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Abstract: RNA is usually classified as either structured or unstructured; however, neither
category is adequate in describing the diversity of secondary structures expected in biological
systems We describe this diversity within the ensemble of structures by using two different
metrics: the average Shannon entropy and the ensemble defect. The average Shannon
entropy is a measure of the structural diversity calculated from the base pair probability
matrix. The ensemble defect, a tool in identifying optimal sequences for a given structure,
is a measure of the average number of structural differences between a target structure and
all the structures that make up the ensemble, scaled to the length of the sequence. In this
paper, we show examples and discuss various uses of these metrics in both structured and
unstructured RNA. By exploring how these two metrics describe RNA as an ensemble of
different structures, as would be found in biological systems, it will push the field beyond
the standard “structured” and “unstructured” categorization.

Keywords: secondary structure; ensemble of structures; single nucleotide polymorphisms;
ribosome

1. Introduction

Ribonucleic acid (RNA) is a ubiquitous molecule with the propensity to fold into complex secondary
structures [1,2]. The number of possible secondary structures for a given RNA sequence of length
L has been calculated to increase as 1.8L [3]. This means that only 314 nucleotides are required
for an RNA to have more possible configures than the estimated number of observable atoms in
the universe (N = 80/ log10(1.8) ≈ 314) [3,4]. For the small subunit of the Escherichia coli
ribosome, with 1,542 nucleotides, the number of possible structures is an absurdly large number
(1.81,542 = 4.3 ∗ 10393) [3,5]. This plethora of possible structures means that even the most probable
structure is highly unlikely with a probability on the order of 10−22 [6]. These calculations suggest that
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RNAs populate an ensemble of structures at any given point in time. Recent evidence has suggested
that the alternative structures that make up these ensembles may provide some evolutionary advantage
to the cell or organism [4,7]. One such advantaged is the ability to control and change the function of a
ribozyme based upon cellular conditions [8–10], a mechanism very similar to how riboswitches regulate
gene expression based upon the presence or absence of a small metabolite [11–14]. RNAs, such as the
ribosome and self-splicing introns, which are believed to be under significant evolutionary pressure to
adopt a single functional conformation [15–17], are generally labeled as “structured”.

As a counter point to these structured RNAs, there are unstructured RNAs that are not believed to
have evolved to take on a specific structure [18,19]. The typical example of these unstructured RNAs
include long non-coding RNAs and messenger RNAs (mRNA). Surprisingly, genome-wide association
studies have revealed links between single point mutations and disease phenotypes, even in untranslated
and other non-coding regions of RNA [20–23]. These disease associated mutations have been shown
to disrupt the structure and shift the ensemble of structures of the mRNA [24,25]. Further investigation
revealed that this same idea could explain why two point mutations are in high linkage disequilibrium;
the first mutation disrupts the ensemble of structures, while the second restores it [26]. These mutations,
both disrupting and restoring, were commonly found outside of protein binding regions, suggesting a
structural, rather than sequence, component [26].

With the evidence that “unstructured” RNA has structure and “structured” RNA populates many
different structures, it is clear that the simplistic labels of structured and unstructured for RNA are
insufficient. To address this issue, we propose the use of a continuous scale using both the average
Shannon entropy and the ensemble defect. Both of these metrics have been used to describe the
uncertainty in structural predictions and structural stability. Here, we use these metrics as a way to
describe the diversity of the different structures that populate the ensemble. This analysis includes
calculating the average Shannon entropy and ensemble defect for all of the sequences for the small
subunits of the ribosome and all the identified mRNAs in the human genome. Additionally, we compare
these metrics to the correlation coefficient used by Halvorsen et. al. [24] and describe the use of
structural profiles. These structural profiles combined with the average Shannon entropy and ensemble
defectmay provide a more accurate way to think about RNA and the effect of mutations on the ensemble
of structures.

