
Entropy 2014, 16, 4521-4565; doi:10.3390/e16084521 

 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Article 

Koszul Information Geometry and Souriau Geometric 
Temperature/Capacity of Lie Group Thermodynamics 

Frédéric Barbaresco 

Thales Air Systems, Advanced Radar Concepts Business Unit, Voie Pierre-Gilles de Gennes,  

Limours F-91470, France; E-Mail: frederic.barbaresco@thalesgroup.com; Tel.: +33-(0)630071419 

Received: 30 March 2014; in revised form: 11 June 2014 / Accepted: 23 June 2014/  

Published: 12 August 2014  

 

Abstract: The François Massieu 1869 idea to derive some mechanical and thermal 

properties of physical systems from “Characteristic Functions”, was developed by Gibbs 

and Duhem in thermodynamics with the concept of potentials, and introduced by 

Poincaré in probability. This paper deals with generalization of this Characteristic 

Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in 

Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF) on convex 

cones will be presented as cornerstone of “Information Geometry” theory, defining 

Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher 

Information Metrics as hessian of these dual functions, invariant by their automorphisms. 

In parallel, Souriau has extended the Characteristic Function in Statistical Physics 

looking for other kinds of invariances through co-adjoint action of a group on its 

momentum space, defining physical observables like energy, heat and momentum as pure 

geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed 

by a geometric parameter, the Geometric (Planck) Temperature, with values in the Lie 

algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, 

giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the 

opposite of the derivative of Mean “Moment map” by geometric temperature, equivalent 

to a Geometric Capacity or Specific Heat. We will synthetize the analogies between both 

Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan 

“Inner Product”. Interpreting Legendre transform as Fourier transform in (Min,+) 

algebra, we conclude with a definition of Entropy given by a relation mixing 

Fourier/Laplace transforms: Entropy = (minus) Fourier(Min,+) o Log o Laplace(+,X). 
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1. Introduction 

The Koszul-Vinberg Characteristic Function (KVCF) is a dense knot in important mathematical 

fields such as Hessian Geometry, Kählerian Geometry and Affine Differential Geometry. As essence 

of Information Geometry, this paper develops KVCF as a transverse concept in Thermodynamics, in 

Statistical Physics and in Probability. From general KVCF definition, the paper introduces Koszul 

Entropy as the Legendre transform of minus the logarithm of KVCF, and compares both functions by 

analogy with the Dual Massieu-Duhem potentials in thermodynamics. This paper will also explore 

close inter-relations between these domains through geometric tools developed by Jean-Louis Koszul 

and Jean-Marie Souriau. The cornerstone of “Information Geometry” Theory will appear to be based 

on the fundamental property that derivatives of the Koszul-Vinberg Characteristic Function Logarithm 

(KVCFL) 



 

*

,log)(log   dex x
, defined on convex dual cone of W , are invariant by the 

automorphisms of W , and that its hessian defines a non-arbitrary Riemannian metric. 

In thermodynamics, François Massieu [1–3] was the first to introduce the concept of characteristic 
function  . This characteristic function or thermodynamic potential is able to provide all the body 

properties from their derivatives. In thermodynamics, Entropy S is one of the Massieu-Duhem 

potentials [4–8], derived from the Legendre-Moreau transform of the characteristic function logarithm 

 : 





 .S  with 
kT

1
  being the thermodynamic temperature. The most popular notion of 

“characteristic function” was introduced in a second step by Henri Poincaré in his lecture on 

probability [9,10], using the property that all moments of statistical laws could be deduced from its 

derivatives. Paul Levy then made systematic use of this concept in his 1925 book. We assume that 

Poincaré was influenced by his school fellow at Ecole des Mines de Paris, François Massieu, and his 

work on thermodynamic potentials (generalized by Pierre Duhem in an Energetic Theory). This 

assertion is corroborated by the observation that Poincaré added in his lecture on thermodynamics in 

the 2nd edition [9,10] in 1892, a chapter on the “Massieu characteristic function” with many 

developments and applications, before developing the concept in Probability [9,10], see Figure 1. 

In Thermodynamics, Statistical Physics and Probability, we can observe that the “characteristic 

function” and its derivatives capture all information of system or physical model and random variable. 

Furthermore, the general notion of Entropy could be naturally defined by the Legendre Transform of 

minus the Koszul characteristic function logarithm. In the general case, Legendre transform of minus 

the logarithm of the KVCF will be designated in the following as “Koszul Entropy”. 
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Figure 1. Text of Poincaré Lecture on Thermodynamic with development of the concept of 

“Massieu Characteristic Function”. 

[M. Massieu showed that, if we make choice for 

independent variables of v and T or of p and T, there is a 

function, moreover unknown, of which three functions of 

variables, p, U and S in the first case, v, U and S in the 

second, can be deducted easily. M. Massieu gave to this 

function, the form of which depends on the choice of 

variables, name of characteristic function.] 

[Because functions of M. Massieu, we can deduct the 

other functions of variables, all the equations of the 

Thermodynamics can be written not so as to contain more 

than these functions and their derivatives; it will thus result 

from it, in certain cases, a large simplification. We shall see 

soon an important application of these functions.] 

This general notion of “characteristic function” has been generalized by the French physicist  

Jean-Marie Souriau. In 1970, Souriau, that had followed the Elie Cartan Lecture at ENS Ulm in 1946 

(one year after his aggregation), introduced the concept of co-adjoint action of a group on its 

momentum space (or “moment map”: mapping induced by symplectic manifold symmetries), based on 

the orbit method works, that allows to define physical observables like energy, heat and momentum as 

pure geometrical objects (the moment map takes its values in a space attached to the group of 

symmetries in the dual space of its Lie algebra). The moment map is a constant of the motion and is 

associated to symplectic cohomology (assignment of algebraic invariants to a topological space that 

arises from the algebraic dualization of the homology construction). For Souriau, equilibrium states are 
indexed by a geometric parameter   with values in the Lie algebra of the dynamical group (Galileo or 

Poincaré group). The Souriau approach generalizes the Gibbs equilibrium states,   playing the role of 

temperature. The invariance with respect to the group, and the fact that the entropy S is a convex 
function of  , imposes very strict conditions, that allow Souriau to interpret   as a space-time vector 

(the vector-valued temperature of Planck), giving to the metric tensor a null Lie derivative. For 

Souriau, all the details of classical mechanics appear as geometric necessities (e.g., mass is the 

measure of the symplectic cohomology of the action of a Galileo group). We will synthetize the 

analogies between the Koszul and Souriau models in tables (the Information Geometry case being a 

particular case of Koszul Hessian geometry). 

The Koszul-Vinberg characteristic function is a dense knot in mathematics and could be introduced 

in the framework of different geometries: Hessian Geometry (Jean-Louis Koszul’s work), 

Homogeneous convex cones geometry (Ernest Vinberg’s work [11]), Homogeneous Symmetric 

Bounded Domains Geometry [12,13] (Elie Cartan [14] and Carl Ludwig Siegel’s works [15,16]), 

Symplectic Geometry [17,18] (Thomas von Friedrich [19] & Jean-Marie Souriau’s work), Affine 

Geometry (Takeshi Sasaki and Eugenio Calabi’s works) and Information Geometry (Calyampudi Rao 

and Nikolai Chentsov’ works). Through Legendre duality, Contact Geometry (Vladimir Arnold’s 

work) is considered as the odd-dimensional twin of symplectic geometry and could be used to 

understand Legendre mapping in Information Geometry. Fisher metrics of Information Geometry 
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could be introduced as hessian metrics from minus Koszul-Vinberg characteristic function logarithm 

or from Koszul Entropy (Legendre transform of minus Koszul-Vinberg characteristic function 

logarithm). In a more general context, we can consider Information Geometry in the framework of 

“Geometric Science of Information”, a new “corpus” that also covers probability in metric space 

(Maurice Fréchet’s work), probability/geometry on structures (Yann Ollivier and Misha Gromov’s 

works [20–23]) and probability on Riemannian manifold (Michel Emery and Marc Arnaudon’s works). 

This link between “Information Theory” and “Geometry” is also deeply developed and influenced by 

fundamental works of Yann Ollivier [24,25] (initially described in his HDR report “Randomness and 

Curvature” in 2009 and more recent papers on IGO flow). 

2. Legendre Duality and Projective Duality 

In following chapters, we will see that the minus Logarithm of the Characteristic Function and Entropy 

will be related by the Legendre transform, that can be considered in the context of projective duality. 

Duality is an old and very fruitful idea in mathematics that has been constantly generalized [26–38]. A 

duality translates concepts, theorems or mathematical structures into other concepts, theorems or 

structures, in a one-to-one fashion, often by means of an involution operation and sometimes with 

fixed points. 

The simplest duality is linear duality in the plane with points and lines (two different points can be 

joined by a unique line. Two different lines meet in one point unless they are parallel). By adding some 

points at infinity (to avoid particular case of parallel lines) then we obtain the projective plane in which 

the duality is given symmetrical relationship between points and lines, and led to the classical principle 

of projective duality, where the dual theorem is also a theorem. 

Most Famous example is given by Pascal’s theorem (the Hexagrammum Mysticum Theorem) 

stating that: 

• If the vertices of a simple hexagon are points of a point conic, then its diagonal points are 

collinear: If an arbitrary six points are chosen on a conic (i.e., ellipse, parabola or hyperbola) 

and joined by line segments in any order to form a hexagon, then the three pairs of opposite 

sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, 

called the Pascal line of the hexagon. 

