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Abstract: There are two entropy-based methods to deal with linear inverse problems, which
we shall call the ordinary method of maximum entropy (OME) and the method of maximum
entropy in the mean (MEM). Not only does MEM use OME as a stepping stone, it also allows
for greater generality. First, because it allows to include convex constraints in a natural way,
and second, because it allows to incorporate and to estimate (additive) measurement errors
from the data. Here we shall see both methods in action in a specific example. We shall solve
the discretized version of the problem by two variants of MEM and directly with OME. We
shall see that OME is actually a particular instance of MEM, when the reference measure is
a Poisson Measure.
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1. Introduction

During the last quarter of the XIX-th century Boltzmann proposed a way to study convergence
to equilibrium in a system of interacting particles through a quantity that was that was a Lyapunov
functional for the dynamics of the system, and increased as the system tended to equilibrium. A related
idea was used at the beginning of the XX-th century by Gibbs to propose a theory of equilibrium
statistical mechanics. The difference between the approaches was in the nature of the microscopic



Entropy 2014, 16 1124

description. In the late 1950s, Jaynes in [1] turned the idea into a variational method to determine
a probability distribution given the expected value of a few random variables (observables to use the
physical terminology). This procedure is called the method of maximum entropy. This methodology
has proven useful in a variety of problems well removed from the standard statistical physics setup.
See Kapur (1989) [2] for example, or the Kluwer Academic Press collection of Maximum Entropy and
Bayesian Methods or the volume by Jaynes (2003) [3].

As it turns out, similar procedures had come up in the actuarial and statistical literature, see for
example the works by Esscher (1932) [4] and by Kullback (1957) [5]. Jaynes’s procedure was further
extended in Decarreau et al. (1992) [6], and Dacunha-Castelle and Gamboa (1990) [7]. Such extension
has proven a powerful tool to deal with linear inverse problems with convex constraints. See Gzyl and
Velásquez (2011) [8] for example. This method uses the standard variational technique as a stepping
stone in a peculiar way.

Besides providing a more general type of solutions to the OME problem, we shall verify in two
different ways that the standard solution of the OME is actually a particular case of the more general
MEM approach to solve linear inverse problems with convex constraints.

The paper is organized as follows. In the remainder of this section we shall state the two problems
whose solutions we want to relate. These consists in obtaining a positive, continuous function satisfying
some integral constraints. In the next section we shall recall the basics of MEM. In section three we
continue with the same theme and examine specific choices of set up to implement the method. Section 4
is devoted to the issue of obtaining the problem by the OME from the solution by the MEM.

In section five we implement both approaches numerically to compare their performance in one simple
example. The idea of using two different choices of prior is to emphasize the flexibility of the MEM.

1.1. Statement of the First Problem

Even though the problem considered is not in its most general form, it is enough for our purposes and
can be readily extended. We want to find a continuous positive function x(t) : [0, 1] → [0,∞) such that∫ 1

0

ki(t)x(t)dt = mi; for i = 1, ...,M (1)

Typically {ki(t) : i = 1, ...,M} a collection of measurable functions defined on [0, 1] describing some
sort of observations made on a random variable whose density we want to estimate. These could be
ordinary moments tni for some collection {n1, ..., nM} of integers. Or they could be fractional powers
tai for some collection {a1, ..., aM} of reals. This problem appears when our information consists of the
values of a Laplace transform at points {a1, ..., aM} and we map our problem onto [0, 1] by means of the
change of variables s → t = e−s. Or the ki(t) could be trigonometric polynomials. In such case we refer
to Equation (1) as a generalized moment problem. When x(t) is required to be a probability density, we
shall consider k1(t) ≡ 1 on [0, 1]. It is also apparent that the convex constraint is the positivity constraint
on x(t).
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1.2. Statement of the Second Problem