2. Methods

2.1. Measuring the Structural Diversity

A majority of methods for RNA secondary structure prediction focus on identifying the “correct”
structure. In the absence of many homologous sequences, this structure is calculated using the
minimization of thermodynamic parameters by dynamic programming [27,28]. These predictions
take advantage of the measured properties of RNA base stacking, RNA bending and nucleotide
pairing [29–32]. These thermodynamic methods for prediction have been continuously refined to the
point where structures can be informed by chemical mapping experiments [12,33–36]. Many of the
current programs even have the ability to return the partition function and perform suboptimal sampling
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for a given RNA sequence [37–41]. Recent work has pushed beyond simple energy calculations to
include entropic modifications to the folding algorithms [42]. A complete discussion of the procedure
of how these programs work is beyond the scope of this paper, but can be found elsewhere [30,43,44].
For completeness, we will briefly describe the aspects of RNA structural prediction that are related to
the average Shannon entropy, ensemble defect and correlation coefficient.

The partition function, Z, is defined in the standard way as:

Z =
∑

structures{n}

e−
∆Gn
RT (1)

where ∆Gn is the free energy of the n−th structure, R is the universal gas constant and T is the
temperature, and the sum is over all possible structures. The probability of any two nucleotides (i and j)
being paired is then described by the base pair probability matrix, P;

Pij =
1

Z

∑
structures{n}

Sn
ije
−∆Gn

RT (2)

The matrix, Sij , describes the base pairing between any two nucleotides, where Sij = 1 when the i−th
and j−th nucleotides are paired and zero otherwise. An equivalent method, used in the RNAstructure
software package [29,30,45], is to describe the structure as the vector, s, defined by:

si =

{
j for i paired to j
0 for i not paired

(3)

A corresponding transformation of the base pair probability matrix, P, is used to calculate the probability
that base i is paired. This is done by summing over all values of j for column i from one to L, the length
of the sequence. This is written with the sum from one to L, notated by j = 1 : L:

pi =
∑
j=1:L

Pij (4)

The correlation coefficient, defined by Halvorsen et. al., is defined as the Pearson correlation coefficient
between the pairing probability of the wild type sequence, pWT , and a mutant sequence, pmut.

Huynen et al. were the first to propose the use of the Shannon entropy as a description of the
uncertainty in a predicted structure [46]. A few years later, Schultes et al. proposed a slightly different
measure to accomplish the same task [47]. Currently, the RNA literature defines the Shannon entropy
for an RNA sequence of length L as:

Q =
−
∑

i<j Pij log2Pij

L
(5)

where P is the base pair probability matrix. However, Equation (5) is not a true Shannon entropy, because
the base pair probability matrix does not sum to unity. Huynen et al. originally defined Equation (5)
with the notation that the base pair probability matrix was modified with Pi,j=i as the probability that
base i did not pair with any other base [46]. To avoid confusion with the current literature [28,48–50],
we will use Equation (5) with the unmodified base pair probability matrix, but refer to it as the average
Shannon entropy.



Entropy 2014, 16 1334

The ensemble defect, E(S0), was originally designed to describe the distance of the average structure
of an ensemble away from a target structure, S0 [51,52]. This target structure, S0, may be any
structure the RNA sequence can fold into, including, but not limited to, predicted structures from
standard dynamic programing [28,38,40,41], structures predicted using more sophisticated methods [42]
or identified crystal structures. The ensemble defect was originally used to measure the success of
designing a sequence that would take on a desired structure [51–53]. The design of an RNA sequence
may need to be informed by more then just thermodynamic properties, such as constraints in the speed
of the folding, self-assembly or, even, frustrated folding kinetics [52]. Since it is believed that the
evolution of RNA structures must filter through similar constraints to arrive at functional and useful RNA
structures [54], it is useful to borrow the ensemble defect from the field of sequence design as a metric
describing the diversity of structures. The ensemble defect is calculated by appending an extra column
describing the i−th base being unpaired to both the structure matrix and the base pair probability matrix.
The resulting rectangular matrices for the modified structure matrix, S, and base pair probability matrix
P are written as S and P , respectively.