The dual of Pascal’s Theorem is known as Brianchon’s Theorem, as illustrated in Figure 2: 

Figure 2. (a) Pascal’s theorem, (b) Brianchon’s theorem. 

(a) (b) 
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• If the sides of a simple hexagon are lines of a line conic, then the diagonal lines are concurrent. 

The Legendre(-Moreau) transform [39,40] is an operation from convex functions on a vector space 

to functions on the dual space. The Legendre transform is related to projective duality and tangential 

coordinates in algebraic geometry, and to the construction of dual Banach spaces in analysis. Classical 
Legendre transform in Euclidean space is given by fixing a scalar product .,. on Rn. For a function 

{ }: nF R R È ¥ , let: 

{ }( ) ( ) , ( )
x

G y LF y Sup y x F x= = -  (1)

The Legendre transform is illustrated in Figure 3. 

This is an involution on the class of convex lower semi-continuous functions on Rn. There are two 

dual possibilities to describe a function. We can either use a function, or we may regard the curve as 

the envelope of its tangent planes. We give in Appendix A1 the historical context of Legendre 

Transform introduction on a Minimal Surface problem considered initially by Gaspard Monge. 

Figure 3. Legendre Transform G(y) of F(x). 

 

The Legendre Transform is very important in Information Geometry [39], which uses mutually dual 

(conjugate) affine connections, dual potentials in dual coordinates systems and dual metrics that are 

studied in the framework of Hessian or affine differential geometry. 

To illustrate the role of Legendre transform in Information Geometry, we provide a canonical 
example, with the relations for the Multivariate Normal Gaussian Law ( ),N m R : 

- Dual Coordinates systems: 

( )( )
( ) ( )

11, ) 2

, T

Θ ( R m, R

H H m, R mm

q

h

--ìï = Q =ïïíïï = = - +ïî




 (2)

- Dual potential functions: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

2 2 log det 2 log 2

2 log 1 2 log det 2 log 2

T

T

Ψ Θ Tr Θ θθ Θ n ( πe)

Φ H η H η ( H) n πe

- - - -

- - - -

ìï = - +ïïíï =- + - - -ïïî



 
 (3)
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related by Legendre transform: 

( ) ( )Φ H Θ,H Ψ Θ= -      with ( )T TΘ,H Tr θη ΘH= +   (4)

where dual coordinate systems are given by derivatives of dual potential functions: 
ΦΨ θη
ηθ   and  

Ψ ΦH Θ
Θ H

ìì ï¶ï¶ ïï == ïï ïï ¶¶ï ïí íï ï¶ ¶ï ï=ï ï =ï ï¶ï ïî ¶î



 
 

(5)

with    pEHΦ log
~~   being the Entropy. 

In the theory of Information Geometry introduced by Rao and Chentsov, a Riemannian manifold is 

then defined by a metric tensor given by hessian of these dual potential functions: 

2

ij
i j

Ψ
g

Θ Θ

¶
=

¶ ¶


   and 

2
*
ij

i j

Φ
g

H H

¶
=

¶ ¶


   (6)

In this paper, we will develop the concept of “Hessian Manifolds” theory that was initially studied 

by Koszul in a more general framework. In the next section, we will expose the theory of the  

Koszul-Vinberg characteristic function on convex sharp cones that will be presented as a general 

framework of Information Geometry. 

3. Koszul Characteristic Function/Entropy by Legendre Duality 

We define the Koszul-Vinberg Hessian metric on a convex sharp cone, and observe that the Fisher 

information metric of Information Geometry coincides with the canonical Koszul Hessian metric 

(given by Koszul forms) [41–47]. We also observe, by Legendre duality (Legendre transform of minus 

Koszul characteristic function logarithm), that we are able to introduce a Koszul Entropy, that plays the 

role of the generalized Shannon Entropy. 

3.1. Koszul-Vinberg Characteristic Function and Metric for Convex Sharp Cone 

Jean-Louis Koszul [41,42,47] and Ernest B. Vinberg [48,49] have introduced an affinely invariant 
hessian metric on a sharp convex cone *W  through its characteristic function  . In the following, *W  
is a sharp open convex cone in a vector space E  of finite dimension on R  (a convex cone is sharp if it 
does not contain any full straight line). In dual space *E  of E , *W  is the set of linear strictly positive 
forms on { }0W- . *W  is the dual cone of W  and is a sharp open convex cone. If *x ÎW , then the 

intersection { }/ , 1x E x xW Î =  is bounded. ( )G Aut= W  is the group of linear transform of E  that 

preserves W . ( )G Aut= W  operates on *W  by ( ) *,g G Aut Ex" Î = W " Î  then 1.g gx x -=  . 

Koszul-Vinberg Characteristic Function Definition: 

Let dx  be the Lebesgue measure on *E , the following integral:  

 



 xdex x    )(

*

,  
 (7)
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with *W  the dual cone is an analytic function on W  , with   ,0)(x ,called the Koszul-Vinberg 

characteristic function of cone W . 

The Koszul-Vinberg Characteristic Function has the following properties: 
• The Bergman kernel of 1 niR  is written as ))(Re(zK  up to a constant where KW  is defined 

by the integral: 

 







 
*

*

1,)(  dexK x  
(8)

•   is analytic function defined on the interior of W  and  )(x  as x¶W  

If   Autg  then   )(det
1

xggx 


    and since   AutGtI  for any 0t , we have  

  ntxtx /)(   (9)

•   is logarithmically strictly convex, and  )(log)( xx     is strictly convex. 

From the KVCF, could be introduced two forms defined by Koszul: 

Koszul 1-form α: The differential 1-form 

   /log ddd  (10)

is invariant by all automorphisms   AutG  of W . If  and Eu  then 





*

,.,,   deuu x
x  and *x  (11)

and: 

Koszul 2-form β: The symmetric differential 2-form: 

  log2dD  (12)

is a positive definite symmetric bilinear form on invariant under ( )G Aut= W . 0D  

This positivity is given by Schwarz inequality and: 

  



 

*

,2 ,,,log   devuvud u
 (13)

We can then introduce the Koszul metric based on previous definitions: 

Koszul Metric: D  defines a Riemanian structure invariant by  Aut , and then the Riemanian 

metric is given by  log2dg  

 









,)(   and   )(with   

0 )().()(.)(
)(

1
)()(log

,
2

1
,

2

1

2

22

2

2

***

ueGeF

dGFdGdF
u

uxd

xx 






























 

 (14)

E
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This result is obtained using Schwarz inequality, 

 d

d log  and 

22
2 log 














 dd

d  

where   



*

,)()( ,   dueuxd x  and   



*

2,2 ,)()(   dueuxd x  

A diffeomorphism is used to define dual coordinate: 

)(log* xdx x    (15)

with 
0

( ), ( ) ( )u
t

d
df x u D f x f x tu

dt =

= = + . When the cone W  is symmetric, the map xxx *  

is a bijection and an isometry with one unique fixed point (the manifold is a Riemannian Symmetric 

Space given by this isometry): 

xx **)(  , nxx *,  and cstexx 
 )()( *

*  (16)

*x  is characterized by  nyxyyx  ,,/)(minarg **   and *x  is the center of gravity of the 

cross section  nyxy  ,,*  of * : 

















 
****

,,*,,* /,)(log,   and   /.   dedehxdhxdedex xx
h

xx  (17)

If we set )(log)( xx   , Misha Gromov [20,21] has observed that )(* xdx   is an injection 

where the closure of the image equals the convex hull of the support and the volume of this hull is the 

the n-dimensional volume defined by the integral of the determinant of the hessian of this function 
( )xF , where the map     



 dxxHessM .)(det  obeys non-trivial convexity relation given by 

the Brunn-Minkowsky inequality          nnn MMM /1
2

/1
1

/1
21  . 