Clearly Equation (1) is a particular case of the following more general problem: Let k(s, t) : [a, b]×
[0, 1] → R. Let K ⊂ C([0, 1]) be a cone contained in the class of continuous functions, and let m(s) :

[a, b] → R be some continuous function. We want to find x(t) ∈ K satisfying the integral constraints∫ 1

0

k(s, t)x(t)dt = m(s), s ∈ [a, b] (2)

We remark that when x(t) is a density and k(s, t) ≡ 1, them m(s) ≡ 1. Clearly the integral constraints
could be incorporated into K, but it is convenient to keep both separated. For what comes below,
and to relate to the first problem, we shall restrict ourselves to the convex set of continuous density
functions. Such type of problems were considered for example in [9] or in much grater generality in [10]
or and more recently in [11] where applications and further references to related work are collected. As
mentioned above, the setup can be relaxed considerable at the expense of technicalities. For example,
one can consider the kernel k to be defined on the product S1 × S2 of two locally compact, separable
metric spaces, and dt could be replaced by some σ−finite measure ν(dt) on (S2,B(S2)). But let us keep
it as simple as possible.

2. The Maximum Entropy in the Mean Approach

The basic intuition behind the MEM goes as follows. We search for a stochastic process with
independent increments {X(t)|t ∈ [0, 1]} defined on some auxiliary probability space (Ω,F , Q)

such that

dX(t) = X(t+ δ)−X(t) ∈ K, for t ∈ [0, 1] and δ > 0 (3)
dEP [X(t)]

dt
= x(t); for some P << Q (4)

EP [

∫ 1

0

k(s, t)dX(t)] =

∫ 1

0

k(s, t)x(t)dt = m(t) (5)

Here the measure P on (Ω,F) is yet to be determined. If it exists, notice that x(t) ∈ K automatically.
The integral with respect to dX(t) is to be understood in the Itô sense.

As we want to implement the scheme numerically, it is more convenient to discretize Equation (2)
and then to bring in the MEM. It is at this point where the regularity properties of k(s, t) and x(t) come
in to make life easier. Consider a partition of [a, b] into M equal adjacent intervals and a partition of
[0, 1] into N adjacent intervals. Let {si|i = 1, ...,M} and respectively {tj|j = 1, ..., N} be the center
points of those intervals. Let us set Aij = A(i, j) = k(si, tj). Also, set xj ≡ x(j) = x(tj)/N and finally
mi ≡ m(i) = m(si).

Comment We chose xj = x(tj)/N because when x(t) is a density, we want its discretized version to
satisfy

∑
j xj = 1.

With these changes, the discretized version of the second problem becomes: Given M real numbers
mi : i = 1, ...,M, determine positive numbers xj : j = 1, ..., N such that

N∑
j=1

Aijxj = mi, for i = 1, ...,M (6)
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To assemble the model, consider Ω = [0,∞)N with F = B(Ω) the usual Borel sets. To make things
really simple, let qj(dξj) be N copies of a Measure q(dξ) on ([0,∞),B([0,∞))) and let

Q(dξ) =
N∏
j=1

qj(dξj)

be the reference measure. Note that with respect to Q the coordinate maps Xj ≡ X(j) : Ω → [0,∞)

defined by Xj(ξ) = ξj satisfy the positivity constraints and are independent. With this notation, the
original discretized problem (6) is transformed

Determine a probability measure P << Q such that EP [AX] = m (7)

Note that if such a measure P is found, then xj = EP [Xj] satisfies Equation (6). It is to determine P

where the OME comes in as a stepping stone.

3. Solution of Equation (7) by MEM

The notation will be as at the end of the previous section. For the purpose of comparison, we shall
solve Equation (7) using two different measures. First we shall consider a product of exponential
distributions on Ω and then we shall consider a product of Poisson distributions. Let us first develop
the generic procedure, and then particularize for each choice of reference measure.