This results in the ensemble defect being defined as [51,52]:

E(S0) = 1− 1

L

∑
i=1:L

j=1:L+1

PijS0
ij (6)

Equation (6) can be rewritten to not require the extended base pair probability matrix and extended
structure matrix as:

E(S0) =
1

L

∑
i,j=1:L

(
PijS

0
ij + Pij + S0

ij

)
− 1

L

∑
i=1:L

s0i pi (7)

Both Equation (6) and Equation (7) can be thought of as summing up the nucleotide similarity between
the target structure and the base pair probability. This results in the ensemble defect having a simple
interpretation: a value of 0.25 means that a structure sampled from the ensemble will, on average,
have 25% of the nucleotides paired differently than the target structure. This would correspond to
25 nucleotides for a sequence of 100 nucleotides or 125 nucleotides for a sequence of 500 nucleotides.
This calculation has previously been used to generate a credibility limit measuring the accuracy of a
secondary structure prediction [55]. This interpretation assumes that there is a single correct solution
instead of a collection of structures that are commonly found in biological systems.

Despite the existence of an exact calculation (Equation (6) and Equation (7)), in some circumstances,
it may prove advantageous to be able to calculate the ensemble defect over a subset of sampled structures,
thereby avoiding the base pair probability matrix. The easiest way to write this modification is to take
advantage of the vector, s, that describes a given structure, resulting in:

Eensemble(s
0) = 1− 1

NL

∑
n=1:N

∑
i=1:L

(
δs0

i ,s
n
i

)
(8)

where sn is the n−th structure of the ensemble of N structures and δ is the Kronecker delta function. This
ensemble could be a subset, identified by clustering or other methods, from a larger sampled ensemble
or all structures within a given energy range. A range of suboptimal sampling has been calculated for
five different RNA sequences with an energy range of up to 2 kcal/mol from the minimum free energy
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structure and is shown in the supplement (Supplementary Figure S1). The use of Equation (8) allows
for an estimate of how much variation there is among the structures by using the standard deviation
associated with the summation. Equation (8) approaches the exact solution of Equation (6) when the
ensemble is created using Boltzmann sampling and is sufficiently large (Supplementary Figure S2).

For these measurements of diversity to be useful, they must show a difference from such simple
measurements as the percent of guanine and cytosine within a sequence. A previous study by Freyhult
et al. showed that the percent of guanine and cytosine was correlated to the normalized free energy [48].
This same study showed very little correlation with the other metrics in the study including the averaged
Shannon entropy. To confirm these results, we preform the same analysis to identify correlation between
the percentage of guanine and cytosine with the averaged Shannon entropy and ensemble defect for the
small subunit of the ribosome from Bacteria and the 3’ and 5’ untranslated regions of the human mRNA.
The results show very little correlation with the maximum being 0.17 between the 3’ untranslated regions
and the averaged Shannon entropy. The results for the 3’ and 5’ untranslated regions are shown in
Supplementary Figure S3 while the results for the small subunit are not shown. These results rule out
that the Shannon entropy and ensemble defect are just measuring the guanine and cytosine content of
a sequence.

Figure 1. Comparison of all possible single point mutations for the 5’ untranslated regions
(UTR) ferritin light chain (FTL) gene sequences as calculated using the ensemble defect (A),
average Shannon entropy (B) and the correlation coefficient (C). Each mutation is labeled
according to its position along the sequence. The minimum free energy structure for the wild
type sequence is shown and colored according to the average value of all possible mutations
at that nucleotide as compared to all values for that metric. The more red the nucleotide, the
higher the value of the ensemble defect (A) and average Shannon entropy (B). The coloring
for the correlation coefficient is measured as being away from unity. The values for the wild
type sequence are shown as a red line, while the gradient of the green bar on the y-axis
describes the mean and standard deviation of the mutant values. The calculations of the
ensemble defect used the minimum free energy structure of the wild type sequence as the
target structure in every instance.
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2.2. RNA Structural Diversity Profiles

