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Abstract: A general approach to Bayesian learning revisits some classical results, which
study which functionals on a prior distribution are expected to increase, in a preposterior
sense. The results are applied to information functionals of the Shannon type and to a class
of functionals based on expected distance. A close connection is made between the latter and
a metric embedding theory due to Schoenberg and others. For the Shannon type, there is a
connection to majorization theory for distributions. A computational method is described to
solve generalized optimal experimental design problems arising from the learning framework
based on a version of the well-known approximate Bayesian computation (ABC) method for
carrying out the Bayesian analysis based on Monte Carlo simulation. Some simple examples
are given.
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1. Introduction

A Bayesian approach to the optimal design of experiments uses some measure of preposterior utility,
or information, to assess the efficacy of an experimental design or, more generally, the choice of sampling
distribution. Various versions of this approach have been developed by Blackwell [1], and Torgerson [2]
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gives a clear account. Renyi [3], Lindley [4] and Goel and DeGroot [5] use information-theoretic
approaches to measure the value of an experiment; see also the review paper by Ginebra [6]. Chaloner
and Verdinelli [7] give a broad discussion of the Bayesian design of experiments, and Wynn and
Sebastiani [8] also discuss the Bayes information-theoretic approach. There is wider interest in these
issues in cognitive science and epistemology; see Chater and Oaksford [9].

When new data arrives, one can expect to improve the information about an unknown parameter θ.
The key theorem, which is Theorem 2 here, gives conditions on informational functionals for this to be
the case, and then, they will be called learning functionals. This class includes many special types of
information, such as Shannon information, as special cases.

Section 2 gives the main theorems on learning functionals. We give our own simple proofs for
completion, and the material can be considered as a compressed summary of what can be found in
quite a scattered literature. We study two types of learning function, those of which we shall call
the Shannon type and, in Section 3, those based on distances. For the latter, we shall make a new
connection to the metric embedding theory contained in the work of Schoenberg with a link to Bernstein
functions [10,11]. This yields a wide class of new learning functions. Following two, somewhat
provocative, counter-examples and a short discussion of surprise in Section 4, we relate learning
functions of the Shannon type to the theory of majorization in Section 5. Section 6 specializes learning
functions on covariance matrices.

We shall use the classical Bayes formulation with θ as an unknown parameter with a prior density
π(θ) on a parameter space Θ and a sampling density f(x|θ) on an appropriate sample space. We denote
by fX,θ(x, θ) = f(x|θ)π(θ) the joint density of X and θ and use fX(x) for the marginal density of X .
The nature of expectations will be clear from the notation. To make the development straightforward, we
shall look at the case of distributions with densities (with respect to Lebesgue measure) or, occasionally,
discrete distributions with finite support. All necessary conditions for conditional densities, integration
and differentiation will be implicitly assumed.

In Section 7, approximate Bayesian computation (ABC) is applied to problems in optimal
experimental design (hence, ABCD). We believe that an understanding of modern optimal experimental
design and its computational aspects needs to be grounded in some understanding of learning. At the
same time, there is added value in taking a wide interpretation of optimal design as a choice, with
constraints, of the sampling distribution f(x|θ). Thus, one may index f(x|θ) by a control variable
z and write f(x|θ, z) or f(x(z)|θ). Certain aspects of the distribution may depend on z, others not.
An experimental design can be taken as the choice of a set of z, at each of which we take one or more
observations, giving a multivariate distribution. In areas, such as search theory and optimization, z
may be a site at which one measures or observes with error. In spatial sampling, one may also use
the term “site” for z. However, z could be a simple flag, which indicates one or another of somewhat
unrelated experiments to estimate a common θ. In medicine, for example, one discusses different types
of “intervention” for the same patient.
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2. Information-Based Learning

The classical formulation proceeds as follows. Let U be a random variable with density fU(u). Let
g(·) be a function on R+ → R and define a measure of information of the Shannon type for U with
respect to g as

Ig(U) = EU(g(fU(U))).

When g(u) = log(u), we have Shannon information. When g(u) = uγ−1
γ
, (γ > −1), we have a version

similar to Renyi information, which is sometimes called Tsallis information [12].
IfX represents the future observation, we can measure the preposterior information of the experiment

(query, etc.), which generates a realization of X , by the prior expectation of the posterior information,
which we define as:

Ig(θ;X) = EXEθ|X(g(π(θ|X))) = EX,θ(g(π(θ|X))).

In the second term, the inner expectation is with respect to the posterior (conditional) distribution of θ
given X , namely π(θ|X), and the outside expectation is with respect to the marginal distribution of X .
In the last term, the expectation is with respect to the full joint distribution of X and θ. We wish to
compare Ig(θ;X) with the prior information:

Ig(θ) = Eθ(g(π(θ))).

Theorem 1. For fixed g(u) and the standard Bayesian set-up, the pre-posterior quantity Ig(θ,X) and
prior value, Ig(θ), satisfy:

Ig(θ;X) ≥ Ig(θ) = Eθ(g(π(θ))),

for all joint distributions fX,θ(x, θ) if and only if h(u) = ug(u) is convex on R+.

We shall postpone the proof of Theorem 1 until after a more general result for functionals on densities:

ϕ : π(θ) 7→ R.

Theorem 2. For the standard Bayesian set-up and a functional ϕ(·),

ϕ(π(θ)) ≤ EXϕ(π(θ|X))

for all joint distributions fX,θ(x, θ) if and only if ϕ is convex as a functional:

ϕ((1− α)π1 + απ2) ≤ (1− α)ϕ(π1) + αϕ(π2),

for 0 ≤ α ≤ 1 and all π1, π2.

Proof. Note that taking expectations with respect to the marginal distribution of X amounts to a convex
mixing, not dependent on θ. Thus, using Jensen’s inequality:

EX(ϕ(π(θ|X))) ≥ ϕ(EX(π(θ|X)))

= ϕ(π(θ)).

