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Abstract: The essence of authentication is the transmission of unique and irreproducible
information. In this paper, the authentication becomes a problem of the secure transmission
of the secret key over noisy channels. A general analysis and design framework for message
authentication is presented based on the results of Wyner’s wiretap channel. Impersonation
and substitution attacks are primarily investigated. Information-theoretic lower and upper
bounds on the opponent’s success probability are derived, and the lower bound and the upper
bound are shown to match. In general, the fundamental limits on message authentication over
noisy channels are fully characterized. Analysis results demonstrate that introducing noisy
channels is a reliable way to enhance the security of authentication.
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1. Introduction

One of the prominent problems in communication is security, and authentication is the first step to
ensure a secure communication. The failure to properly authenticate users will result in serious damage
since the opponent can do whatever any valid user can do [1]. Usually, authentication is more important
than confidentiality [2], because the threats of active attacks are always more serious than those of the
passive ones.

In the studies of conventional authentication, most of the mechanisms [3–5] are based on encryption.
The transmitter and the receiver communicate according to a previously coordinated encryption
agreement with a secret key, where messages are authentic if the receiver can successfully decrypt the
transmission. However, these cryptographic security mechanisms need key management to distribute,
refresh, and revoke the secret keys. Due to the open air nature of wireless networks, the key management
can be difficult, especially in ad hoc networks [6]. Therefore, this paper considers utilizing the noisy
nature of wireless channels to extend the service life of the secret keys.

The authentication model over noiseless channels was developed by Simmons [7]. In the model, the
transmitter and the receiver share a secret key K, and both of them are assumed to be honest to each
other. Meanwhile, an opponent wants to trick the receiver. When the transmitter intends to send a source
message M over a public channel, it transmits an encoded message W = f(K,M), where f(·) is an
authentication coding function. Upon receiving a message Ŵ , the receiver should determine whether
it comes from the legitimate transmitter or the opponent. The receiver uses a decoding function d(·)
to obtain an estimate of the source message and the secret key, i.e., (M̂, K̂) = d(Ŵ ). If K̂ = K, the
receiver accepts M̂ ; otherwise, the receiver rejects it.

There are two types of attacks considered in [7]. The first one is called an impersonation attack, in
which the opponent sends a malicious message W ′ to the receiver before the legitimate transmitter sends
anything. The second one is called a substitution attack, in which after intercepting a message W , the
opponent modifies it into an erroneous message W ′ and sends it to the receiver. (Actually, there are two
aspects of the substitution attack. Another kind of substitution attack, which is called power-substitution
attack, occurs in the transmission from the transmitter to the legitimate receiver. The opponent modifies
messages by overpowering the transmitter’s signal with its malicious signal [3]. In the following, it will
be distinguished in particular when to employ the power-substitution attack.) If the false message W ′ of
the impersonation attack or the substitution attack is deemed as authentic and accepted by the receiver,
it is called a successful attack. The success probability of the impersonation attack and the substitution
attack are denoted by PI and PS , respectively. The lower bounds on PI and PS have been derived in [7],
which are respectively shown as PI ≥ 2−I(K;W ) and PS ≥ 2−H(K|W ), where I(K;W ) denotes the mutual
information between K and W , and H(K|W ) denotes the conditional entropy of K given W . One can
easily figure out a tradeoff between PI and PS , since H(K|W ) = H(K)− I(K;W ). Because the attack
with higher success probability will be preferentially chosen, the success probability PD of the opponent
is PD = max (PI , PS). Obviously, the lower bound on PD is PD ≥ 2−H(K)/2. It means that the best
defensive strategy is to use half of the key information to protect against the impersonation attack and
the other half to protect against the substitution attack.
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Similar to Simmons’ work, current practices firstly convert a noisy channel into a noiseless one, and
then design an authentication code over the noiseless channel. However, according to the results of
Wyner’s wiretap channel [8], the work in [9] jointly designed the channel coding and the authentication
code over noisy channels. In this way, as long as the wiretap channel’s perfect secrecy capacity Cs is
nonzero, the secret key can be kept hidden from the opponent by using a codebook whose codeword
rate is higher than the channel capacity between the source and the opponent. Thus, the substitution
attack is prevented due to the fact that the opponent cannot obtain any information about the secret
key from its observed messages. Then, all the information of the secret key can be used to protect
against the impersonation attack. Regarding the bounds on PD, it has been shown that 2−H(K) ≤ PD ≤
2−H(K)+αe−nβ , where α and β are positive constants, and n is the codeword length. The upper bound is
shown to match the lower bound as n goes to infinity. Compared with the performance of the Simmons’
model, [9] brings additional security gain.