3.2. Koszul Entropy and Its Barycenter 

From this last equation, we can deduce the “Koszul Entropy” defined as the Legendre Transform of 

( )xF  minus logarithm of Koszul-Vinberg characteristic function: 

* * *( ) , ( )x x x xF = -F  with *
xx D= F  and *

*

x
x D= F   

where )(log)( xx    
(18)

( ) ( ) { }1 1* * * * * *( ) ( ), ( )    ( ) /x x xx D x x D x x D x x
- -é ùF = F -F F " Î F ÎWê úë û

 (19)

By the definition of the Koszul-Vinberg Characteristic function, and by using xex ,log,   , we 

can write: 









**

,,,* /.log,   dedeexx xxx
 (20)

and: 
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* * *

* * * *

* *

*

, , , ,* * *

, , , , ,* *

,
, ,* *

,

( ) , ( ) log . / log

( ) .log log . /

( ) log log .

x x x x

x x x x x

x
x x

x

x x x x e e d e d e d

x e d e d e e d e d

e
x e d e d

e d

x x x x

x x x x x

x
x x

x

x x x

x x x x

x x
x

- - - -

W W W

- - - - -

W W W W

-
- -

-
W W

W

F = -F =- +

é ùæ ö÷çê ú÷çF = -÷ê úç ÷ç ÷çê úè øë û
é

F = -

ë

ò ò ò

ò ò ò ò

ò ò
ò

* * * *

* * *

* *

, , ,
, ,* *

, , ,

, ,
* *

, ,

( ) log . log .   with  1

( ) .log

x x x
x x

x x x

x x

x x

e e e
x e d d e d d

e d e d e d

e e
x

e d e d

x x x
x x

x x x

x x

x x

x x x x
x x x

x x

- - -
- -

- - -
W W W W

W W W

- -

- -

W W

ù
ê ú
ê ú
ê ú
ê ú
ê úê úû
é ùæ ö÷çê ú÷ç ÷ê úç ÷ç ÷F = - =ê úç ÷ç ÷ê úç ÷÷çê ú÷çè øê úë û

æçç
F = -

è

ò ò ò ò
ò ò ò

ò ò*

dx
W

é ùö÷ê ú÷÷ê úç ÷ç ÷ê úç ÷ç ÷ê úç ÷÷çê ú÷ç øê úë û

ò

(21)

In this last equation,  
*Ω

ξ,xξ,x
x dξeep /)(  appears as a density, and the Legendre transform 

()*  looks like the classical Shannon Entropy, named in the following Koszul Entropy: 

 dpp xx



*

)(log)(*  
(22)

with: 

Φ(x)x,ξ
dξex,ξ

Ω

ξ,xξ,x
x eedξeep *Ω

ξ,x

*




 



log

/)(  and 



*

)(.*  dpx x  (23)

We will call 
 





*Ω

ξ,x

ξ,x

x
dξe

e
p )(  the Koszul Density, with the property that: 

Φ(x)x,ξdξex,ξp
*Ω

ξ,x
x  log)(log   (24)

and: 

  Φ(x)x,xpE x  *)(log   (25)

We can observe that: 

 

1

log)(loglog)(

*

*

*

*

*

*

*

)(

)()()(,

































de

dexdedex xx

 (26)

But the development is not achieved and we have to make appear *x  in )( ** x . For this objective, 

we have to write: 
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The last equality is true if and only if we have the following relation: 
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This condition could be written more synthetically [50,51]: 

     ***   ,  )(   EE  (29)

The meaning of this relation is that “the Barycenter of Koszul Entropy is the Koszul Entropy  

of Barycenter”. 

This condition is achieved for  xDx*  taking into account Legendre Transform property: 
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 (30)

3.3. Relation of Koszul Density with the Maximum Entropy Principle 

We will observe in this section that Koszul density is a solution of the Maximum Entropy. 

Classically, the density given by the Maximum Entropy Principle [52–58] is given by: 
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If we take 
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Then by using the fact that  11log  xx  with equality if and only if 1x , we find the following: 
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We can then observe that: 
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because
* *

( ) ( ) 1x xp d q dx x x x
W W

= =ò ò  

We can then deduce that: 
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If we develop the last inequality, using expression of )(xq : 
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We have then observed that Koszul Entropy provides density of Maximum Entropy: 
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where: 
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


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We can then deduce the Maximum Entropy solution without solving the classical variational 

problem with Lagrangian hyperparameters, but only by inversing function 
( )

( )
d x

x
dx

x
F

=Q = . This 

remark was made by Jean-Souriau in the paper [59]. If we take vector with tensor components 












zz

z
 , components of   will provide moments of 1st and 2nd order of the density of  

probability )(p , that is defined by Gaussian law. In this particular case, we can write: 
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with na RÎ  and )(nSymH  . By the change of variables given by 1/2 1/2'z H z H a-= + , we can 

then compute the logarithm of the Koszul characteristic function: 

( )1 11
( ) log det log 2

2
Tx a H a H n p- -é ùé ùF =- + +ê úê úë ûë û  

(43)

We can prove that the 1st moment is equal to aH 1  and that components of variance tensor are 

equal to elements of matrix 1H  , that induces the second moment. The Koszul Entropy, defined as the 

Legendre transform of the Koszul characteristic function, is then given by: 

    enH .2logdetlog
2

1
)( 1*     (44)

3.4. Crouzeix Relation on Hessian of Dual Potentials and Its Consequences 

In previous sections, we have used the duality between dual potential functions that is recovered by 

this relation: 

*** ,)()( xxxx   with 
dx

d
x


*  and 
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dx

d
x


  where )(log)( xx    (45)

If we develop relations, we can deduce that the hessian of one potential function is the inverse of the 

hessian of the dual potential function, then the Information Geometry metric could be given in two systems 

of dual coordinates: 
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 (46)

Gromov [22] observed that the hessian of the entropy *F  on the space of probability measure is positive 

definite by the Shannon inequality and defines a (non-complete) Riemannian metric, and that this metric is 

called the Fisher-Rao-Kramer, Antonelli-Strobeck, Svirezhev-Shahshahani, Karquist metric. 

The relation 
1

2*

*2

2

2 








 




dx

d

dx

d  has been established first by Crouzeix in 1977 in a short 

communication [60] for convex smooth functions and their Legendre transforms. This result has been 

extended for non-smooth function by Seeger [61] and Hiriart-Urruty [62], using a polarity relationship 

between the second-order sub-differentials. This relation was mentioned in texts of calculus of 

variations and theory of elastic materials (with work potentials) [62]. 

This last relation has also been used in the framework of the Monge-Ampere measure associated to 

a convex function, to prove equality with Lebesgue measure λ: 
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That is proved using the Crouzeix relation ( ) 12 2 * 2 *( ) ( ) ( )x y y
-é ù F = F F =  Fê úë û : 

 

  
 

    
















(x)/x.1)(det.)(det )(

.)(det )()(

)(

*2

)(

*2

2

1*





dydyyym

dxxdxxm

A

 (48)

3.5. Fisher Information Geometry Metric as a Particular Case of Koszul Metric 

To make the link with the classical Fisher metric given by Fisher Information matrix )(xI  in 

Information Geometry, we can observe that the second derivative of log ( )xp x  is given by: 
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We could then deduce the close interrelation between Fisher metric and hessian of minus  

Koszul-Vinberg characteristic logarithm, that are totally equivalent. Information Geometry then 

appears as a particular case of Koszul Hessian Geometry. 

We can also observed that the Fisher metric or hessian of KVCF logarithm is related to the  
variance of  : 
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The Inverse of the Fisher/Information Matrix ( )I x  defines the lower bound of statistical estimators. 

Classically, this Lower bound is called Cramer-Rao Bound because it was described in the Rao’s paper 

of 1945 [63]. Historically, this bound has been published first by Maurice Fréchet in 1939 in his winter 

“Mathematical Statistics” Lecture at the Institut Henri Poincaré during winter 1939–1940. Maurice 

Fréchet has published these elements in a paper as early as 1943 [64]. We can read at the bottom of the 

first page of his paper [64]: 

“Le contenu de ce mémoire a formé une partie de notre cours de statistique mathématique 
a l’Institut Henri Poincaré pendant l'hiver 1939–1940. Il constitue l’un des chapitres du 
deuxième cahier (en préparation) de nos «Leçons de Statistique Mathématique», dont le 
premier cahier, «Introduction: Exposé préliminaire de Calcul des Probabilités” (119 
pages in-quarto, dactylographiées) vient de paraitre au «Centre de Documentation 
Universitaire, Tournois et Constans. Paris».” 

[The contents of this report formed a part of our lecture of mathematical statistics at the 
Henri Poincaré institute during winter 1939–1940. It constitutes one of the chapters of the 
second exercise book (in preparation) of our “Lessons of Mathematical Statistics”, the 
first exercise book of which, “Introduction: preliminary Presentation of Probability 
theory” (119 pages quarto, typed) has just been published in the “Centre de 
Documentation Universitaire, Tournois et Constans. Paris”.] 

3.6. Extended Results by Koszul, Vey and Sasaki 

Koszul [41,65] and Vey [66,67] have developed extended results with the following theorem for 

connected hessian manifolds: 

Koszul-Vey Theorem: Let M  be a connected hessian manifold with hessian metric g . Suppose that M 

admits a closed 1-form   such that gD   and there exists a group G  of affine automorphisms of 

M  preserving  : 

• If GM /  is quasi-compact, then the universal covering manifold of M is affinely isomorphic to a 

convex domain W  of an affine space not containing any full straight line. 

• If GM /  is compact, then W  is a sharp convex cone. 

On this basis, Koszul has given a Lie Group construction of a homogeneous cone that has been 

developed and applied in Information Geometry by Shima [68,69] and Boyom [70] in the framework 

of Hessian Geometry. 
After the pioneering work of Koszul, Sasaki has developed the study of hessian manifolds in Affine 

Geometry [71,72]. He has denoted by cS  the level surface of  :  cxSc   )( which is a  

non-compact sub-manifold in W , and by c  the induced metric of log2d  on cS , then assuming 

that the cone W  is homogeneous under )(G , he proved that 
cS  is a homogeneous hyperbolic affine 

hypersphere and every such hyperspheres can be obtained in this way .Sasaki also remarks that 
c  is 

identified with the affine metric and cS  is a global Riemannian symmetric space when W  is a self-dual 

cone. He concludes that, let W  be a regular convex cone and let  log2dg  be the canonical 
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Hessian metric, then each level surface of the characteristic function   is a minimal surface of the 
Riemannian manifold ),( g . 