The necessity comes from a special construction. We show that given a functional ϕ(·) and a triple
{π1, π2, α}, such that:

ϕ((1− α)π1 + απ2) > (1− α)ϕ(π1) + αϕ(π2),
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we can find a pair {f(x, θ), π(θ)}, such that

ϕ(π(θ)) > EXϕ(π(θ|x)). (1)

Thus, let X be a Bernoulli random variable with marginal distribution (prob{X = 0}, prob{X = 1}) =
(1− α, α). Then, it is straightforward to choose a joint distribution of θ and X , such that:

π(θ|X = 0) = π1(θ), π(θ|X = 1) = π2(θ),

from which we obtain (1).

Proof. (of Theorem 1). We now show that Theorem 1 is a special case of Theorem 2.
Write πα(θ) = (1− α)π1(θ) + απ2(θ). If h(u) = ug(u) is convex as a function of its argument u:∫

h(πα(θ))dθ ≤
∫

((1− α)h(π1(θ)) + αh(π2(θ))) dθ (2)

= (1− α)

∫
h(π1(θ))dθ + α

∫
h(π2(θ))dθ, (3)

proving one direction.
The reverse is to show that if Ig is convex for all π, then h is convex. For this, again, we need a

special construction. We carry this out on one dimension, the extension to more than one dimension
being straightforward. For ease of exposition, we also make the necessary differentiability conditions.
The second directional derivative of Ig(θ) in the space of distributions (which is convex) at π1 towards
π2 is:

∂2

∂α2

∫
g(πα(θ))πα(θ)dθ

∣∣∣∣
α=0

=

∫
(π1 − π2)

2(g′′(π1)π1 + 2g′(π1))dθ.

Let π1 represent a uniform distribution on [0, 1
z
], for some z ≥ 0, and let π2 be a distribution with support

contained in [0, 1
z
]. Then, the above becomes:∫ 1

z

0

(z − π2(θ))
2(g′′(z)z + 2g′(z))dθ = (g′′(z)z + 2g′(z))

∫ 1
z

0

(z − π2(θ))
2dθ.

Now, assume that h(z) = zg(z) is not convex at z; then h′′(z) = g′′(z)z + 2g′(z) < 0 and any choice
of π2, which makes the integral on the right-hand side positive, shows that Ig(θ) is not convex at z. This
completes the proof.

Theorem 2 has a considerable history of discovery and rediscovery and, in its full version, should
probably be attributed to DeGroot [13]; see Ginebra [6]. The early results concentrated on functionals
of the Shannon type, basically yielding Theorem 1. Note that the condition h(u) = ug(u) being convex
on R+ is equivalent to g( 1

u
) being convex, which is referred to as g(u) being “reciprocally convex” by

Goldman and Shaked [14]; see also Fallis and Lyddell [15].
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3. Distance-Based Information Functions

Shannon type information functionals take no account of metrics. Intuitively, if mass is moved around,
the information stays the same. Let Z1, Z2 be independent copies from π(z), and let d(z1, z2) be a
distance or metric. Define d-information as:

ϕ(π) = −EZ1,Z2(d(Z1, Z2)
2).

Now, with πα(z) = (1− α)π1(z) + απ2(z),

ϕ(πα) = −
∫ ∫

d(z1, z2)
2((1− α)π1(z1) + απ2(z1))((1− α)π1(z2) + απ2(z2))dz1dz2. (4)

The condition for convexity, again using the second directional derivative with respect to α, is

−
∫ ∫

d(z1, z2)
2(π1(z1)− π2(z1))(π1(z2)− π2(z2))dz1dz2 ≥ 0. (5)

Noting that
∫
(π1(z1)− π2(z1)) = 0, (5) is a generalized version of the following condition:

−
∑
ij

d(zi, zj)zizj ≥ 0, for all z,
∑

zi = 0. (6)

Condition (6), considered as a condition on a distance matrix dij = d(zi, zj), is called almost positive and
is the necessary and sufficient condition for an abstract set of points P1, . . . , Pk, with interpoint distances
{dij}, to be embedded in Euclidean space.

Theorem 3. If dij = dji, 1 ≤ i < j ≤ n, are 1
2
n(n − 1) positive quantities, then a necessary and

sufficient condition that the dij are the interpoint distances between points Pi, i = 1, . . . , n, in Rn is
that the distance matrix D = −{dij} is an almost positive matrix.

This is a special case of metric embedding, sometimes called metric multi-dimensional scaling,
in statistics; see, for example, Torgeson [16], Gower [17,18]. A more general result is:

Theorem 4. Let S be a separable metric with metric space with metric d(x, y), then S can be
isometrically embedded in l2 if and only if A(x, y) = −d(x, y) is an almost positive matrix.

It is a task to identify the functionsB(d(x, y)2), such that, when d(x, y) is a Euclidean or Hilbert space
metric, the space with the new metric can still be embedded into the Hilbert space. Schoenberg [10]
gives the following major result that such B(·) comprise the Bernstein function defined as follows (see
Theorem 12.14 in [11]):

Definition 1. A function B : (0,∞) 7→ R is a Bernstein function if it is C∞, f(λ) ≥ 0 for all λ > 0 and
the derivatives f (n) satisfy (−1)n−1f (n) ≥ 0 for all positive integers n and all λ > 0.

Note that this says that f ′ is a completely monotone function.

Theorem 5. (Schoenberg) The following are equivalent:
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(1) B(||x − y||2) (x, y ∈ H) is the square of a distance function, which isometrically embeds into
Hilbert space H , i.e., there exists a ϕ : H 7→ H , such that:

B(||x− y||2) = ||ϕ(x)− ϕ(y)||2 . (7)

(2) B is a Bernstein function.
(3) e−B(t) is the Laplace transform of an infinitely divisible distribution, i.e.,

B(t) = − log

∫ ∞

0

e−tu

u
dγ(u),

where γ is an infinitely divisible distribution.
(4) B has the Lévy-Khintchine representation:

B(t) = Bµ,b(t) = bt+

∫ ∞

0

(1− e−tu)dµ(u) (8)

for some b ≥ 0 and a measure µ, such that
∫∞
0
(1∧ t)dµ(t) <∞, with the condition that Bµ,b(t) >

0 for t > 0.

We now combine the above discussion with Schoenberg’s theorem.