At this point we mention that the only requirement on the reference measure Q(dξ) =
∏N

j=1 qj(dξj)

is the following:
Assumption We shall require the closure of the convex hull generated by the support of Q to be

exactly Ω.

Let us consider the convex set P(Q) = {P measure on(Ω,F), P << Q} on which we define the
following concave functional

SQ(P ) = −
∫
Ω

ln

(
dP

dQ

)
dP (8)

whenever ln(dP/dQ) is P−integrable and equal −∞ otherwise. This is the negative of the
Kullback-Leibler divergence between P and Q. It is a standard result that SQ(P ) is concave in P and
we have

Lemma 3.1. Suppose that P, Q and R are probability measures on (Ω,F) such that P << Q, P << R

and R << Q, then SR(P ) ≤ 0, and

SQ(P ) = SR(P )−
∫

dP ln

(
dR

dQ

)
(9)

Proof. The verification of the first assertion is easy invoking Jensens’ inequality. The second follows
readily from the fact that dP

dQ
= dP

dR
/dQ
dR

.

We want to consider the following consequence of this lemma. Let us define R by dRλ(ξ) =

ρλ(ξ)dQ(ξ) where

ρλ(ξ) =
e−<λ,Aξ>

Z(λ)
(10)
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where Z(λ) is the obvious normalization factor, which is given by

Z(λ) =

∫
e−<λ,Aξ>dQξ

The idea behind the maximum entropy method, comes from the realization that for such R, when P

satisfies the constraints, substituting Equation (10) in the integral term in Equation (9), we obtain that

Σ(λ) ≡ lnZ(λ)+ < λ,m > ≥ SQ(P ) for any λ ∈ RM (11)

Thus, whenever {λ ∈ RM |Z(λ) < ∞} we expect the problem to have a solution, and whenever the
class of P ′s satisfying the constraints Equation (7) is non-empty, a minimizer of the convex function
Σ(λ) is expected to exist. Actually, Csiszar in [12,13] proved the existence of such P ′s. Actually a
different (a perhaps more physicist oriented) proof was provided more recently in [14]. It is actually a
simple exercise to verify the following

Proposition 3.1. Suppose that a measure P satisfying (7) exists and that the minimum of Σ(λ) is reached
at λ∗ in the interior of {λ ∈ RM |Z(λ) < ∞}, then the probability P ∗ that maximizes SQ(P ) and
satisfies Equation (7) is given by

dP ∗(ξ) =
e−<A†λ

∗
,ξ>

Z(λ∗)
dQ(ξ) (12)

We are using A† to denote the transpose of A With that result, the next step consists of computing

x∗(j) =

∫
Ω

ξidP
∗(ξ) (13)

Let us now examine two possible choices for Q.

3.1. Exponential Reference Measure

Since we want positive xj, we shall first try all factor q(dξ) = µe−µξdξ, which has [0,∞) as support.
A simple computation yields that

Z(λ) =
N∏
j=1

µ

µ+ (A†λ)j

For the purpose of modeling one has to chose µ large enough such that µ+ (A†λ)j is positive. Another
simple computation (as in the verification of the preceding proposition), yields

x∗
j =

1

µ+ (A†λ
∗
)j

(14)

Observe that the method has just shifted the mean of each exponential to a new value. We let the reader
to write down P ∗ explicitly to verify this assertion.
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3.2. Poisson Reference Measure

This time, instead of a product of exponentials, we shall consider a product of Poisson measures, i.e.,
we take

q(dξ) = e−µ
∑
k≥0

µk

k!
ϵ{k}(dξ)

Here we use ϵ{a}(dξ) to denote the unit point mass (Dirac delta) at a. Certainly the convex hull of the
non-negative integers is [0,∞). Notice that now

Z(λ) =
N∏
j≥0

exp
(
− µ(1− e−(A†λ)j)

)
from which we obtain

Σ(λ) = −µ

N∑
j=1

(
1− e−(A†λ)j

)
+< λ,m >

Notice now that if λ∗ minimizes that expression, then the estimated solution to Equation (7) is

x∗
j = e−(A†λ

∗
)j (15)