With the ever growing body of data from genome-wide association studies concerning point
mutations, it is useful to observe how possible point mutations will affect the ensemble of structures.
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For an RNA that is generally considered structured, this disruption is easy to imagine; the RNA can no
longer take on the proper structure. For an unstructured RNA, the interpretation is more difficult. By
thinking of RNA, either structured or unstructured, as populating an ensemble of different structures,
these mutations must disrupt the ensemble by changing the diversity of structures. The effect of
all single possible nucleotide changes can be calculated and observed in a single graph. Since each
mutation happens at a specific nucleotide, that nucleotide can be used as a coordinate, with a second
coordinate being the calculated value of the average Shannon entropy, or ensemble defect or correlation
coefficient. By calculating this set of coordinates for every possible mutation, we can create a profile of
what the mutations will do to the ensemble. Since each nucleotide has three possible mutations, each
position along the x-axis has three individual data points. This has been done on the 199 nucleotide
5’ untranslated region of the ferritin light chain (FTL) gene using the ensemble defect (Figure 1A),
average Shannon entropy (Figure 1B) and the correlation coefficient (Figure 1C). (The Ferritin light
chain is abbreviated as FTL because the more natural abbreviation - FLC - had already been given to the
flowering locus C gene.)

To aid in the interpretation of these profiles, Figure 1 includes the minimum free energy structure of
the 5’ untranslated region of the FTL gene with each nucleotide colored according to the mean value of
all the mutations at that nucleotide.

2.3. RNA Sequences and Secondary Structures

The sequences for the mRNA, including both the 3’ and 5’ untranslated regions, were extracted from
the University of California Santa Cruz genome build hg18 [56]. These sequences included the 5’
untranslated regions of the Ferritin Light Chain (FTL) gene, the 5’ untranslated regions of retinoblastoma
(RB1) gene, and the 5’ untranslated region of the serpin peptidase inhibitor (SERPINA1) and were
selected for additional investigation, due to their disease associated mutants described in Halvorsen
et al [24] and their identification as “unstructured.” The sequences for the small subunit of the ribosome
and the phenylalanine tRNA were from the Comparative RNA website [57]. The example small
subunit sequences for E. coli (accession number J01695), S. solfataricus (accession number X03225)
and H. sapiens (accession number K03432) are from the same source. The sequence for the Group II
intron is from the RNA Families Database (reference number RF02001) [58,59]. The sequence for the
P4P6 stem of Tetrahymena thermophila was from the RNA Mapping Database [60–62]. The accepted
secondary structures used in this study were obtained from the Comparative RNA website [57]. The
secondary structures in Figure 1 were drawn and colored using the secondary structure drawing program
R2R [63]. All secondary structures were calculated using the Vienna group’s folding software version
2.0.7, specifically RNAfold and RNAsubopt, using the standard settings [40,41].

3. Results and Discussion

3.1. Structural Diversity of Unstructured RNAs

Messenger RNA (mRNA), including the untranslated and translated regions, are generally labeled as
unstructured, due to a lack of a well-defined structure [2,24,64,65]. Instead of a well-defined structure,
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these RNA sequences populate an ensemble of different structures [26,66,67]. The diversity of the
different structures within these ensembles have not been studied thoroughly, with most studies of mRNA
focusing on the minimum free energy structure [68–70]. We have taken advantage of the University of
California, Santa Cruz genome (build hg18) [56] to extract the sequences of known mRNAs after they
have been spliced. The average Shannon entropy and ensemble defect for the full mRNA sequence
(N = 30, 638), the 3’ untranslated regions (N = 27, 241) and the 5’ untranslated regions (N = 26, 679)
were calculated (Figure 2). The ensemble defect for every sequences is calculated using the minimum
free energy structure as computed by the Vienna software [40,41], due to the general availability and
simplicity of use for large amounts of data. The full mRNA had a range of values for both metrics with
the range of values for the average Shannon entropy being 0.031 to 0.733, while the ensemble defect
has a range of 0.028 to 0.574. It is interesting to note that the mean value for the 3’ untranslated regions
for both the average Shannon entropy (0.255) and ensemble defect (0.233) are lower than the the 5’
untranslated region and full mRNA (0.313 and 0.277 and 0.341 and 0.289, respectively). This suggests
that there is less structural diversity within the ensembles for the 3’ untranslated regions than the 5’
untranslated regions or the mRNA as a whole, which is expected from the studies of protein binding
sites [71].