However, the work in [9] has several flaws. Firstly, it may incur the power-substitution attack. When
the function f(·) is linear, during the transmission, an agent (e.g., Eve) could tamper with the legitimate
message by a synchronously transmitted and well-designed malicious signal. Secondly, its lower bound
on PS is given by simply ignoring the intercepted information Zn. Unfortunately, evident security flaws
will happen if the coding scheme is not well-designed [10–13], then the intercepted information Zn may
provide much information about the secret key. Though it can be proved that there exists a code scheme
to attain this lower bound when the codeword length n goes to infinity, it is impracticable because the
codeword length is indeed limited. Thirdly, it exposes the secret key because the wiretap channel’s
secrecy capacity cannot be guaranteed to stay nonzero, e.g., the channels are time-varying or Eve’s
channel is not easy to obtain. (The works in [14–16] provide the calculation and measurement of the
probability of a nonzero secrecy capacity P (Cs > 0) for Rayleigh fading channels, etc.)

This paper makes the following contributions. Firstly, we propose an enhanced message
authentication scheme. Specifically, we securely transmit an authentication tag T instead of the secret
key K in [9]. This authentication tag T encapsulates the information of the secret key K and the source
message M . Secondly, this scheme can protect against the power-substitution attack. Thirdly, we derive
our scheme’s information-theoretic lower bounds on PI , PS and PD, and give the sufficient and necessary
conditions for tightness. In addition, we also derive our scheme’s information-theoretic upper bound
on PD.

The rest of this paper is organized as follows. Section 2 provides various aspects of our authentication
scheme in the designated scenario. Section 3 introduces the security analysis of our scheme and the
performance comparison with the previous works in detail. Section 4 concludes the paper.

Notation: Throughout this paper, random variables are denoted by upper case letters (e.g., X), the
realizations of the corresponding random variables are denoted by lower case letters (e.g., x), and the
corresponding finite alphabets are denoted by calligraphic letters (e.g., X ). The n-length sequences of
the elements X and x are denoted by Xn and xn, respectively.
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2. System Overview

2.1. Scenario

This paper considers the scenario depicted in Figure 1, where three nodes share a wireless medium.
Bob is a critical node that has sensitive information, and only Alice has access rights to him. Eve is a
potentially malicious attacker who wishes to disrupt the authentication process by causing Bob to accept
inauthentic messages. In this context, Bob and Alice agree on a keyed authentication scheme that allows
Bob to verify that the messages he receives are intact from Alice.

Alice Bob

Eve

Figure 1. The scenario of authentication.

As is shown in Figure 2, Alice and Bob share a secret key K. The secret key is assumed only known to
both Alice and Bob, and it has been allocated before the communication. In order to authenticate, Alice
sends an additional proof, which is called an authentication tag T , together with the source message M

for Bob’s verification. Generally, the tag T is a function of the source message M and the secret key K.
When a signal Y n is received, Bob decodes it and determines whether the message is authentic or not.

Alice Bob

Eve

Figure 2. The authentication channel.

Meanwhile, when Alice sends Xn to Bob, Eve can eavesdrop or intercept an observation Zn.
Eve’s primary purpose is to have her messages accepted by Bob, so she will try her best to impersonate
or substitute Alice’s messages. Without loss of generality, we assume that Eve is aware of all details
except the secret key of the authentication scheme between Alice and Bob.

2.2. Proposed Authentication Scheme

Let M, K and T denote the finite alphabet of the source message, the secret key and the authentication
tag, respectively. The random variables of the source message M and the secret key K are assumed
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statistically independent. Alice and Bob share a common secret key K uniformly chosen from K. When
Alice intends to send a message M from M to Bob, she transmits the authentication tag T together with
it. The transmitted signal of Alice is denoted by

Xn = f(M,T ) (1)

where the function f(·) encapsulates any prospective coding or modulation. For the purpose of covering
the secret key, the authentication tag T is a function of the source message M and the secret key K, i.e.,

T = g(M,K) (2)

where a source message M and a secret key K uniquely determine an authentication tag T by the
authentication coding function g(·). (Generally, |M| ≥ |T | ≥ |K| in practice.)