3.3. The MEM Approach to the Original Problem

Consider Equation (1) again. This time we shall consider a Poisson point process on ([0, 1],B([0, 1])
with intensity dt. By this we mean a base probability space (Ω,F , Q) on which a collection of random
measures {N(A) : A ∈ B([0, 1])} (the point process) is given, which has the following properties:

(1) N(A) is a Poisson random variable with intensity (mean)|A|,

(2) Q− almost everywhere A → N(A) is an integer valued measure

(3) For any disjoint A1, ..., Ak the N(A1), ..., N(Ak) are independent

From these, it is clear that for any λ ∈ RM the random variable
∫ 1

0
< λ, k(t) > N(dt) satisfies

EQ[e
−

∫ 1
0 <λ, k(t)>N(dt)] = exp(−

∫ 1

0

dt(exp(− < λ, k(t) >)− 1))

where k(t) is the vector of generalized moments appearing in Equation (1). Clearly, here we again
denote the previous quantity by ZQ(λ, k), and again Σ(λ) = ln

(
ZQ(λ)

)
+ < λ,m > . This function

is convex on {λ ∈ RM |ZQ(λ) < ∞}. When a minimizer λ∗ exists in the interior of that domain, then
P ∗ with density

dP ∗

dQ
=

e−
∫ 1
0 <λ∗, k(t)>N(dt)

ZQ(λ
∗)

is such that

x∗
∞(t) ≡ dEP ∗ [N [0, t]]

dt
= e−<λ∗, k(t)> (16)

solves Equation (1).
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4. OME from MEM

4.1. Discrete Case

We shall now relate the last result to the standard (ordinary) method of maximum entropy. Suppose
that the unknown quantities xj in Equation (3) are indeed probabilities, and that m1 = 1 and A1j = 1

for all j = 1, ..., N. It is easy to verify using the first equation of the set Equation (3) that exp(−λ1) =

1/ζ(λ∗
r) where λr = (λ2, ..., λM) and

ζ(λr) =
N∑
j=1

e−
∑M

i=2 λiAi,j

From this, Equation (15) becomes

x∗
j =

e−
∑M

i=2 λ
∗
iAi,j

ζ(λ∗
r)

which is the solution to Equation (3) by the OME method.

4.2. Continuous Case as Limit of the Discrete Case

This is the second place in which our discretization procedure enters. First rewrite Equation (15) x∗
j

as x∗(tj)/N, from which Equation (15) becomes

x∗(tj) =
e−

∑M
i=2 λ

∗
iAi,j

1
N
ζ(λ∗

r)
(17)

One may want to argue as follows: Notice as well, that given any t ∈ [0, 1] as N → ∞, there is a
sequence tj(N) converging to t. In addition, it is clear that

1

N
ζ(λ∗

r)) →
∫ 1

0

e−
∑M

i=2 λiki(t)dt

and therefore

x∗(t) =
e−

∑M
i=2 λ

∗
i ki(t)∫ 1

0
e−

∑M
i=2 λ

∗
i ki(s)ds

which we would like to identify as the solution (1) provided by the OME method. The problem with
the procedure is that the λ∗ depends on N and changes along the way. Let us indicate a possible way to
overcome this issue.

For each N denote by Aj(N) the blocks of the partition of [0, 1], and suppose that the partitions refine
each other as N increases (consider dyadic partitions for example). For each N denote the maxentropic
solution described in Equation (17) by x∗

N(tj) and define the piecewise constant (continuous) density

x̃N(t) =
∑
j

x∗
N(tj)IAj(N)(t)

Clearly, x̃N satisfies Equation (1), but it is not the density that maximizes the entropy. Actually, one can
rapidly verify that

S(x̃N) ≤ S(x̃N+1) ≤ S(x̃∞)
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We shall relate x̃∞ to the x∗
∞ displayed in Equation (16) below. The remaining part of the argument is to

verify that λN → λ∞ (in an obvious notation) as N → ∞. This is simple to say, but hard to prove. A
way around the convergence of the λN issue is provided by [12].