3.7. Geodesics Equation for the Koszul Hessian Metric 

The last contribution has been given by Rothaus [73] who studied the construction of geodesics for 

this hessian metric geometry, using the following property: 
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or expressed also according the Christoffel symbol of the first kind: 
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Then geodesic is given by: 
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that could be developed with previous relation: 
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We can then observe that: 
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The geodesic equation can then be rewritten: 
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That we can put in vector form using notations  log* dx  and Fisher matrix  log)( 2dxI : 
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3.8. Koszul Metric for Siegel Homogeneous Domains 

Koszul [42] has developed his previously described theory for Homogenous Siegel Domains SD. 

He has proved that there is a subgroup G in the group of the complex affine automorphisms of these 

domains (Iwasawa subgroup), such that G acts on SD simply transitively. The Lie algebra g  of G has 

a structure that is an algebraic translation of the Kähler structure of SD. There is an integrable almost 
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complex structure J on, g and there exists *g  such that  


,,, YJXYX   defines a J-invariant 

positive definite inner product on g . Koszul has proposed as admissible form *g , the form  : 

     gXXadJJXadTrXX      )(.,  (63)

Koszul has proved that 


YX ,  coincides, up to a positive number multiple with the real part of the 

Hermitian inner product obtained by the Bergman metric of SD by identifying g  with the tangent 

space of SD. The First Koszul form is then given by: 

 Xd
4

1  (64)

We can illustrate this new Koszul expression for Poincaré’s Upper Half Plane 
{ } / 0V z x iy y= = + >  (most simple symmetric homogeneous bounded domain). 

Define vector fields 
d

X y
dx

=  and 
d

Y y
dy

= , and J an almost complex structure on V defined by 

YJX   

As: 

  YYX ,  and    ZYZYad ,.   then 
    
    






0

2

YJadJYadTr

XJadJXadTr
 (65)

The Koszul 1-form and then the Koszul/Poincaré metric is given by: 

 
2

22
2

2 22

1

4

1
2

y

dydx
ds

y

dydx
d

y

dx
X





   (66)

This could be also applied for Siegel’s Upper Half Space { }0V Z X iY  /  X,Y Sym(p), Y= = + Î >  

(more natural extension of Poincaré Upper-half plane, and general notion of symmetric bounded 

homogeneous domains studied by Elie Cartan and Carl-Ludwig Siegel): 

( ) 1 0
   with      and   

0 0,

-

T T T

SZ AZ B D A B I
S J

D IA D I B D D B

ìï æ ö æ ö= +ï ÷ ÷ç ç÷ ÷= =í ç ç÷ ÷ç ç÷ ÷ç çï -è ø è ø= =ïî
 (67)

( ) ( )
( )

( ) ( )

1 1

1

2 1 1

1 3 1

3 1 4 8
3 12

8

p
d Tr Y dZ Y dZ

p
dX idY Tr Y dX

p
ds Tr Y dZY dZ

a - -

-

- -

ì +ïï =- Y = ïï+ ïY + = íï +ï =ïïïî

 (68)

To recover the metric of the space of Symmetric Positive Definite (HPD) matrices, we take 

 (with 0)Z iR X= = , and obtain the metric ( )22 1ds Tr R dR-é ù= ê úë û
. In the context of Information Geometry, 

this metric is the metric for multivariate Gaussian law of covariance matrix R and zero mean. For more 

development and application for Radar signal processing, we give reference to author papers [74–77]. 

4. Souriau Geometric Temperature and Covariant Definition of Thermodynamic Equilibriums 

Souriau, a student of Elie Cartan [78] at ENS Ulm in 1946, has given in [59,79–87] a covariant 

definition of thermodynamic equilibriums and has formulated statistical mechanics [88–90] and 
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thermodynamics in the framework of Symplectic Geometry [59] by use of symplectic moments and 

distribution-tensor concepts, giving a geometric status for temperature, heat and entropy. This work has 

been extended by Vallée and de Saxcé [91–94], Iglésias [95,96] and Dubois [97]. Other recent works 

address equilibrium states on manifolds of negative curvature and could be analyzed in the framework 

of Information Geometry [98–103]. 

Other directions related to polarized surface have been developed by Donaldson, Guillemin and 

Abreu, in which invariant Kähler metrics correspond to convex functions on the moment polytope of a 

toric variety [104–108] based on precursor work of Atiyah and Bott [109] on moment map and its 

convexity by Bruguières [110], Condevaux [111], Delzant [112], Guillemin and Sternberg [113] and 

Kirwan [114]. More recently, Mikhail Kapranov has also given a thermodynamical interpretation of 

the moment map for toric varieties [115]. Readers may consult the tutorial paper of Biquard [116]. 

The first general definition of the “moment map” (constant of the motion for dynamical systems) 

was introduced by Souriau during 1970s, with geometric generalization of such earlier notions as the 

Hamiltonian and the invariant theorem of Noether describing the connection between symmetries and 

invariants (it is the moment map for a one-dimensional Lie group of symmetries). In symplectic 

geometry the analog of Noether’s theorem is the statement that the moment map of a Hamiltonian 

action which preserves a given time evolution is itself conserved by this time evolution. The 

conservation of the moment of a Hamilotnian action was called by Souriau the “Symplectic or 

Geometric Noether theorem” (considering phases space as symplectic manifold, cotangent fiber of 

configuration space with canonical symplectic form, if Hamiltonian has Lie algebra, moment map is 

constant along system integral curves. Noether theorem is obtained by considering independently each 

component of moment map). 
In previous approach based on Koszul’s work, we have defined two convex functions ( )xF  and 

)( ** x  with dual system of coordinates x  and *x  on dual cones W  and *W : 

*

,( ) log    xx e d xx x-

W

F =- " ÎWò and 
*

* * *( ) , ( ) ( ) log ( )x xx x x x p p dx x x
W

F = -F =-ò  (69)

where: 

*

* . ( )xx p dx x x
W

= ò  and 
log

( ) /
ξ,x

*Ω

*

x,ξ e dξ
ξ,x ξ,x x,ξ Φ(x)

x

Ω

p e e dξ e ex
-- - ò

- - - += = =ò  (70)

with 

* ( )x
x

x

¶F
=

¶
 and 

* *

*

( )x
x

x

¶F
=

¶
 (71)

Souriau introduced these relations in the framework of variational problems to extend them with a 
covariant definition. Let M  be a differentiable manifold with a continuous positive density dw  and let 
E a finite vector space and ( )U x  a continuous function defined on M  with values in E. A continuous 

positive function ( )p x  solution of this problem with respect to calculus of variations: 
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( )

( ) 1

( ) log ( )   such that  
( ) ( )

M

p
M

M

p d

ArgMin s p p d
U p d Qx

x w

x x w
x x w

ìï =ïïé ù ïïê ú=- íê ú ïê ú =ïë û ïïïî

ò
ò

ò
 (72)

is given by: 

( ) . ( )( ) Up e b b xx F -=  with . ( )( ) log U

M

e db xb w-F =- ò  and 









M

U

M

U

de

deU

Q








)(.

)(.)(

 (73)

Entropy ( ) log ( )
M

s p p dx x w=-ò  can be stationary only if there exist a scalar F  and an element b  

belonging to the dual of E, where F  and   are Lagrange parameters associated to the previous 

constraints. Entropy appears naturally as Legendre transform of F : 

)(.)(   QQs  (74)

This value is a strict minimum of s, and the equation 

. ( )

. ( )

( ) U

M

U

M

U e d

Q
e d

b x

b x

x w

w

-

-
=
ò

ò
 has a maximum of one 

solution for each value of Q. The function ( )bF  is differentiable and we can write .d d QbF=  and 

identifying E with its dual: 




Q  (75)

Uniform convergence of . ( )( ) ( ) U

M

U U e db xx x w-Äò  proves that 0
2

2








 and that ( )b-F  is 

convex. Then, )(Q  and )(Q  are mutually inverse and differentiable, where .ds dQb= . 

Identifying E with its bidual: 

s

Q
b

¶
=

¶
 (76)

Classically, if we take ( )U
x

x
x x

æ ö÷ç ÷=ç ÷ç ÷ç Äè ø
 , components of Q will provide moments of first and second 

order of the density of probability )(p , that is defined by Gaussian law. 

Souriau has applied this approach for classical statistical mechanic systems. Considering a 
mechanical system with n parameters 1, , nq q , its movement could be defined by its phase at arbitrary 

time t on a manifold of dimension 2n: nn ppqq ,,,,, 11  . 

The Liouville theorem shows that coordinate changes have a Jacobian equal to unity, and a Liouville 
density could be defined on manifold M : 1 1n nd dq dq dp dpw=    that will not depend on choice to t. 

A system state is one point on 2n-Manifold M and a statistical state is a law of probability defined 

on M  such that 1)()( 
M

dp  , and its time evolution is driven by: 
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j j j j

p p H p H

t p q q p

¶ ¶ ¶ ¶ ¶
= -

¶ ¶ ¶ ¶ ¶å  (77)

where H is the Hamiltonian. 