Theorem 6. If B(·) is a Bernstein function with B(0) = 0 and d(z1, z2) is a Euclidean distance, then
ϕ(π) = −EZ1,Z2(B(d(Z1, Z2)

2)) is a learning function.

In the univariate case the negative of the variance of the distribution is a learning function since:

var(Z) =
1

2
EZ1,Z2(Z1 − Z2)

2.

When Z is multivariate, we again take independent copies Z1, Z2 of Z and use Euclidean distance, and
we have that minus the trace of the covariance matrix of Z, Γ, is a learning function:

1

2
EZ1,Z2(||Z1 − Z2||2) = trace(Γ).

Schilling et al. [11] (Chapter 15) list 138 Bernstein functions, each of which will lead to a learning
functional of the distance type. We give a small selection of Bernstein functions B(λ), which then,
applied with λ = d(z1, z2)

2, give a learning function:

λα, 0 < α < 1,

(1 + λ)α − 1, 0 < α < 1,

1− (1 + λ)α−1, 0 < α < 1,

λ

λ+ α
, α > 0.
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4. Counterexamples

We show first that it is not true that information always increases. That is, it is not true that the
posterior information is always more than the prior information:

Ig(θ) ≤ Eθ|X(g(π(θ|X))).

A simple discrete example runs as follows. I have lost my keys. With high prior probability, p, I think
they are on my desk. Suppose I have a uniform prior over all k likely other locations. However, suppose
when I look on the desk that my keys are not there. My posterior distribution is now uniform on the
other locations. Under certain conditions on p and k, Shannon information has gone down. For fixed p,
the condition is k > k∗ where:

k∗ =
(1− p)1−

1
p

p

= e ·
(
1

p
− 1

2
+O(p)

)
,

by expanding pk∗ in a Taylor expansion. When p = 1
2
, k∗ = 4 and pk∗ → e, 1 when p → 0, 1. This

example is captured by the somewhat self-doubting phrase “if my keys are not on my desk, I don’t
know where they are”. Note, however, that something has improved: the support size is reduced from
k + 1 to k.

There is a simple way of obtaining a large class of examples, namely to arrange that there are x-values
for which the posterior distribution is approximately uniform. Then, because the uniform distribution
typically has low information, for such x, we can have a decrease in information. Thus, we construct
examples in which f(x|θ)π(θ) happens to be approximately constant for some x. This motivates the
following example.

Let Θ×X = [0, 1]2 with joint distribution having support on [0, 1]2. Let π(θ) be the prior distribution
and define a sampling distribution:

f(x|θ) = a(θ)(1− x) +
x

π(θ)
.

Note that we include the prior distribution into the sampling distribution as a constructive device, not as
some strange new general principle. We have in mind, in giving this construction, that when x → 1, the
first term should approach zero and the second term, after multiplying by π(θ), should approach unity.
Solving for a(θ) by setting

∫ 1

0
f(x|θ)dx = 1, we have a(θ) = 2π(θ)−1

π(θ)
so that:

f(x|θ) = (2π(θ)− 1)(1− x) + x

π(θ)
.

The joint distribution is then:

f(x|θ)π(θ) = (2π(θ)− 1)(1− x) + x. (9)

The marginal distribution of X is fX(x) = 1 on [0, 1], since the integral of (9) is unity, so that (9) is
also the posterior distribution π(θ|x). Note that, in order for (9) to be a proper density, we require that
π(θ) ≥ 1

2
for 0 ≤ θ ≤ 1.
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The Shannon information of the prior is:

I0 =

∫ 1

0

π(θ) log π(θ)dθ,

and of the posterior is

I1 =

∫ 1

0

((2π(θ)− 1)(1− x) + x) log((2π(θ)− 1)(1− x) + x)dθ.

When x = 1
2
, the integrands of I1 and I0 are equal and I0 = I1. When x = 1, the integrand of I1 is

zero, as expected. Thus, for a non-uniform prior, we have less posterior information in a neighborhood
of x = 1, as we aimed to achieve.

Specializing π(θ) = 1
2
+ θ on [0, 1] gives:

I0 = 9
8
log 3− log 2− 1/2

I1 = 1
4(1−x)

((2− x)2 log(2− x)− x2 log(x) + 2x− 2)

Information I1 decreases from a maximum of log(2) − 1
2

at x = 0, through the value I0 at x = 1
2
, to

the value zero at x = 1; see also Figure 1. Thus, I0 > I1 for 1
2
< x ≤ 1. Since the marginal distribution

of X is uniform on [0, 1], we have the challenging fact that:

probX{I1 < I0} =
1

2
.

Namely, with prior probability equal to one half, there is less Shannon information in the posterior than
the prior. The Renyi entropy exhibits the same phenomenon, but we omit the calculations. We might say
that f(x|θ) is not a good choice sampling distribution to learn about θ.

Figure 1. Shannon information of the prior, I0, and of the posterior, I1, depending on x.
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4.1. Surprise and Ignorance

The conflict between prior beliefs and empirical data, demonstrated by these examples, lies at the
heart of debates about inference and learning, that is to say epistemology. This has given rise to formal
theories of surprise, which seek to take account of the conflict. Some Bayesian theories are closely
related to the learning theory discussed here and measure surprise quantities, such as the difference:

S(π, f) = Ig(θ)− Eθ|Xg(π(θ|X)).

Since, under the conditions of Theorem 1, S is expected to be negative, a positive value is taken to
measure surprise; see Itti and Baldi [19].

Taking a subjective view of these issues, we may stray into cognitive science, where there is evidence
that the human brain may react in a more focused way than normal when there is surprise. This is
related to wider computational models of learning: given the finite computational capacity of the brain,
we need to use our sensing resources carefully in situations of risk or utility. One such body of work
emanates from the so-called “cocktail party effect”: if the subject matter is of sufficient interest, such
as the mention of one’s own name across a crowded room, then one’s attention is directed towards the
conversation. Discussions about how the attention is first captured are closely related to surprise; see
Haykin and Chen [20].