Figure 2. The ensemble defect and average Shannon entropy for known
human mRNA and the 3’ and 5’ untranslated regions (UTR) (N = 27, 241 and
N = 26, 679, respectively) of the full mRNA (N = 30, 638). The sequences
were obtained from the University of California, Santa Cruz genome build
hg18 [56]. The ensemble defect was calculated using the minimum free energy structure for
every individual sequence as calculated by RNAFold [40,41].
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3.2. Structural Diversity of Structured RNAs

Even among ribozymes that perform the same function, there is variation among how structured an
RNA sequence is. Take, for example, the ribosome: the huge RNA and protein molecular machine
used to translate messenger RNA to protein and that is found in all three kingdoms of life. The ribosome
consists of three RNA subunits and a variable number of proteins dependent on the organism [72,73]. Our
focus will be on the small subunit, which is generally considered to be highly structured and has been
repeatedly crystallized across the different kingdoms [74–76]. For both the average Shannon entropy
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(Figure 3A) and the ensemble defect (Figure 3B), we can see a large range of values for the small
subunit, even within the different kingdoms. The mean average Shannon entropy values for the three
kingdoms are: Archaea, 0.195; Bacteria, 0.241; and Eukaryota, 0.250. The mean ensemble defect values
using the minimum free energy structure are 0.220, 0.272 and 0.290, respectively.

Figure 3. The ensemble defect and average Shannon entropy for all the sequences from
the Comparative RNA website [57] for the small subunits of the ribosome from Archaea
(N = 207), Bacteria (N = 5, 321) and Eukarya (N = 1, 341). The ensemble defect was
calculated using the minimum free energy structure for each individual sequence. There is
more overlap in the values of the average Shannon entropy and ensemble defect between the
small subunit of the ribosomes and human mRNA than would be expected based upon the
classifications of structured and unstructured.
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Considering how structured and unstructured RNA is treated in the literature, the distributions from
the small subunit of the ribosome (Figure 3) and the mRNA (Figure 2) should be significantly different.
A Kolmogorov–Smirnov test between all the ribosome distributions and the mRNA distributions do show
that they are different distributions with p-values below the standard 0.05 significance level; however,
this same test also shows that the distributions for the ribosomes are different among themselves. There
is a large overlap of the ranges of the distributions of the ribosomes having a range of 0.00 to 0.65,
while the range for the unstructured RNA has a similar range of 0.00 to 0.65 for the ensemble defect.
The distributions for the ensemble defect overlap to different degrees, but all of them are over 50% and
range up to 88%. The overlap of the average Shannon entropy distributions are lower, ranging from
29% to 60%. These results reinforce the idea that the classifications of “unstructured” and “structured”
are misleading.