A thermodynamic equilibrium is a statistical state that maximizes the entropy: 

( ) log ( )
M

s p p dx x w=-ò  (78)

among all states giving the mean value of energy Q: 

QdpH
M

  )().(  (79)

Applying this for free particles, for an ideal gas, equilibrium is given for 
kT

1
  (with k being the 

Boltzmann constant) and if we set skS . , the previous relation 
dQ

dS
T

=  provides: 
dQ

S
T

= ò  and 

dQ
S

T
= ò  and ( )bF  is identified with the Massieu-Duhem Potential. We recover also the Maxwell 

Speed law: 

kT

H

ecstep


 .)(  (80)

The main discovery of Jean-Marie Souriau is that previous thermodynamic equilibrium is not 

covariant on a relativity point of view. Then, he has proposed a covariant definition of thermodynamic 

equilibrium where the previous definition is a particular case. In previous formalization, manifold M  

was solution of the calculus of variations problem: 

0,,
1

0









 dt

dt

dq
qtld

t

t

j
j  with 

j
j q

l
p




  (81)

We can then consider the time variable t like other variables jq  through an arbitrary parameter  , 

and define the new calculus of variations problem by: 

( )
1

0

, 0
t

J J

t

d L q q dt =ò   with 1nt q += , 
d

dq
q J

J   and 1, 2,..., 1J n= +  (82)

where: 

( ), , , j
J J j

q
L q q l t q t

t

æ ö÷ç ÷= ç ÷ç ÷çè ø




  (83)

Variables jp  are not changed and we have the relation: 

1 . j
n j

j

dq
p l p

dt+ = -å  (84)

If we compare with classical mechanic, we have: 
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Hpn 1  with l
dt

dq
pH

j

j
j  .  (H is Legendre transform of l) (85)

H is the energy of the system that is conservative if the Lagrangian doesn’t depend explicitly of time t. 

It is a particular case of Noether Theorem: 

If Lagrangian L is invariant by an infinitesimal transform ( )J J KdQ F Q=  ,then 
J

JJ dQpu is 

first integral of variations equations. 

As energy is not the conjugate variable of time t, or the value provided by Noether theorem by 

system invariance to time translation, the thermodynamic equilibrium is not covariant. Then, Souriau 

proposes a new covariant definition of thermodynamic equilibrium:  

Let a mechanical system with a Lagrangian invariant by a Lie Group G. Equilibrium states by 

Group G are statistical states that maximizes the Entropy, while providing given mean values to all 

variables associated by Noether theorem to infinitesimal transforms of group G. 
Neither theorem allows associating to all system movement x , a value ( )U x  belonging to the 

vector space dual of Lie Algebra g  of group G. )(U  is called the moment of the group. 

For each derivation δ of this Lie algebra [83], we take: 


J

JJ QpU  .))((  (86)

With previous development, as *g  is dual of g , value b  belongs to this Lie algebra g , geometric 

generalization of thermodynamic temperature. Value Q is a geometric generalization of heat and 
belongs to *g , the dual of g . 

An Equilibrium state exists having the largest entropy, with a distribution function ( )p x  that is the 

exponential of an affine function of U [83]: 

)(.)()(  Uep   with  
M

U de   )(.log)(  and 









M

U

M

U

de

deU

Q








)(.

)(.)(
 (87)

with: 

)(.)(   QQs , Qdd .  and dQds .  (88)

A statistical state )(p is invariant by  if [ ]( ) 0pd x =  for all x  (then )(p  is invariant by finite 

transform of G generated by ). 

Jean-Marie Souriau gave the following theorem: 

Souriau Theorem 1: An equilibrium state allowed by a group G is invariant by an element d  of 
Lie Algebra g , if and only if [ ], 0d b =  (with [.], the Lie Bracket), with b  the generalized 

equilibrium temperature. 

For classical thermodynamic, where G is an Abelian group of translation with respect to time t, all 

equilibrium states are invariant under G. For Group of transformation of Space-Time, elements of Lie 
Algebra of G could be defined as vector fields in Space-Time. The generalized temperature b  previously 

defined, would be also defined as a vector field. For each point of manifold M, we could then define: 
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• Temperature Vector: 

kT

V
M   (89)

with: 

• Unitary Mean Speed: 

Unitary Mean Speed: M

M

V
b
b

= with 1V  (90)

• Eigen Absolute Temperature: 
1

. M

T
k b

=  
(91)

Classical formula of thermodynamics are thus generalized, but variables are defined with a 
geometrical status, like the geometrical temperature M  an element of the Lie algebra of the Galileo or 

Poincaré groups, interpreted as the field of space-time vectors. Souriau proved that in relativistic 
version M is a time like vector with an orientation that characterizes the arrow of time. The 

temperature vector and entropy flux are in duality. Souriau said “ , c’est la flèche qui nous indique 

dans quel sens coule le temps” [ , it is the arrow that informs about the flow of time direction]. 

5. Souriau-Gibbs Canonical Ensemble of Dynamical Group and Lie Group Thermodynamics 

In statistical mechanics, a canonical ensemble [117–121] is the statistical ensemble that is used to 

represent the possible states of a mechanical system that is being maintained in thermodynamic 

equilibrium. Souriau has defined this Gibbs canonical ensemble on Symplectic manifold M for a Lie 

group action on M. 

In classical statistical mechanics, a state is given by the solution of Liouville equation on the phase 

space, the partition function. The seminal idea of Lagrange was to consider that a statistical state is 

simply a probability measure on the manifold of motions, as in the Souriau approach, where one 

movement of a dynamical system (classical state) is a point on manifold of movements. For statistical 

mechanics, the movement variable is replaced by a random variable where a statistical state is 

probability law on this manifold. As symplectic manifolds have a completely continuous measure, 

invariant by diffeomorphisms, the Liouville measure l , all statistical states will be the product of 

Liouville measure by the scalar function given by the generalized partition function .Ue bF- defined by 

the generalized energy U (the moment that is defined in dual of Lie Algebra of this dynamical group) 

and the geometric temperature  , where F  is a normalizing constant such the mass of probability is 

equal to 1,  
M

U de  .log . Souriau then generalizes the Gibbs equilibrium state to all symplectic 

manifolds that have a dynamical group. To ensure that all integrals, that will be defined, could 

converge, the canonical Gibbs ensemble is the largest open proper subset (in Lie algebra) where these 

integrals are convergent. This canonical Gibbs ensemble is convex. The derivative of F , Q
b

¶F
=

¶
 is 
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equal to the mean value of the energy U (heat in thermodynamic). The minus derivative of this 

generalized heat Q, 




Q

 is symmetric and positive (it is a generalization of heat capacity). Entropy s  

is then defined by Legendre transform of F , .s Qb= -F . If this approach is applied for the group of 

time translation, this is the classical thermodynamic theory. But Souriau has observed that if we apply 

this theory for non-commutative group (Galileo or Poincaré groups), the symmetry has been broken. 

Classical Gibbs equilibrium states are no longer invariant by this group. This symmetry breaking 

provides new equations, discovered by Souriau. 
For each temperature  , Souriau has introduced a tensor f , equal to the sum of cocycle f and 

Heat coboundary (with [.,.] Lie bracket): 

     21222121 ,)(   with   )(.,,
11

ZZZAdZAdQZZfZZf ZZ   (92)

This tensor f  has the following properties: 

• f  is a symplectic cocycle (we refer to books of Sympectic geometry for cocycle definition) 
•  fKer   

• The following symmetric tensor gb , defined on all values of (.)Ad  is positive definite: 

       2121 ,,,,, ZZfZZg     (93)

These equations are universal, because they are not dependent of the symplectic manifold but only 
of the dynamical group G, its symplectic cocycle f , the temperature b  and the heat Q . Souriau called 

this model “Lie Groups Thermodynamics”. We can read in his paper this prophetical sentence  

“Peut-être cette thermodynamique des groups de Lie a-t-elle un intérêt mathématique”[Maybe this 

thermodynamics of Lie groups has a mathematical interest]. He explains that for dynamic Galileo 

group (rotation and translation) with only one axe of rotation, this thermodynamic theory is the theory 

of centrifuge where the temperature vector dimension is equal to 2 (sub-group of invariance of size 2), 

used to make “butter”, “uranium 235” and “ribonucleic acid”. The physical meaning of these 2 

dimensions for vector-valued temperature are “thermic conduction” and “viscosity”. Souriau said that 

the model unifies “heat conduction” and “viscosity” (Fourier and Navier equations) in the same theory 

of irreversible process. Souriau has applied this theory in details for relativistic ideal gas with Poincaré 

group for dynamical group. 

We will give in the following the two others main theorems of Souriau on this Lie Group Thermodynamics. 

Souriau Theorem 2. Let W  be the largest open proper subset of g , Lie algebra of G, such that 

 

M

U de  )(.  and  

M

U de   )(..  are convergent integrals, this set W  is convex and is invariant under 

every transformation ga , where a a g  is the adjoint representation of G. Then, the variables are 

changed according to: 

( )ab b g  
(94) 

( ) ( )1 . ( )a a aq b q b-FF- =F+ g  (95) 

s s  (96) 
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( )( ) ( )Q a Q a a Q
q

q + =* *g g
 (97) 

)(  Ma  (98) 

where   is the cocycle associated with the group G and the moment, and ( )Ma V+  is the image under Ma  

of the probability measure  . 