4.2. Minimal Information Prior Distributions

It is clear that if the prior distribution has minimal information (maximum entropy), then there is no
surprise, because S, as defined above, is never positive. The use of such prior distributions has been
advocated for many years and is incorporated into objective Bayesian analysis by some researchers. One
key idea is to use Jeffrey’s prior distributions, that is those which are invariant under a suitable group
(Haar measure); for a discussion, see Berger [21].

An unresolved issue is that the minimal information distribution depends on the learning function.
A simple example is that for Shannon information, the minimal information distribution with support
on [0, 1] is the uniform distribution, whereas the maximum variance distribution has mass 1

2
at each of

{0, 1} and variance 1
4
, which is achievable for the Beta(α, β) distribution as α, β → 1. The variance of

the uniform distribution, on the other hand, is 1
12
< 1

4
.

Consider the standard beta-binomial Bayesian set-up, where the sampling distribution is Bin(n, θ) and
the (conjugate) prior is Beta(α, β). If x is the data, the posterior distribution is Beta(α + x, β + n− x),
and the posterior mean, which is the Bayes estimator with respect to quadratic loss, is θ̂ = α+x

α+β+n
. The

minimal Shannon information is achieved for the uniform distribution when α, β → 1, in which case we
have θ̂ = 1+x

2+n
. However, if we take α, β → 0, giving, as mentioned, the minimal information with respect

to the variance, we obtain in the limit the maximum likelihood estimator x
n

. The same feature arises with

the Dirichlet-multinomial case, with the Dirichlet prior distribution: π(θ1, . . . , θk) =
∏

θ
αi−1
i

Beta(α1,...,αk)
. The

minimal Shannon information is uniform when all αi = 1, but the minimal trace of the covariance matrix
is for mass 1

k
at each corner of the simplex

∑
θi = 1.
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5. The Role of Majorization

We concentrate here on Shannon-type learning functions. The analysis of the last section leads to the
notion that for two distributions π1(θ) and π2(θ), the second is more peaked than the first if and only if:∫

Θ

h(π1(θ))dθ ≤
∫
Θ

h(π2(θ))dθ for all convex h(u) = ug(u) on R+. (10)

The statement (10) defines a partial ordering between π1 and π2.
For Bayesian learning, we may hope that the ordering holds when π1 is the prior distribution and π2

is the posterior distribution. We have seen from the counterexamples that it does not hold in general,
but, loosely speaking, always holds in expectation, by Theorem 1. However, it is natural to try to
understand the partial ordering, and we shall now indicate that the ordering is equivalent to a well-known
majorization ordering for distributions.

Consider two discrete distributions with n-vectors of probabilities π1 = (π
(1)
1 , . . . , π

(1)
n ) and

π2 = (π
(2)
1 , . . . , π

(2)
n ), where

∑
i π

(1)
i =

∑
i π

(2)
i = 1. First, order the probabilities:

π̃
(1)
1 ≥ . . . ≥ π̃(1)

n , π̃
(2)
1 ≥ . . . ≥ π̃(2)

n .

Then, π2 is said to majorize π1, written π1 ⪯ π2, when:

j∑
i=1

π̃
(1)
i ≤

j∑
i=1

π̃
(2)
i

for j = 1, . . . , n (equality for j = n). The standard reference is Marshall and Olkin [22], where one can
find several equivalent conditions. Two of the best known are:

A1. there is a doubly stochastic matrix Pn×n, such that π1 = Pπ2;
A2.

∑n
i h(π

(1)
i ) ≤

∑n
i h(π

(2)
i ) for all continuous convex functions h(x).

Condition A2 shows that, in the discrete case, the partial ordering (10) is equivalent to the majorization
of the raw probabilities.

We now extend this to the continuous case. This generalization, which we shall also call ⪯, to save
notation, has a long history, and the area is historically referred to as the theory of the “rearrangements
of functions” to respect the terminology of Hardy et al. [23]. It is particularly well-suited to probability
density functions, because

∫
π1(θ)dθ =

∫
π2(θ)dθ = 1. The natural analogue of the ordered values in

the discrete case is that every density π has a unique density π̃, called a “decreasing rearrangement”,
obtained by a reordering of the probability mass to be non-increasing, by direct analogy with the discrete
case above. In the theory, π and π̃ are then referred to as being equimeasurable, in the sense that the
supports are transformed in a measure-preserving way.

There are short sections on the topic in Marshall and Olkin [22] and in Müller and Stoyan [24]. A key
paper in the development is Ryff [25]. The next paragraph is a brief summary.

Definition 2. Let π(z) be a probability density and define m(y) = µ{z : π(z) ≥ y}. Then:

π̃(t) = sup{y : m(y) > t}, t > 0

is called the decreasing rearrangement of π(z).
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The picture is that the probability mass (in infinitely small intervals) is moved, so that a given mass is
to the left of any smaller mass. For example, for the triangular distribution:

π(θ) =

4θ, 0 ≤ θ < 1
2

4(1− θ), 1
2
≤ θ ≤ 1

we have:
π̃(θ) = 2(1− θ), 0 ≤ θ ≤ 1.

Definition 3. We say that π2 majorizes π1, written π1 ⪯ π2, if and only if, for the decreasing
rearrangements, ∫ c

0

π̃1(z)dz ≤
∫ c

0

π̃2(z)dz

for all c > 0.

Define a doubly stochastic kernel P (x, y) ≥ 0 on (0,∞), that is:∫
x

P (x, y) =

∫
y

P (x, y) = 1.

There is a list of key equivalent conditions to ⪯, which are the continuous counterparts of the discrete
majorization conditions. The first two generalize A1 and A2 above.

B1. π1(θ) =
∫
Θ
P (θ, z)π2(z)dz for some non-negative doubly stochastic kernel P (x, y).

B2.
∫
Θ
h(π1(z))dz ≤

∫
Θ
h(π2(z))dz for all continuous convex functions h.

B3.
∫
Θ
(π1(z)− c)+dz ≤

∫
Θ
(π2(z)− c)+dz for all c > 0.

Condition B2 is the key, for it shows that in the univariate case, if we assume that h(u) = ug(u) is
continuous and convex, (10) is equivalent to π1(θ) ⪯ π2(θ). We also see that ⪯ is equivalent to standard
first order stochastic dominance of the decreasing rearrangements, since F̃ (θ) =

∫ θ

0
π̃(z)dz is the cdf

corresponding to π̃(θ). Condition B3 says that the probability mass under the density above a “slice” at
height c is more for π2 than for π1.