3.3. Mutations and Structural Diversity Profiles

With the increased interest in how single point mutations affect the diversity of structures an RNA can
populate, it is useful to observe how every possible mutation will change the diversity. As a comparison
to previous studies [24,26], the ensemble defect, average Shannon entropy and correlation coefficient
of every possible nucleotide change for the 5’ untranslated regions (UTR) sequence for the human
FTL gene was calculated and shown as a structural diversity profile (Figure 1). Every point represents
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a mutation at that nucleotide position, with the red line being the value for the wild type sequence. For
the FTL sequence, the average Shannon entropy of the mutants varies above and below the wild type
value (0.2444), with a mean of the single-nucleotide polymorphism (SNP) values of 0.2415. This is in
contrast to the ensemble defect, where the mean of all the mutants is higher then the wild type value
(0.2724 for the mean of the mutants versus 0.2209 for the wild type). The ensemble defect is able to pick
out many of the same structural disrupting mutants (nucleotides 22–25 and 56–59) as other structural
studies [24–26] and those found using the correlation coefficient (Figure 1C). As a visualization, the
minimum free energy secondary structure is shown and colored according to the average value of the
possible mutations at that nucleotide (Figure 1). This coloration of the minimum free energy structures of
the wild type sequence suggests that several nucleotides in the 20–30 and 50–60 areas play an important
role in the structure of the 5’ untranslated region of the FTL gene. These nucleotides have previously
been shown to stabilize an identified iron response element, a known regulatory motif, located between
nucleotides 30–50 [24–26,77].

Figure 4. The ensemble defect for all single nucleotide polymorphisms in the small subunits
of the ribosome from Bacteria (E. coli (A)), Archaea (S. solfataricus (B)) and Eukarya
(H. sapiens (C)). The scores are calculated using the minimum free energy structure from
the wild type sequence. The red line corresponds to the ensemble defect for the wild type
sequences with the green gradient on the y-axis showing the mean and standard deviation of
the calculated values. Each organism shows a different pattern. (D) The accepted secondary
structure for the E. coli small subunit with each nucleotide colored according to its average
ensemble defect for all single nucleotide polymorphisms. The relationship between color
and average ensemble defect for every nucleotide is shown.
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This same procedure to create structural diversity profiles can be used on even highly structured
ribozymes that perform the same function. As examples, we selected a single sequence for the small
subunit of the ribosome from each of the three kingdoms and generated structural diversity profiles for
each sequence. We use E. coli as an example from Bacteria (Figure 4A), S. solfataricus from Archaea
(Figure 4B) and H. sapiens for Eukarya (Figure 4C). The ensemble defect among the three small subunit
sequences compared to their minimum free energy structure varies greatly: E. coli, 0.174; S. solfataricus,
0.221; and H. sapiens, 0.326. Since ribosomal structures have been under such intense scrutiny, each
of these three sequences have an accepted structure that may be used as a target structure instead of the
minimum free energy structure. The resulting ensemble defect values jump dramatically: E. coli, 0.511;
S. solfataricus, 0.411; and H. sapiens, 0.660. This difference in using the minimum free energy and
accepted structures can be attributed to the algorithms used in creating the base pair probability matrix
and the minimum free energy. The mutational analysis shows unique patterns across the three subunit
sequences (Figure 4A–C). The accepted small subunit structure for E. coli has been colored according
to the average ensemble defect values (Figure 4D), showing which nucleotides are most susceptible to
disrupting the ensemble of structures. The structural diversity profiles using the average Shannon entropy
for these three sequences are shown in the supplementary materials (Supplementary Figure S4).