4.3. The Full Continuous Case

Here we show how to obtain the OME solution to Equation (1) from the MEM solution Equation (16)
without the labor described in the previous section. The argument is similar to the one mentioned above.
As k1(t) = 1, we can isolate λ∗

1 and rewrite x∗
∞(t) as

x∗(t) =
e−

∑M
i=2 λ

∗
i ki(t)∫ 1

0
e−

∑M
i=2 λ

∗
i ki(s)ds

(18)

That this solves Equation (1) is due to the fact that the equations that determine λ∗ in the full MEM and
in the OME cases coincide. This happens because of the special form of ZQ(λ) when the underlying
auxiliary process is the Poisson point process

5. Numerical Examples

To compare the output of the three methods, we consider a simple example in which the data consists
in a few values of the Laplace transform of the density of a Γ(a, b) density. Observe that if S denotes the
original random variable, then T = e−S denotes the corresponding random variable with range mapped
onto [0, 1]. The values of the Laplace transform of S are the fractional (non-necessarily integer) moments
of T. The maxentropic methods yield the density x(t) of T, from which the density of S is to be obtained
by the change of variable fS(s) = e−sx(e−s).

If we let {α1 = 0, α2, ..., αM} and ki(t) = tαi be M given powers of T , the corresponding moments to
be used in Equation (1) are mi =

(
b/(αi+ b)

)a

, with m1 = 1. To be specific, let us consider a = b = 1,

and α2 = 1/5, α3 = 1/4, α4 = 1/3, α5 = 1/2, α6 = 5, α7 = 10, α8 = 15, α9 = 20 from which we
readily obtain the values of the 9 generalized moments mi. To finish, we take N = 100 partition points
of [0, 1].

5.1. Exponential Reference Measure

We shall set µ = 10 as a number high enough so that the positivity conditions mentioned in
Section (3.1) holds. The function to be minimized to determine the λs is

Σ(λ) = N lnµ−
N∑
j=1

ln
(
µ+ (A†λ)j

)
+< λ,m >

To find the minimizer, we use the Barzilai-Borwein code available for R, see [15]. Once the optimal
λ is obtained it is inserted in Equation (14). That is the density of T on [0, 1]. To plot the density on
[0,∞) we perform the change of variables mentioned above and the result is plotted in the Figure 1.

We point out that the L1−norm of the difference between the reconstructed and the original densities
is 0.0283 rounding at the fourth decimal place.
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Figure 1. Reconstruction by MEM with exponential reference measure.
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5.2. The Poisson Reference Measure

In reference to the setup of Section 3.3 we set µ = 5 this time. The function to be minimized this
time is

Σ(λ) = −µ

N∑
j=1

(
1− e−(A†λ)j

)
+< λ,m >

Once the minimizing λ∗ has been found, the routine is as above: the density on [0, 1] is mapped onto
a density on [0,∞) by means of a change of variables. The result obtained is displayed on Figure 2.

Figure 2. Reconstruction by MEM with Poisson reference measure.
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The L1−norm of the difference between the reconstructed and the original densities is 0.00524.
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5.3. The OME Method

In this case, to determine λ∗ we have to minimize

Σ(λ) =

∫ 1

0

e−<λ, k(t)>dt+< λ,m >

which clearly is the same thing as minimizing

Σ(λ) = −
∫ 1

0

(
1− e−<λ, k(t)>

)
dt+< λ,m >

as mentioned at the end of Section 4.3. The result, after the change of variables is displayed in Figure 3.

Figure 3. Reconstruction with OME.
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The L1−norm of the difference between the reconstructed and the original densities is 0.03479.
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