We can summarize this discussion by the following.

Proposition 1. A functional is a learning functional of the Shannon type (under mild conditions) if and
only if it is an order-preserving functional with respect to the majorization ordering on distributions.

The role of majorization has been noticed by DeGroot and Fienberg [26] in the related area of proper
scoring rules.

The classic theory of rearrangements is for univariate distributions, whereas, as stated, we are
interested in θ of arbitrary dimension. In the present paper, we will simply make the claim that the
interpretation of our partial ordering in terms of decreasing rearrangements can indeed be extended to
the multivariate case. Heuristically, this is done as follows. For a multivariate distribution, we may create
a univariate rearrangement by considering a decreasing threshold and “squashing” all of the multivariate
mass for which the density is above the threshold to a univariate mass adjacent to the origin. Since we are
transforming multivariate volume to area, care is needed with Jacobians. We can then use the univariate
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development above. It is an instructive exercise to consider the univariate decreasing rearrangement of
the multivariate normal distribution, but we omit the computations here.

6. Learning Based on Covariance Functions

If we restrict our functionals to those which are only functionals of covariance matrices, then
we can prove wider results than just for the trace. Dawid and Sebastiani [27] (Section 4) refer to
dispersion-coherent uncertainty functions and, where their results are close to ours, we differ only
by assumptions.

We use the notation A ≥ 0 to mean that a symmetric matrix is non-negative definite.

Definition 4. For two n × n symmetric non-negative definite matrices A and B, the Loewner ordering
A ≥ B holds when A−B ≥ 0.

Definition 5. A function ϕ : A 7→ R on the class of non-negative definite matrices A is said to be
Loewner increasing (also called matrix monotone) if A ≥ B ⇒ ϕ(A) ≥ ϕ(B).

Theorem 7. A function ϕ is Loewner increasing and concave on the class of covariance matrices Γ(π)
if and only if −ϕ is a learning function on the corresponding distributions.

Proof. Assume ϕ is Loewner increasing. To simplifying the notation, we call µ(π) and Γ(π) the mean
vector and covariance matrix, respectively, of the random variable Z with distribution π. Now, consider
a mixed density πα = (1− α)π1 + απ2. Then, with obvious notation,

Γ(πα) = Eα(ZZ
T )− µαµ

T
α

= (1− α)Γ1 + αΓ2 + (1− α)µ1µ
T
1 + αµ2µ

T
2 − ((1− α)µ1 + αµ2)((1− α)µ1 + αµ2)

T

= (1− α)Γ1 + αΓ2 + α(1− α)(µ1 − µ2)(µ1 − µ2)
T

≥ (1− α)Γ1 + αΓ2,

for 0 ≤ α ≤ 1, since (µ1 − µ2)(µ1 − µ2)
T is non-negative definite. Then, since ϕ is Loewner

increasing and concave, ϕ(Γ(πα)) ≥ ϕ ((1− α)Γ(π1) + αΓ(π2)) ≥ (1 − α)ϕ(Γ(π1)) + αϕ(Γ(π2)),
and by Theorem 2, −ϕ is a learning function.

We first prove the converse for matrices Γ and Γ̃ = Γ+zzT , for some vector z. Take two distributions
with equal covariance functions, but with means satisfying µ1 − µ2 = 2z. Then,

Γ(π 1
2
) = Γ +

1

4
(µ1 − µ2)(µ1 − µ2)

T

= Γ + zzT

= Γ̃.

Now assume −ϕ is a learning function. Then, by concavity,

ϕ(Γ̃) = ϕ(π 1
2
)

≥ 1

2
ϕ(Γ) +

1

2
ϕ(Γ)

= ϕ(Γ).
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In general, we can write any Γ̃ ≥ Γ as Γ̃ = Γ +
∑m

i=1 z
(i)z(i)T , for a sequence of vectors {z(i)},

i = 1, . . . ,m, and the result follows by induction from the last result.

Most criteria used in classical optimum design theory (in the linear regression setting) when applied to
covariance matrices are Loewner increasing. If, in addition, we can claim concavity, then by Theorem 7,
the negative of any such function is a learning function. We have seen in Section 3 that −trace(Γ) is a
learning function, while − log det(Γ) corresponding to D-optimality is another example.

For the normal distribution, we can show that for two normal density functions, π1 and π2, with
covariance Γ1 and Γ2, respectively, we have that for any Shannon-type learning function Ig(θ1) ≤ Ig(θ2)

if and only if det(Γ1) ≥ det(Γ2). We should note that in many Bayesian set-ups, such as regression and
Gaussian process prediction, we have a joint multivariate distribution between x and θ. Suppose that,
with obvious notation, the joint covariance matrix is:

Γθ,X =

(
Γθ γθ,X

γTθ,X ΓX

)
.

Then, the posterior distribution for θ has covariance Γθ − γθ,XΓ
−1
X γTθ,X ≤ Γθ. Thus, for any

Loewner increasing ϕ, it holds that −ϕ(π(θ)) ≤ −EX(ϕ(π(θ|X))), by Theorem 7. However, as
the conditional covariance matrix does not depend on X , we have learning in the strong sense;
−ϕ(π(θ)) ≤ −ϕ(π(θ|X)). Classifying learning functions for θ and Γθ,X in the case where they are
both unknown is not yet fully developed.

7. Approximate Bayesian Computation Designs

We now present a general method for performing optimum experimental design calculations, which,
combined with the theory of learning outlined above, may provide a comprehensive approach. Recall
that in our general setting, a decision about experimentation or observation is essentially a choice of the
sampling distribution. In the statistical theory of the design of experiments, this choice typically means
a choice of observation sites indexed by a control or independent variable z.