We observe that the entropy s is unchanged, and F  is changed but with linear dependence to  , 

with consequence that Fisher Information Geometry metric is unchanged by the dynamical group: 

( )
( )

( )
2 1 2

2 2
( )

a
I a I

q b
b b

b b

-é ù¶ F- ¶ Fê úë û=- =- =
¶ ¶g  (99)

These transformations have been geometrically interpreted by Souriau in Figure 4: 

Figure 4. Souriau figure on Lie Groups Thermodynamics. 

 

In previous notation, a a g  the adjoint representation of G can be written: 

1( )    with    ,    and  0a Z a b a b e b Z ad d d-é ù= ´ ´ = = =ê úë ûg  (100)

a a g defines an action of G on its Lie algebrag , with ag  is called the adjoint representation, that is a 

linear representation of G on its Lie algebra g . 

Let a  be an arbitrary element of G and Ma  action of a  on the manifold M . Since 1
Ma  is a 

symplectomorphism, the image under 1
Ma  of the Liouville measure   is equal to  . The integral 

. ( ) .U

M

e db x w-ò  is equal with invariance property of Liouville measure to the integral 
( )1. ( )

.MU a

M

e d
b x

w
--

ò : 

( )1. ( ). ( ) . .MU aU

M M

e d e d
b xb x w w

--- =ò ò  (101)

We can then use the following relation: 

( ) ( ) ( )1 1 1( ) ( )MU a a U ax x q- - -= +*g
 (102)
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with q  a symplectic cocycle of G. This cocycle is defined for: 

:

      

U M

x m



*g
 (103)

there exist then a differential map q  defined by: 

   )()(     

:




UaaUa

G

M *g

*g





 (104)

This differential map q  satisfy the condition: 

      baaba  *g
  (105)

and its derivative ( )( )f D eq=  where e  is the identity element of G, is a 2-form on the Lie algebra g  

of G which satisfies: 

[ ]( ) [ ]( ) [ ]( )1 2 3 2 3 1 3 1 2 1 2 3, , , , , , 0   ,   , ,f Z Z Z f Z Z Z f Z Z Z Z Z Z+ + = " Îg  (106)

and the following identities: 

( )( , ( )) ( ). (.) ( , )M ZD U Z U Ad f Z Zx x x= +  (107)

where ( )MZ x  is the fundamental vector field on the manifold M associated to Z Îg : 

( )( )   for    ,    and  0M MZ a a e a Zx d x d dxé ù= = = =ë û  (108)

( ) [ ] ( )1, 2, 1 2 1 2( ), ( ) . , ,M MZ Z Z Z f Z Zs x x m= +  (109)

with s  the Lagrange form. 
If we use previous relation ( ) ( ) ( )1 1 1( ) ( )MU a a U ax x q- - -= +*g

, and the property that 

( ) 1( ) ( ).a U U ax x -=* gg
, by defining: 

  ga'  (110)

the integral is then defined by: 

( ) ( ) ( ) ( ) ( ) ( )1 11 1. ( ). ( ) .'. ( ) . ( ). . . .M
a a U aa U a aU U

M M M M

e d e d e d e e d
b x qb x q bb x b xw w w w

- -- -é ù- +ê ú-- -ë û= = =ò ò ò ò
g *g g  (111)

We can then deduce the equation of Souriau theorem on F : 

( ) ( )( ) ( ) ( ) ( )
1 .'. ( ) . ( ) 1' ' log . log .

aU U

M M

a e d e e d a
q bb x b xb b w w b q b

-
- - -

æ ö÷ç ÷çF =F =F =- =- =F -÷ç ÷÷çè ø
ò òg

 (112)

The equation of Souriau theorem on Q  uses the relation ( ) 1.a Q Q a-=* gg
: 

( ) ( )( ) ( ) ( ) ( )
1 .'. ( ) . ( ) 1' ' log . log .

aU U

M M

a e d e e d a
q bb x b xb b w w b q b

-
- - -

æ ö÷ç ÷çF =F =F =- =- =F -÷ç ÷÷çè ø
ò òg  (113)

Finally, using ( ) 1.a Q Q a-=* gg
, we can prove that the Entropy is invariant: 
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              sQQaaQaaaaaQaaQs  ...)()(.'''.'  g
1-
gggggg **  (114)

Considering the density of probability . ( ) ( )( ) Up e b x b
b x - +F=  with ( )' ab b= g , then: 

( ) ( )1. ( ) ( )

' ( )
a U a

p e
b x b q b

b x
-- +F -

= g . 

From which, we can recover Ma+  the image under Ma  of the probability measure.  

The last Souriau theorem is given by: 

Souriau Theorem 3. Let ( )( )f D eq=  be the derivative of   (symplectic cocycle of G) at the identity 

element and let us define: 

     21222121 ,)(   with   )(.,,   ,
11

ZZZAdZAdQZZfZZf ZZ    (115)

Then 

f  is a symplectic cocycle of g  , that is independent of the moment of G 

  ) (     ,   0,   fKerf   (116)

• There exists a symmetric tensor gb  defined on the image of [ ](.) .,Adb b=  such that: 

      (.)Im  ,  ,,, 212121   AdZZZZfZZg  g,  (117)

and: 

   (.)Im,   ,   0, 2121  AdZZZZg   (118)

Last equation gives the structure of a positive Euclidean space. 
   0, f could be deduced by differentiating ( ) ( )( ) . ( )a a ab q bF =F+g g  and taking e a = , 

2a Zd =  and 1 0Zd = . As ( )( )M MZ ax d xé ù= ë û  and (.)ZZ Ad=-g , we have [ ] ( )1 2 1 2, ,Q Z Z f Z Z=- . 

If we differentiate ( ) ( )( ) ) ( )Q a a Q ab q+*g g
, the following relation       11111 ,(.).,,

1
ZZfAdQZZfZ

Q
Z 





  

appears. Then, writing [ ]1 2,Z Zdb b= = , we have   0,0. 21  ZZfQ  . 

See more details in appendix A.3. 

6. Synthesis of Analogies Between the Koszul Information Geometry Model and Souriau 

Statistical Physics Model 

6.1. Comparison of Koszul and Souriau Models 

We will synthetize in Table 1 results of previous chapters with Koszul Hessian Structure of 

Information Geometry and the Souriau model of Statistical Physics with the general concepts of 

geometric temperature, heat and capacity. Analogies between models will deal with characteristic 

function, Entropy, Legendre Transform, density of probability, dual coordinate systems, Hessian 

Metric and Fisher metric. 

As 



Q , we observe that the Information Geometry metric 











Q)(

I
2

2

)(  could be 

considered as a generalization of “Heat Capacity”. Souriau called it  the “Geometric Capacity”. K
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1
1Q Q QkTK

T T kT Tb

æ ö÷ç¶ ÷ç ÷¶ ¶ ¶ç ÷ç=- =- =÷ç ÷ç¶ ¶ ¶ ÷ ¶ç ÷÷ç ÷çè ø

, then this geometric capacity is related to calorific 

capacity. Q is related to the mean, and K is related to the variance of U [122]: 

2

2 )().()(.)()var()( 












 
MM

dpUdpUU
Q

I 


   (119)

Table 1. Synthesis of Koszul and Souriau models. 

 Koszul Information Geometry 
Model 

Souriau Lie Groups 
Thermodynamics Model 

Characteristic function  
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6.2. Invariances in Koszul and Souriau Models 

We have observed in previous chapters the main invariances characterizing the Koszul Model and 

the Souriau Model. We will synthetize these invariances in Table 2. 

In both the Koszul and Souriau models, the Information Geometry Metric and the Entropy are 
invariant respectively to the automosphisms g  of the convex cone Ω and to ga  adjoint representation 

of Dynamical group G acting on Ω, the convex cone considered as largest open subset of g , Lie 

algebra of G, such that  

M

U de  )(.  and  

M

U de   )(..  are convergent integrals. 

6.3. Souriau Thermometer 

Souriau has built a thermometer (θερμός) device principle that could measure the Geometric 

Temperature using “Relative Ideal Gas Thermometer” based on a theory of Dynamical Group 

Thermometry, and has also recovered the Laplace barometric law 
rgmerp
 ,)(  . 

Table 2. Comparison of invariances for the Koszul and Souriau models. 

 
Koszul Information Geometry 
Model 

Souriau Lie Groups Thermodynamics 
Model 

Convex Cone 
x  

W convex cone 

  

W convex cone: largest open subset of g , 

Lie algebra of G, such that . ( )U

M

e db x w-ò  

and . ( ). U

M

e db xx w-ò  are convergent 

integrals 

Transformation ( )   with   x gx g Aut Î W  ( )ab b g  

Transformation of 
Potential 
(non invariant) 

( )( ) ( ) ( ) log detx gx x gW W WF F =F +  ( ) ( ) ( ) ( )1( )a ab b b q b-F F =F -g  

Transformation of 
Entropy 
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   *****
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
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
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QsQQQsQs

g

g
g

g

g

*

 

Information 
Geometry Metric 
(invariant) 
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
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

2
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)(g  

7. From Characteristic Function to Generative Inner Product 

Cartan’s works have greatly influenced Koszul (Koszul’s PhD thesis extended previous work of Cartan) 

and Souriau (Souriau was a student of Elie Cartan at ENS, the year after his aggregation). We have shown 

that “Information Geometry” could be considered as a particular application domain of Hessian Geometry 

through Koszul’s work (Koszul-Vinberg metric deduced from the associated characteristic function having 
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the main property of being invariant to all automorphisms of the convex cone), that could be extended in 

the framework of Souriau’s theory, as an extension towards “Lie Group Thermodynamics” with  

vector-valued geometric temperature (providing a geometric extension of Noether’s theorem). Should we 

deduce that the “essence” of Information Geometry is limited to the “Koszul Characteristic Function”? 