3.4. Optimization Towards a Structure

At the RNA structure level, evolution works through mutations, which on average should increase
the structural diversity, and selection, which should reduce this diversity, ideally to optimize an RNA
sequence to take on a single or very few structures. This process of mutation and selection is believed
to be driving the optimization of the small subunit of the ribosome to only inhabit a very small number
of its possible structures [49,69,73,78]. Additionally, Schultes et al. showed that natural sequences were
generally evolved to have less structural diversity compared to randomly generated sequences [47]. Since
both the ensemble defect and the average Shannon entropy are measures of structural diversity, they can
be used as tools to describe how “optimized” the ensemble of structures is. Considering that the ensemble
defect was originally developed to inform sequence design [52,53] and is a measurement away from a
target structure, it is a better measure of how evolved a sequence is towards the target structure than
the average Shannon entropy. These ideas suggest that the use of structural profiles would help inform
our understanding of how optimized the small subunit of the ribosome is for the three sequences shown
in Figure 4. The E. coli small subunit appears to be most optimized towards its minimum free energy
structure (E(SMFE) = 0.174) with that of H. sapiens being the least optimized (E(SMFE) = 0.326),
at least according to the ensemble defect values. Each of the sequences have a number of mutations
that would optimize the sequences even further (E. coli, 20.3%; S. solfataricus, 38.4%; and H. sapiens,
32.3%). These profiles also provide information about the range of effects from a single point mutation,
such as the fact that the mutation that would optimize E. coli the most (A71U) is only 13% lower (0.1508)
than the wild type value, while the optimal mutation for E. sapiens optimizes the value to 0.1914 (a 41%
decrease), still higher than the E. coli wild type value. This type of ensemble defect analysis provides a
possible tool and methodology for simulating directed evolution experiments by subsequent generations
of structural profiles and the selection of mutations.
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Figure 5. Relation of the ensemble defect and the average Shannon entropy to the correlation
coefficient. The correlation coefficient between the pairing probability (CC) measures the
similarity between the ensemble of two sequences of the same length [24]. The CC has
been used quite effectively in identifying single nucleotide polymorphisms that could result
in disease phenotypes [79]. The relationship between 1−CC and the ensemble defect (A)
and average Shannon entropy (B) for the ‘unstructured’ 5’ UTR of the human FTL gene
for all possible single-nucleotide polymorphisms. The relationship between the 1−CC. and
the ensemble defect (C) and average Shannon entropy (D) for the “structured” E. coli small
subunit of the ribosome for all possible SNPs. The high degree of correlation between the
CC and the ensemble defect is not surprising, because the ensemble defect uses the minimum
free energy structure as the target structure. The Pearson correlation between the ensemble
defect and the averaged Shannon entropy is 0.29 for the 5’ UTR of the human FTL gene and
0.77 for the E. coli small subunit of the ribosome.
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3.5. Relation to the Correlation Coefficient

How well the ensemble defect and the average Shannon entropy can predict mutations that change
the diversity of the structures in the ensemble is found by comparing them to the correlation coefficient
values. We take the calculated values of the average Shannon entropy and the ensemble defect for
the 5’ untranslated region of the FTL gene (shown in Figure 1) and compare the values to one minus
the correlation coefficient values (1−CC) calculated using SNPfold [24]. We use 1−CC, because the
correlation coefficient measures the differences between the wild type, unmutated pairing probability
and the pairing probability resulting from the mutation. The results are shown in Figure 5, with the
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data for the ensemble defect shown in red (Figure 5A) and the average Shannon entropy shown in black
(Figure 5B). Strait lines are drawn to help emphasize the correlation and lack of correlation between the
calculations. The procedure is repeated for the small subunitof the E. coli ribosome (Figure 5C-D). The
correlations between the ensemble defect and 1−CC for both the small subunitand the 5’ untranslated
region of FTL are high at 0.90 and 0.89, respectively. This trend is not surprising, because both metrics
are measuring away from the structural properties of the minimum free energy structure. However, when
the accepted structure, instead of the minimum free energy structure, is used to calculate the ensemble
defect for the small subunit, the correlation drops to 0.58. The trend of the ensemble defect having a
better correlation then the average Shannon entropy appears to hold across several other examples, as
shown in the supplementary materials (Supplementary Figures S5–S9). The correlation between 1−CC
and the average Shannon entropy is lower for every investigated sequence, but surprisingly, there is a
negative correlation for the phenylalanine tRNA (Supplementary Figure S9). This result suggests that
tRNA, or at least the phenylalanine tRNA, has to maintain a specific structural diversity, which most
mutations decrease (Supplementary Figure S9). The only other examined sequence with a negative
correlation is the 5’ untranslated region of FTL (Figure 5B) with a value of -0.02, but this is more
indicative of no correlation. If this lack of correlation was due to the 5’ untranslated region of FTL being
unstructured, we would expect similar results for the 5’ untranslated regions of RB1 (Supplementary
Figure S6) and SERPINA1 (Supplementary Figure S7); however, both these correlations are higher at
0.46 and 0.33, respectively. The lower correlation between 1−CC and the average Shannon entropy
suggests that many point mutations do not change the amount of diversity within the ensemble of
structures, but do change which structures are populated. The Pearson correlation between the ensemble
defect and the averaged Shannon entropy is 0.29 for the 5’ UTR of the human FTL gene and 0.77 for
the E. coli small subunit of the ribosome. Despite so few examples, making it impractical to draw firm
conclusions, these results suggests a more detailed study of the relationship between 1−CC and the
average Shannon entropy and the ensemble defect is warranted.