Indeed, we will have examples below in this category. However, the general formulation is that we
want to maximize ψ over some restricted set of sampling distributions f(x|θ) ∈ F . A choice of f we
call generalized design. Below, we will have one non-standard example based on selective sampling.
Note that we shall always assume that the prior distribution π(θ) is fixed, which is independent of the
choice of f . Then, recalling our general information functional as ϕ(π), the design optimization problem
is (for fixed π):

max
f∈F

ψ(f) = EXD
ϕ(π(θ|XD)), (11)

where we stress the dependence of the random variable X on the design and, thereby, on the sampling
distribution f , by adding the subscript D.

If the set of sampling distributions f is specified by the control variable z, that is the choice of the
sampling distribution f(x|θ, z) amounts to selecting z ∈ Z , then the maximization problem is:

max
z∈Z

ψ(f) = EXD
ϕ(π(θ|XD, z)).
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In the examples that we consider below, the sampling distribution will be indexed by a control variable z.
An important distinction should be made between what we shall here call linear and non-linear

criteria. By a more general utility problem being linear, we mean that there is a utility function U(θ, x),
such that, when we seek to minimize, again over choice f ,

EXD
Eθ|XD

U(XD, θ) = EXD,θU(XD, θ),

where the last expectation is with respect to the joint distribution of XD and θ. In terms of integration,
this only requires a single double integral. The non-linear case requires the evaluation of an “internal”
integral for Eθ|XD

U(XD, θ) and an external integral for EXD
. It is important to note that Shannon-type

functionals are special types of linear functionals where U(θ,XD) = g(π(θ|XD)). The distance-based
functionals are non-linear in that they require a repeated single integral.

This distinction is important when other costs or utilities are included in addition to those coming
from learning. Most obvious is a cost for the experiment. This could be fixed, so that no preposterior
analysis is required, or it might be random in that it depends on the actual observation. For example one
might add an additional utility U(XD) solely dependent of the outcome of the experiment: if it really
does snow, then snow plows may need to be deployed. The overall (preposterior) expected value of the
experiment might be:

EXD
Eθ|XD

U(XD, θ) + EXD
U(XD).

In this way, one can study the exploration-exploitation problem, often referred to in search
and optimization.

We now give a procedure to compute ψ for a particular choice of sampling distribution f ∈ F .
We assume that f(x|θ) and π(θ) are known. If the functional ϕ is non-linear, we have to obtain the
posterior distribution π(θ|XD) before evaluating ϕ. For simplicity, we use ABC rejection sampling (see
Marjoram et al. [28]) to obtain an approximate sample from π(θ|XD) that allows us to estimate the
functional ϕ(π(θ|XD)). In many cases, it is hard to find an analytical solution for π(θ|XD), especially
if f(x|θ) is intractable. These are the cases where ABC methods are most useful. Furthermore, ABC
rejection sampling has the advantage that it is easily possible to re-compute ϕ̂(π(θ|XD)) for different
values of XD, which is an important feature, because we have to integrate over the marginal distribution
of XD in order to obtain ψ(f) = EXD

ϕ(π(θ|XD)).
For a given f ∈ F , we find the estimate ψ̂ by integrating over ϕ̂(π(θ|XD)) with respect to the marginal

distribution fX . We can achieve this using Monte Carlo integration:

ψ(f) ≈ ψ̂ =
1

G

G∑
i=1

ϕ̂(π(θ|x(i)D ))

for x(i)D ∼ fX . The ABC procedure to obtain the estimate ϕ̂(π(θ|xD)) given xD is as follows.

(1) Sample from π(θ) : {θ1, . . . , θH}.
(2) For each θi, sample from f(x|θi) to obtain a sample: x(i) = (x

(i)
1 , . . . , x

(i)
n ). This gives a sample

from the joint distribution: fX,θ.
(3) For each θi, compute a vector of summary statistics: T (x(i)) = (T1(x

(i)), . . . , Tm(x
(i))).

(4) Split T -space into disjoint neighborhoods Nk.
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(5) Find the neighborhood Nk for which T (xD) ∈ Nk and collect the θi for which T (x(i)) ∈ Nk,
forming an approximate posterior distribution π̃(θ|T ), which if T is approximately sufficient,
should be close to π(θ|xD). If T is sufficient, we have that π̃(θ|T ) → π(θ|xD) as |Nk| → 0.

(6) Approximate π(θ|xD) by π̃(θ|T ).
(7) Evaluate ϕ(π(θ|xD)) by integration (internal integration).

Steps 1–4 need to be conducted only once at the outset for each f ∈ F ; only Steps 5–7 have to be
repeated for each xD ∼ fX .

For the linear functional, explained above, we do not even need to compute the posterior distribution,
π(θ|xD), if we are happy to use the naive approximation to the double integral:

ψ(f) ≈ 1

G

G∑
i=1

U(xi, θi),

where {xi, θi}Ni=1 are independent draws from the joint distribution f(x, θ) = f(x|θ)π(θ).
The optimum ψ(f) for f ∈ F may be found by employing any suitable optimization method. In this

paper, we intend to focus on the computation of ψ̂(f). Therefore, in the illustrative examples below, we
take a “crude” optimization approach, that is we estimate ψ(f) for a fixed set of possible choices for f
and compare the estimates.

The basic technique of ABCD was introduced in Hainy et al. [29], but here, we present it fully
embedded into statistical learning theory. Note that related different procedures utilizing MCMC chains
were independently developed in Drovandi and Pettitt [30] and Hainy et al. [31].

We now present two examples that are meant to illustrate the applicability of ABCD to very general
design problems using non-linear design criteria. Although these examples are rather simple and
may also be solved by analytical or numerical methods, their generalizations become intractable using
traditional methods.

7.1. Selective Sampling

When the background sampling distribution is f(x|θ), we may impose prior constraints of which data
we accept to use. Such models in greater generality may occur when observation is cheap, but the use
of observation is expensive, for example computationally. We can call this “selective sampling”, and we
present a simple example.

Suppose in a one-dimensional problem that we are only allowed to accept observations from two slits
of equal width at z1 and z2. Here, the model is equivalent (in the limit as the slit widths become small)
to replacing f(x|θ) by the discrete distribution:

f(x = i|θ, z1, z2) =
f(zi|θ)

f(z1|θ) + f(z2|θ)
, i = 1, 2.