This notion seems to not be the more general one, and we will explore the notion of Generative Inner 

Products. We will reduce Koszul’s and Souriau’s definitions to exclusive “Inner Product” selection using 

symmetric bilinear “Cartan-Killing form” introduced by Cartan in 1894. 
In Koszul Geometry, we have two convex dual functions ( )xF  and * *( )xF  with dual system of 

coordinates x  and *x  defined on dual cones W  and * :W
*

,( ) log    xx e d xx x-

W

F =- " ÎWò  and 

)(,)( *** xxxx  . We can then remark that if we can define an Inner Product .,. , we will be 

able to build a convex function )(log)( xx    and its dual by Legendre transform because both 

are only dependent of the Inner product, and dual coordinate is also defined by 

{ }
* *

, ,* *arg min ( ) / , , . /x xx y y x y n e d e dx xy x x x- -
W

W W

= ÎW = = ò ò  where *x  is also the center of 

gravity of the cross section  nyxy  ,,*  of *W  (with notation: )(log)( xx   ). 

It is not possible to define an ad(g)-invariant inner product for any two elements of a Lie Algebra, 

but a symmetric bilinear form, called “Cartan-Killing form”, could be introduced. This form has been 

introduced first by Cartan in 1894 in his PhD thesis. This form is defined according to the adjoint 
endomorphism xAd of g  that is defined for every element x  of g  with the help of the Lie bracket: 

[ ]( ) ,xAd y x y=  (120)

The trace of the composition of two such endomorphisms defines a bilinear form, the  

Cartan-Killing form: 

( )( , ) x yB x y Tr Ad Ad=  (121)

The Cartan-Killing form is symmetric: 

( , ) ( , )B x y B y x=  (122)

and has the associativity property: 

     zyxBzyxB ,,,,   (123)

given by: 

[ ]( ) [ ]( ) ( ) ( ) [ ]( ),, , , , , ,z x y z x y zx yB x y z Tr Ad Ad Tr Ad Ad Ad Tr Ad Ad Ad B x y zé ù é ù= = = =ê ú ê úë û ë û  (124)

Elie Cartan has proved that if g is a simple Lie algebra (the Killing form is non-degenerate) then 

any invariant symmetric bilinear form on g  is a scalar multiple of the Cartan-Killing form. The 
Cartan-Killing form is invariant under automorphisms )(gAut  of the algebra g : 

   yxByxB ,)(),(   (125)
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To prove this invariance, we have to consider: 

[ ] [ ]
[ ]1 1

( )

, ( ), ( )
, ( ) ( ),    rewritten   

( )
x x

x y x y
x z x z Ad Ad

z y
s

s s s
s s s s s

s
- -

ìï =ï é ù = =í ê úë ûï =ïî
   (126)

Then: 

( ) ( ) ( ) ( )1
( ) ( )( ), ( ) ( , )x y x y x yB x y Tr Ad Ad Tr Ad Ad Tr Ad Ad B x ys ss s s s-= = = =   (127)

A natural G-invariant inner product could be then introduced by Cartan-Killing form. 

Cartan Generative Inner Product: The following Inner product defined by Cartan-Killing form is 

invariant by automorphisms of the algebra 

( ), , ( )x y B x yq=-  (128)

where gq Î  is a Cartan involution (an involution on g is a Lie algebra automorphism   of g whose 

square is equal to the identity). 

From the Cartan Inner Product, we can generate logarithm of the Koszul Characteristic Function, 

and its Legendre Transform to define Koszul Entropy, Koszul Density and Koszul Metric, as explained 

in the following Figure 5: 

Figure 5. Generation of Koszul elements from Cartan Inner Product. 

 

In Appendix A2, we give the definition of another inner product, Gromov Inner product, in  

CAT(−1) space, that could be also used to generalize Koszul definition of Characteristic Function. 

On the concept of generative structure, we could also explore the notion of Generative  

Function [123–126] and come back to seminal paper of Chentsov about axiomatization of 

Information Geometry [127]. 
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8. Conclusions on General Definition of Entropy by Legendre Transform 

Definition of Entropy has been widely debated [128,129]. Based on the cornerstone concept of the 

Koszul Vinberg Characteristic Function, we have introduced Koszul Entropy as the Legendre transform of 

its logarithm. This definition of Entropy could be extended by interpretating Legendre transform as Fourier 

transform in (Min,+) algebra [130,131]. 

As we have observed previously, Koszul Entropy has a Shannon Entropy structure: 

   

 

Φ(x)x,ξ
dξex,ξ

Ω

ξ,x

ξ,x

x

xx

xxx

ee
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e
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Edpxp

EdpdppEx
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


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
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*****

)(  where

)(.  and  )(log)(with   

)()()()(log)()()(

*

**







 

(129)

In last equation, variable x could be defined by [ ] *E xx x= =  if function 
dx

xd )(  could be inverted: 

 

 












*Ω

ξ,

ξ,

dξe

e
p





 
1

1

)(  with )(1 x  and 
dx

xd
x

)(
)(


  

(130)

where: 

  dp



*

)(.  and 



*

,log)(  dex x  (131)

In previous chapters, a definition of Koszul Entropy * *( )xF  through Legendre transform of  

Koszul-Vinberg characteristic function ( )xF  has been given: 

*

* * *

,

( ) , ( )

with   ( ) log    x

x x x x

x e d xx x-

W

F = -F

F =- " ÎWò
 (132)

where ( )xF  could be interpreted as opposite of logarithm of Laplace transform [132,133]: 

[ ]logEntropy Legendre Laplaceé ù= -ë û  (133)

that we will write synthetically as: 

Ent Leg Log Lapl=-    (134)

The function LaplLogLeg   is sometimes called “Cramer transform”. 

If we remark that the Legendre transform is closely related to the idempotent analogue of the 

Fourier transform [130,131,134–136], we could then give a new definition of Entropy. 
If we consider the semiring { }minR R= È +¥  with the operations Min  and  . In 

{ }minR R= È +¥  the idempotent analogues of integration on RN is given by the formula: 
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( ) ( ) ( )
N

N x R
R

I f f x dx Inf f x
Å

Î
= =ò  (135)

Then, the Legendre transform is equivalent to the Fourier transform in ( ) ( ), ,MinÅ · = +  algebra [130]: 

( ) ( ) [ ]*
,( ) , ( ) , ( ) ( )Min

x
Sup x x x x dx Four xx x x

Å

+
ÎW

W

é ùF = -F =- - ·F = Fë û ò  (136)

The Legendre transform generates an idempotent version of harmonic analysis for the space of 

convex functions. We can then give a general definition of Entropy: 

( , ) ( , )MinEnt Four Log Lapl+ +´=-    (137)

We can also observe the following properties deduced from the Laplace and Legendre  

transforms’ characteristics: 

      EntEntEnt   (138)

where * is the convolution operator and   the inf-convolution operator (see [130] for the definition of 

inf-convolution) defined by: 

[ ]( ) ( ) ( )
x

f g z Inf f x g y xé ù· = + -ë û  (139)

with  f and g, two functions minR R . 

“La théorie cinétique des gaz laisse encore subsister bien des points embarrassants pour 

ceux qui sont accoutumés à la rigueur mathématique… L’un des points qui 

m’embarrassaient le plus était le suivant: il s’agit de démontrer que l’entropie va en 

diminuant, mais le raisonnement de Gibbs semble supposer qu’après avoir fait varier les 

conditions extérieures on attend que le régime soit établi avant de les faire varier à 

nouveau. Cette supposition est-elle essentielle, ou en d’autres termes, pourrait-on arriver à 

des résultats contraires au principe de Carnot en faisant varier les conditions extérieures 

trop vite pour que le régime permanent ait le temps de s’établir? ”  

Henri Poincaré « Réflexions sur la théorie cinétique des gaz », 1906 

[The kinetic theory of gases leaves awkward points for those who are accustomed to 

mathematical rigor … One of the points which embarrassed me most was the following one: it 

is a question of demonstrating that the entropy keeps decreasing, but the reasoning of Gibbs 

seems to suppose that having made vary the outside conditions we wait that the regime is 

established before making them vary again. Is this supposition essential, or in other words, we 

could arrive at opposite results to the principle of Carnot by making vary the outside 

conditions too fast so that the permanent regime has time to become established ?] 

Henri Poincaré “Reflection on The kinetic theory of gases”, 1906 
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“Quel est l'objet de l'art ? Si la réalité venait frapper directement nos sens et notre 

conscience, si nous pouvions entrer en communication immédiate avec les choses et avec 

nous-mêmes, je crois bien que l'art serait inutile, ou plutôt que nous serions tous artistes, 

car notre âme vibrerait alors continuellement à l'unisson de la nature. ” 

Henri Bergson, Le rire, p.115, Éd. P.U.F 

[What is the object of art? Could reality come into direct contact with sense and 

consciousness, could we enter into immediate communion with things and with ourselves, 

probably art would be useless, or rather we should all be artists, for then our soul would 

continually vibrate in perfect accord with nature.] 

