feedforward pathway, 

accounting for the Frank–Starling mechanism and the Windkessel effect [18]. 

4.4. Complexity of HP and SAP Variabilities during STAND: Aging and Gender Effects 

During STAND, NCIHP and NCISAP did not vary with age. This result was in agreement with [18] 

when a similar metric (i.e., an entropy rate) was considered. Since this result held even when the overall 

group was divided by gender, we suggest that cardiovascular adjustments occurring during senescence 

in a healthy population in relation to one of the most important challenges for human beings (i.e., 

STAND) is responsible for the lack of any gender-dependent effect.  

4.5. Individual Changes in the Complexity of HP and SAP Variabilities in Response to STAND  

The study assessed the individual response to the orthostatic challenge by computing the difference 

between the complexity markers assessed at REST and during STAND (i.e., ΔNCI = NCI at  

REST–NCI during STAND). We confirm that in the youngest group (i.e., 21–30) ΔNCI was positive in 

the case of ΔNCIHP and was about 0 in the case of ΔNCISAP [43,55]. One of the original findings of this 

study is that ΔNCIHP decreased with age in the overall population, while ΔNCISAP was not affected by 

age. Since at REST both NCIHP and NCISAP decreased with age, the observed trends of ΔNCI cannot be 

considered exclusively a reflection of those of NCI at REST. This observation suggests that a mere 

decrease of vagal activity and/or sympathetic overactivation with age at REST might be insufficient to 

explain per se the progressive reduction of ΔNCIHP during senescence. We suggest that the decrease of 

ΔNCIHP with age is a sign of the difficulty that older individuals have in dealing with sympathetic 

stressors, such as the orthostatic challenge [37]: indeed, older subjects seem to lose their ability to 

decrease HP complexity by synchronizing the activity of several control mechanisms [35], likely via a 

sympathetic activation [56]. This loss of capability was not evident at the level of complexity of the 

vascular control, mainly because ΔNCISAP was already low in young subjects [43,55]. These findings 

are in agreement with those reported in [18,57,58] and can be explained by the reduced effect  

of the change of posture on the cardiovascular variables with age. The progressively limited influence 

of the orthostatic challenge has been attributed to the impairment of beta-adrenergic receptor  

stimulation [7,31], reduced efficiency of post-synaptic-adrenergic signaling [52], reduced vagal autonomic 

modulation to the sinus node [3,5–9,59], reduced sympathetic modulation to the vessels [48], and 

decreased baroreflex efficiency [48,58,60].  

Remarkably, when the overall group was subdivided by gender we found that only women showed a 

significant negative correlation of ΔNCIHP on age. In men only, a tendency toward a decrease of ΔNCIHP was 
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observed. However, this tendency did not produce a significant drop of ΔNCIHP from 21–30 to 61–70. 

Therefore, men did not contribute to the reduction of the individual response of HP complexity to 

postural challenge with age observed in the overall population, thus stressing further that the relation of 

the complexity of cardiac control with age is gender-dependent. It appears that the ability to synchronize 

several control mechanisms via a sympathetic activation was more importantly lost in women than in 

men. We speculate that the reduction of estrogen during menopause leads to a higher sympathetic tone 

at REST [20,21] and, thus, to a cardiovascular control less fit to react to the change of posture. 

4.6. Linear Regression Analysis of NCI on Time Domain Parameters  

From a methodological perspective, time domain parameters, such as mean and variance describing, 

respectively, the position and the dispersion of the HP and SAP distributions, provide completely 

different information compared to NCI quantifying the degree of irregularity of the series based on their 

unpredictability. Despite the different focus, we found an important association between time domain 

and complexity indexes. For example, the positive association between HP variance and HP complexity 

is due to their relation with vagal control increasing both HP variance and HP complexity [25,35] and 

the negative association between SAP variance and SAP complexity might be due to their relation with 

sympathetic control increasing SAP variance but decreasing SAP complexity, possibly via 

synchronization of peripheral vasomotion in different districts [56]. However, having a significant 

association between a time domain parameter and a complexity index does not imply that the two 

variables exhibit the same relation (significant or nonsignificant) with age. For example, despite HP 

mean and HP complexity being correlated at REST, the HP mean was not significantly related to age, 

while HP complexity was. This observation leads us to conclude that, although correlated, time domain 

parameters and complexity indexes carry non-redundant information.  

5. Conclusions  

Our study stresses that the relation of the complexity of cardiovascular control to age, as measured 

via the computation of an entropy rate over HP and SAP variabilities, is gender-dependent. Therefore, 

gender should be accounted for in any study assessing the complexity of the cardiovascular regulation. 

We observed that women exhibited a bigger drop in the complexity of cardiovascular control than men 

and this relevant decrease occurred after menopause, thus suggesting its association with the reduction 

of estrogen production during menopause. In addition, only women showed a progressively limited 

response to the orthostatic challenge with age, thus stressing again the dependence of complexity indexes 

on gender and suggesting that women tend to lose the physiological ability to reduce the complexity of 

cardiac control during orthostatic challenge at a faster rate with age than men, especially during 

menopause. This study suggests that complexity markers derived from cardiovascular variability are 

more helpful in following the aging process in women than in men. Similarly, orthostatic challenge 

appears to be more suitable in women than in men for emphasizing the difficulty that elderly subjects 

have in reacting to a postural challenge. 
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