If we have a prior distribution π(θ) and f(x|z1, z2) =
∫
f(x|θ, z1, z2)π(θ)dθ denotes the marginal

distribution of x, the posterior distribution is given by:

π(θ|x = i, z1, z2) =
f(x = i|θ, z1, z2)π(θ)

f(x = i|z1, z2)
, i = 1, 2.
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To simplify even further, we take as a criterion:

ϕ(π(θ|x, z1, z2)) = max
θ
π(θ|x, z1, z2).

The maximum is a limiting version of Tsallis entropy and is a learning functional.
Now consider a special case:

z|θ ∼ N (θ, 1),

θ ∼ U [−1, 1].

The preposterior:

ψ(z1, z2) =
2∑

i=1

ϕ(π(θ|x = i, z1, z2))f(x = i|z1, z2)

can be calculated explicitly. If z2 ≥ z1 and zi ∈ [−a, a], then:

max
z1,z2

ψ(z1, z2) = ψ(−a, a)

=
1

1 + exp(−2a)

=

1
2

a→ 0

1 a→ ∞
.

Next, we show how this example can be solved using ABCD. Due to the special structure of the sampling
distribution in this example, we modified our ABC sampling strategy slightly.

(1) For fixed z1 and z2, sample H numbers {θ(j), j = 1, . . . , H} from the prior.
(2) For each θ(j), repeat:

(a) sample z(k) ∼ π(z|θ(j)) until #
{
z(k) ∈ {Nϵ(z1), Nϵ(z2)}

}
= Kz,

where Nϵ(z) = [z − ϵ/2, z + ϵ/2];
(b) drop all z(k) /∈ {Nϵ(z1), Nϵ(z2)};
(c) sample x(j) from discrete distribution with probabilities

Pr(x(j) = i) =
#{z(k) ∈ Nϵ(zi)}

Kz

, i = 1, 2.

(3) For i = 1, 2, select all θ(j) for which x(j) = i, compute kernel density estimate for these θ(j) and
obtain maximum → ϕ̂(π̂(θ|x = i, z1, z2)).

(4) ψ̂(z1, z2) =
2∑

i=1

ϕ̂(π̂(θ|x = i, z1, z2))
#{x(j) = i}

H
.

We performed our ABC sampling strategy for this example for a range of parameters for the slit
neighborhood length ϵ (ϵ = 0.005, 0.01, 0.05), H (H = 100, 1,000, 10,000) and Kz (Kz = 50, 100, 200)
in order to assess the effect of these parameters on the accuracy of the ABC estimates of the criterion ψ.
The most notable effect was found for the ABC sample size H .

Figure 2 shows the estimated values of the criterion, ψ̂, for the special case where z2 = −z1
when a = 1.5. We set ϵ = 0.01, Kz = 100. The ABC sample size H is set to H = 100
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(left), H = 1, 000 (center), and H = 10, 000 (right). The criterion was evaluated at the eight points
(z1 = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5). The theoretical criterion function ψ(z1) is plotted as a
solid line.

Figure 2. Estimated values of the criterion ψ̂(z1) (points) and theoretical criterion function
ψ(z1) (solid line) for ϵ = 0.01, Kz = 100, and H = 100 (a), H = 1, 000 (b),
H = 10, 000 (c).
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7.2. Spatial Sampling for Prediction

This example is also a simple version of an important paradigm, namely optimal sampling of a
spatial stochastic process for good prediction. Here, the stochastic process labeled X is indexed by
a space variable z, and we write Xi = Xi(zi), i = 1, . . . , n to indicate sampling at sites (the design)
Dn = {z1, . . . , zn}. We would typically take the design space, Z , to be a compact region.

We wish to compute the predictive distribution at a new site zn+1, namely xn+1(zn+1), given
xD = x(Dn) = (x1(z1), . . . , xn(zn)). In the Gaussian case, the background parameter θ could be
related to a fixed effect (drift) or the covariance function of the process, or both. In the analysis, xn+1 is
regarded as an additional parameter, and we need its (marginal) conditional distribution.

The criterion of interest is the maximum variance of the (posterior) predictive distribution over the
design space:

−ϕ(x(Dn)) = max
zn+1∈Z

var(Xn+1(zn+1)|x(Dn))

= max
zn+1∈Z

∫
(xn+1 − µxn+1)

2π(xn+1|x(Dn), zn+1)dxn+1.

This functional is learnable, since it is is a maximum of a set of variances, each one of which is learnable.
Referring back to how the general design optimization problem that was stated in (11), the posterior

predictive distribution of xn+1 may be interpreted as the posterior distribution in (11). The optimality
criterion ψ is found by integrating ϕ with respect to X1, . . . , Xn.

The strategy is to select a design Dn and then perform ABC at each test point zn+1.
The learning functional ϕ(xD) is estimated by generating the sample I = {x(j)D , x

(j)
n+1}Hj=1 =

{x(j)1 , x
(j)
2 , . . . , x

(j)
n , x

(j)
n+1}Hj=1 at the sites {z1, z2, . . . , zn, zn+1} and calculating:

−ϕ̂(xD) = max
zn+1∈Z

1

|Jϵ(xD)|
∑

j∈Jϵ(xD)

(x
(j)
n+1 − x̄n+1)

2,
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where Jϵ(xD) = {j ∈ {1, . . . , H} : x
(j)
D ∈ Nϵ(xD)}, we have x(j)D ∈ Nϵ(xD) if |x(j)i − xi| ≤ ϵ ∀ i =

1, . . . , n, and x̄n+1 = (1/|Jϵ(xD)|)
∑

j∈Jϵ(xD) x
(j)
n+1.

In order to estimate ψ(Dn) = EXD
(ϕ(XD)), we obtain a sample O = {x(i)D }Gi=1 from the marginal

distribution of the random field at the design Dn and perform Monte Carlo integration:

ψ̂(Dn) =
1

G

G∑
i=1

ϕ̂(x
(i)
D ). (12)

For each x(i)D ∈ O from the marginal sample, we use the sample I to compute ϕ̂(x(i)D ) in order to save
computing time. We then vary the design using some optimization algorithm.