Henri Bergson, Laughter 
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Appendix 

A1. Legendre Transform and Minimal Surface 

Laplace contribution to probability was around 1774 [137]. At almost the same period, in 1787,  

Adrien-Marie Legendre has introduced the “Legendre Transform” [138] to solve the Minimal Surface 

Problem equation introduced by Lagrange and partially solved by Gaspard Monge in 1784 [139]. In 1768, 

Lagrange considered the variational problem of least area surface stretched across a given closed contour. 

Based on Euler-Lagrange equation, Lagrange has introduced the equation of Minimal Surface  yxz , : 

( ) ( )
2 2 2

2 2
2 2

1 2 1 0   with      and   
d z d z d z dz dz

q pq p p q
dx dxdy dy dx dy

+ - + + = = =  (140)

Lagrange has observed that affine functions ( ), . .z x y a x b y c= + +  are solutions of this equation 

and minimal surfaces are planes. 
Jean-Baptiste Marie Meusnier de La Place, a student of Monge, has observed that for this surface, 

two curvature radiuses are everywhere equal but directed in opposite direction, because first equation 

is equal to two times the mean curvature zH : 

( ) ( )
2 2 2

2 2
2 2

2 22 2

1 2 1
2

1 1 1

z

dz d z d z d zdz q pq p
d d dy dx dxdy dydxH
dx dydz dz dz dz dz

dx dy dx dy dx

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç + - + +÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷= + =ç ç÷ ÷÷ ÷ç ç÷ ÷ç çæ ö æ öæ ö æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ ÷ç ç çç ç+ + + +÷ ÷ +÷ ÷÷ ÷ç ç ÷ç ç çç ç÷ ÷÷ ÷÷ ÷ç ç ÷ç ç ç÷ ÷è ø è ø÷ ÷ç ç è øè ø è øè ø è ø

3/222
dz
dy
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Gaspard Monge integrated this equation in [139] but with a non-rigorous approach and asked 

Legendre to find a more classical solution. For this task, Legendre has introduced a change of variable 

that is the nowadays well-known “Legendre transform”. Adrien-Marie Legendre said “J’y suis parvenu 

simplement par un changement de variables qui peut être utile dans d’autres occasions”(“I reached 

there simply by a change of variables which can be useful in other opportunities”). 

Legendre reduced the problem to solve to determine p and q as functions of x and y such that: 

2 2
. .    and   

1

p.dy q.dx
p dx q dy

p q

-
+

+ +
 (142)

are exact differentials. If we set 2221 uqp  , then these other expressions are complete differentials: 
















u

q
dx

u

p
dydqydpx ..   and   ..  (143)

Legendre considered x and y as functions of p and q: 

dq

d
y

dp

d
xddqydpx

     and      with   ..  (144)

If we then develop 














u

q
dx

u

p
dy .. , we have: 

     
3

2
3

2 .1.1
u

dq
ypqxp

u

dp
xpqyq   (145)

That should be an exact differential. By replacing x and y, we have a new equation: 

    01.21
2

2
2

2

2

2
2 

dp

d
p

dpdq

d
pq

dq

d
q

  (146)

This new equation is very similar to the previous one, but simpler because it depends on p and q 

and not their partial differentials of first order. When the function ω will be known, then functions x, y 

and z will be also defined according to p and q thanks to “Legendre transform”: 

dq

d
y

dp

d
x

qpyqxpyxz








   and   with   

),(..),(

 (147)

About this Legendre transform, Darboux [140] gave an interpretation by Chasles “Ce qui revient 

suivant une remarque de M. Chasles, à substituer à la surface sa polaire réciproque par rapport à un 

paraboloïde” [What is equivalent according to M. Chasles’s remark, to substitute for the surface its 

mutual polar with regard to a paraboloid]. This equation could be also written as classical “Legendre 

transform” with our previous notations: 
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In the following relation, we recover the definition of Entropy 
T

dQ
dQds  . : 
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

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


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
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The equation of the surface is characterized by the following equation: 

2 2 2 2
2.    or   2.

1 1 1
1

d
d Q d Qd

H div div H
d dQ Qd

d

b b
b

b b

b

F F
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We can then observed that when 1Q << ,
2

( ) 2.
1

d Q dQ
I H

d dQ
b

b b F

æ ö÷ç ÷ç ÷ç » =- =÷ç ÷ç ÷+ ÷çè ø
. 

We can also characterized Entropy with this 2nd equation: 

( ) ( )
2 2 2

2 2
2 12 2

2 1 2 1

( ) ( ) ( )
1 2 . 1 0

d s Q d s Q d s Q
Q pq Q

dQ dQ dQ dQ
+ + + + =  (151)

We can also find direct equations for x, y and z, based on “Legendre transform” and Equation (146): 

( ) ( )
2 2 2

2 2
2 2

1 2 . 1 2 2 0
d x d x d x dx dx

q pq p q p
dq dpdq dp dp dq

+ + + + + + =  (152)

We have exactly same equations for y and z. 

Legendre then solved Equations (145) and (148), by determining two constants a and b given by 

double integral of the equation: 

    01..21 2222  dppdqdppqdpq  (153)

By selecting p aq A= +  with a and A two constants. Previous equation gives 2 21 0a A+ + = . 

Then a will be let an arbitrary function and 21 aA  . Two integrals of Equation (129) will be: 
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with a and b two arbitrary constants, roots of the following Equation: 
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Equations (145) and (148) could be then simplified: 
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Then Legendre deduced that three coordinates could be given by two arbitrary functions: 
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
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 (157)

This is the integral solution of “Minimal surface” Lagrange equation (Legendre recovered the 

solution given by Monge in 1784). 

A2. Gromov Inner Product 

As other generalization of inner product, we can consider for specific case CAT(-1)-space[141,142] 

(generalization of simply connected Riemannian manifold of negative curvature lower than unity) or 

for an Homogeneous Symmetric Bounded domains, a “generative” Gromov Inner Product between 

points y–z (relatively to x) that is defined by the distance [143,144]: 

( )1
, ( , ) ( , ) ( , )

2x
y z d x y d x z d y z= + -  (158)

with d(.,.) the distance in CAT(−1). This Gromov Inner Product is illustrated in Figure 6. Intuitively, 

this inner product measures the distance of x to the geodesics between y to z. This Inner product could 

be also defined for points on the Shilov Boundary of the domain through Busemann distance: 

 ),(),(
2

1
', ' pxBpxB

x    (159)
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Figure 6. Gromov Inner product in homogeneous bounded domains and its Shilov boundary. 

 

Independent of p, where ( , ) ( ) ( )
t

B x y Lim x r t y r tx +¥
é ù= - - -ë û  is the horospheric distance, from x to 

y relatively to x , with ( )r t  geodesic ray. We have the property that: 

x
y
yx

yyLim ',',
'' 


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


  (160)

We can then define a visual metric on the Shilov boundary by: 
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( )

, '
, '    if   '

, ' 0   otherwise
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d e
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x xx x x x

x x

-= ¹

=
 (161)

We can then define the characteristic function according to the origin 0: 

0

*

,
( ) log
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x e d
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*

1
(0, ) (0, ) ( , )
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and: 

( )* * * * *

0

1
( ) , ( ) (0, ) (0, ) ( , ) ( )

2
x x x x d x d x d x x xF = -F = + - -F  (163)

   )(2),0()(2),0(),( **** xxdxxdxxd   (164)

with the center of gravity: 
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dedex
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 (165)

All these relations are also true on the Shilov Boundary: 

 


 
**

0 '.',log'log)( 0

',  
ddde  

(166)

where  
 *

'.',0  dd  is the functional of Busemann barycenter on the Shilov Boundary *  (existence 

and unicity of this barycenter have been proved by Cartan [14] for Cartan-Hadamard Spaces).  
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A3. The Cohomology of a Dynamical Group 

In the following, we give some details of Souriau development about the Moment of the G action 

(see Figure 7) and the Cohomology of a dynamical group (see Figure 8). Other details about 

Symplectic Geometry could be found in [145] or [146]. 

Figure 7. Moment of the G action. 

 

Figure 8. The Cohomology of a dynamical group. 

 

If G is a dynamical group of a symplectic manifold V , torsor m  is called a moment of the  

G-action, if there is a differential map x m  from V  to *g  such that:  

   ZdxZV .)(    (167)

To every torsor m , there corresponds a field [ ]x w  of 1-forms (Maurer-Cartan forms) on G  which 

is invariant under right translation and which takes the value   when x  is the identity element: 

 dV   (168)

Using the moment of the G action, Souriau has introduced the following theorem on the 

Cohomology of a dynamical group: 
Theorem. Let V  be a connected symplectic manifold and let G  be a dynamical group of V  possessing 

a momentm . Finally, let   denote the map x m  from V  to the space *g  of torsor of G: 
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There exists a differential map :Gq  *g : 

   )()()( xaxaa V  *g
  (169)

The derivative ))(( eDf   is a 2-form on the Lie algebra g  of G : 

         0',)''(,'')'('',')(  ZZZfZZZfZZZf  (170)

Then, the following identities hold: 

( )( ) [ ]'( ) ( ) . , ' ( )( ')V VZ x Z x Z Z f Z Zs mº +  (171)

      )().()()( ZfZadxxZxD V   (172)
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