4. Conclusions

An RNA sequence is usually classified as either structured or unstructured. Structured RNAs are
generally considered to have a specific structure, usually necessary to perform a specific function.
Examples of structured RNAs include the ribosome, tRNAs and the self-splicing introns. Unstructured
RNAs are not considered to have a specific structure or a structure that is not essential for its function,
such as in messenger RNAs, small interfering RNAs or long noncoding RNAs. Yet, with the increased
understanding that even highly “structured” RNA populates an ensemble of structures, this simplistic
classification makes little sense. Figure 2 and Figure 3 even show an overlap of ranges for both the
average Shannon entropy and ensemble defect that would be unexpected for groups generally thought
of as structured and unstructured. This suggests that to understand RNA’s role beyond that of a simple
coding transcript, it is necessary to move beyond the “structured” and ‘unstructured’ labeling.

In this paper, we have discussed the use of the ensemble defect and the average Shannon entropy
as tools for describing the degree of structure of an RNA. These metrics provide a continuous range
of values instead of the binary “structured”/“unstructured” labeling. The average Shannon entropy is
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a measure of the diversity of an RNA’s ensemble of structures based upon the probability of pairing
between all nucleotides. The ensemble defect uses a different approach, measuring the average percent
difference among the structures from a target structure; however, without a detailed inspection, it is hard
to distinguish a few structures far away from a target structure from many structures centered on the
target structure. We have shown how the continuous scale provided by the average Shannon entropy and
the ensemble defect can be used to describe the diversity of structures within the ensemble of structures
that an RNA will populate. Using a continuous scale may allow for the identification of mutations
that disrupt or reinforce a given structure in much the same way as the correlation coefficient metric.
Considering both the average Shannon entropy and the ensemble defect, this study suggests that these
two simplistic categories are merely extremes on a continuous scale describing the diversity of structures
that an RNA will populate in biological systems.

4.1. Future Plans

The idea that RNA populates an ensemble is not new nor novel, yet the idea of a single structure
persists in the literature. The persistence of this paradigm is probably due to the classification of RNA
into structured and unstructured categories and the lack of intuitive tools to visualize and describe these
ensembles. The analysis presented here should alleviate both these concerns and has the possibility of
being used in a variety of different applications and possibly answering several currently unanswered
questions. Is evolution actively selecting for a single structure or multiple structures that have some role
in the cell? It is known that riboswitches, pieces of RNA with known “on” and “off” states, are sensitive
to metabolites and temperature [80] and have variable ratios across organisms [4]. How are alternative
structures used to tune RNA expression, dynamics and interactions, in a similar way to riboswitches,
to control and regulate cellular function, as suggested by both computational and experimental
studies [7,81,82]? These alternative structures would certainly be an ideal method for regulating
expression at scales where thermodynamic potentials play such a large role. These ensembles would also
provide a pathway for a sequence to differentiate into different functional structures, while maintaining,
at least partially, its original function [9]. Answering any of these questions is beyond the scope of this
work; however, it is hoped that the tools and concepts presented here will help lay the foundation to
answer these and other questions.
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