A simple example is adopted from Müller et al. [32]. The observations (x1(z1), x2(z2), x3(z3),

x4(z4)) are assumed to be distributed according to a one-dimensional Gaussian random field with mean
zero, a marginal variance of one and zi ∈ [0, 1]. We want to select an optimal design D3 = (z1, z2, z3),
such that:

−ψ(D3) = EX1:3(D3)

[
max
z4∈[0,1]

var (X4(z4)|X1:3(D3))

]
is minimal.

We assume the Ornstein–Uhlenbeck process with correlation function ρ(|s − t|; θ) = e−θ|s−t|. Two
prior distributions for the parameter θ are considered. The first one is a point prior at θ = log(100),
so that ρ(h) = ρ(h; log(100)) = 0.01h. This is the correlation function used by Müller et al. [32] in
their study of empirical kriging optimal designs. The second prior distribution is an exponential prior
for θ with scale parameter λ = 10 (i.e., θ ∼ Exp(10)). The scale parameter λ was chosen, such that
the average correlation functions of the point and exponential priors are similar. By that, we mean that
the average of the mean correlation function for the exponential prior over all pairs of sites s and t,
Es,t[Eθ{ρ(|s− t|; θ)|θ ∼ Exp(λ)}] = Es,t[1/(1 + λ|s− t|)], matches the average of the fixed correlation
function ρ(|s − t|; log(100)) = 0.01|s−t| over all pairs of sites s and t, Es,t[0.01

|s−t|]. The sites are
assumed to be uniformly distributed over the coordinate space.

To be more specific, first, for each site s ∈ X , the average correlation to all other sites t ∈ X is
computed. Then, these average correlations are averaged over all sites s ∈ X . For the point prior, the
average correlation is Es,t[ρ(|s− t|; log(100))] = 2

log(100)2
(log(100)− (1− 1

100
)) = 0.3409, and for the

exponential prior, the value is Es,t[Eθ{ρ(|s−t|; θ)|θ ∼ Exp(λ)}] = 2
λ2 [(1+λ) log(1+λ)−λ]. If λ = 10,

we have Es,t[Eθ{ρ(|s− t|; θ)|θ ∼ Exp(10)}] = 0.3275.
Figure 3 depicts the distributions of the correlation function ρ(h; θ) = exp(−θh) under the two prior

distributions. The solid line corresponds to the fixed correlation function ρ(h; θ = log(100)) = 0.01h.
The dotted line and the two dashed lines represent the mean correlation function and the 0.025- and
0.975-quantile functions for ρ(h; θ) under the prior θ ∼ Exp(10).

We estimated the criterion on a grid with spacing 0.05 for the design points z1 and z3 (z2 is
fixed at z2 = 0.5). We set G = 1, 000, H = 5 · 106 and ϵ = 0.01 for each design point. The sample
{x(j)(z) : z ∈ Z}Hj=1 is simulated at all points z of the grid prior to the actual ABC algorithm. In order
to accelerate the computations, it is then reused for all possible designs D3 to estimate each ϕ̂(x(i)D ),
i = 1, . . . , G, in (12). The sample size H = 5 · 106 was deemed to provide a sufficiently exhaustive
sample from the four-dimensional normal vector (x1(z1), x2(z2), x3(z3), x4(z4)) for any zi ∈ Z , so that
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the distortive effect of using the same sample for the computations of all ϕ̂(x(i)D ) is only of negligible
concern for our purposes of ranking the designs.

Figure 3. Prior distributions of correlation function ρ(h; θ): correlation function
ρ(h) = 0.01h under point prior θ = log(100) (solid line); mean correlation function (dotted
line) and 0.025- and 0.975-quantile functions (dashed lines) for ρ(h; θ) under the prior
θ ∼ Exp(10).
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Figure 4 (left) shows the map of estimated criterion values, −ψ̂(D3), when the prior distribution of
θ is the point prior at θ = log(100). It can be seen that the minimum of the criterion is attained at
about (z1, z3) = (0.9, 0.1) or (z1, z3) = (0.1, 0.9), which is comparable to the the results obtained in
Müller et al. [32] for empirical kriging optimal designs. Note that the diverging criterion values at
the diagonal and at z1 = 0.5 and z3 = 0.5 are attributable to a specific feature of the ABC method
used. At these designs, the actual dimension of the design is lower than three, so for a given ϵ, there
are more elements in the neighborhood than for the other designs with three distinctive design points.
Hence, a much larger fraction of the total sample, {x(j)n+1}Hj=1, is included in the ABC sample, {x(j)n+1 :

j ∈ Jϵ(yD)}. Therefore, the values of the criterion get closer to the marginal variance of one. In order to
avoid this effect, the parameter ϵ would have to be adapted in these cases. Alternatively, one could use
other variants of ABC rejection, where the fixed number of N elements of I = {x(j)D , x

(j)
n+1}Hj=1 with the

smallest distance to the draw x
(i)
D ∈ O are constituting the ABC posterior sample, making it necessary

to compute and sort out the distances for each x(i)D ∈ O.
Figure 4 (right) gives the estimated criterion values, −ψ̂(D3), when the prior of θ is θ ∼ Exp(10).

Due to the uncertainty of the prior parameter θ, the optimal design points for z1 and z3 slightly move to
the edges, which is also in accordance with the findings of Müller et al. [32].
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Figure 4. Spatial prediction criterion map for the point prior at θ = log(100) (left) and for
the exponential prior θ ∼ Exp(10) (right).
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8. Conclusions

There are some fundamental results in Bayesian learning which provide important background to
fields like the optimal design of experiments. Functionals of prior distributions which are learnable,
via observation, in a wide sense, are convex. Shannon information is an example but there are many
others and the paper points to some wide classes with connections to other fields. It combines the
theory of learning with an effective method for the optimal design of experiments based on simulation:
ABCD. It is suggested that the method should prove useful in non-standard situations, such as non-linear,
non-Gaussian models and for complex problems where the sampling distribution is intractable but one
can still draw samples from it, for given parameter values. A simple message is that the learning
theory and simulation method applies to a generalized notion of an experiment as a choice of sampling
distribution, under restrictions.
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