The authentication relies on the destination terminal. Upon receiving a signal Y n, which may come
from either Alice or Eve, Bob uses a decoding function d(·) to obtain an estimate of the source message
and the authentication tag, i.e., (M̂, T̂ ) = d(Y n). If it is determined that the observation Y n demonstrates
knowledge of the secret key, i.e., T̂ = g(M̂,K), the message M̂ is considered authentic and Bob will
accept it; otherwise, the message M̂ will be rejected.

2.3. Channel Model

Firstly, a less noisy wiretap channel [17,18] is introduced to ensure that the wiretap channel’s perfect
secrecy capacity is positive. A wiretap channel X → (Y ,Z) is less noisy if the main channel is less
noisy than the source–wiretapper channel. If a wiretap channel is less noisy, the perfect secrecy capacity
is given [17,18] by

Cs = max[I(X;Y )− I(X;Z)]. (3)

In this paper, the channels between every two nodes among Alice, Bob and Eve are considered to
be noisy, except that the channel between Eve and Bob is noiseless (this assumption of giving Eve an
advantage does not incur any loss of generality). In addition, we consider that the Alice–Bob channel
PY |X is less noisy than the Alice–Eve channel PZ|X .

As is depicted in Figure 3, a codebook C is designed to transmit the secret key in a perfectly secure
way. In the transmission, if Alice intends to transmit source message m using secret key k, she randomly
chooses a codeword xn(m, t) from the mth bin of the tth subset using a uniform distribution, where
t = g(m, k). According to Lemma 1 in the following, the authentication tag can be kept hidden from
Eve by channel noise.

Lemma 1. [13,19] Consider a less noisy wiretap channel X → (Y ,Z). For a distribution p(x),
generate 2n(Rm+Rt+δ) xn sequences through p(xn) =

∏n
i=1 p(xi) where δ > 0, and index these

sequences as xn(m, t) according to the codebook C shown in Figure 3 where m ∈
{
1, ..., 2nRm

}
and

t ∈
{
1, ..., 2nRt

}
. The codeword xn(m, t) is picked from the mth bin of the tth subset using a uniform

distribution. Then, rate R = Rm+Rt can be delivered to the legitimate receiver as long as R ≤ I(X;Y ),
and by setting Rm = I(X;Z), Rt = I(X;Y )− I(X;Z) is an achievable equivocation rate.

Proof. Please refer to [19] for technical details.
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Figure 3. The codebook used in our authentication scheme. The codebook is divided into
|T | subsets, each of which further partitioned into |M| bins. Each subset corresponds to an
authentication tag t, and each bin in each subset corresponds to a source message m.

3. Security Performance Analysis

In this section, the impersonation attack and the substitution attack are primarily considered.
The performances of protecting against the impersonation attack and the substitution attack are
respectively analyzed.

Firstly, for an impersonation attack, the optimal strategy for Eve is to transmit a codeword xn(m, t)

corresponding to the secret key k that has the largest probability of being accepted by Bob. Hence, Eve’s
success probability of an impersonation attack PI is

PI = max
m∈M

max
t∈T

∑
k∈K

Pr[t = g(m, k)]. (4)

From (4), it can be seen that the success probability of the impersonation attack does not relate to
the channels PY |X or PZ|X . Therefore, to simplify the analysis, we finish the derivation by recalling the
following lower bound on PI in [7], and we have the following lemma.

Lemma 2. The opponent’s success probability of the impersonation attack is lower bounded by

PI ≥ 2−I(K;Xn). (5)

Proof. Please refer to [7] for technical details.

Remark 1. The lower bound PI ≥ 2−I(K;Xn) is the infimum on PI . Due to the fact that I(K;Xn) =

H(K) − H(K|Xn), the lower bound PI ≥ 2−H(K) is achievable when H(K|Xn) = 0. That is, the
performance of protecting against the impersonation attack relates to the design of the authentication
code (i.e., the design of the generation function g(·)).

Secondly, for a substitution attack, Eve intercepts an additional observation zn = h(xn), where h(·)
represents the channel between Alice and Eve. Eve has to replace the intercepted source message m∗

with another message m (m ̸= m∗); otherwise, Eve becomes a relay node. Note that m∗ denotes the
estimated source message according to the observation zn = h(f(m∗, g(m∗, k))), and according to
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Lemma 1 Eve can estimate the source message correctly by setting Rm = I(X;Z), i.e., p(m∗|zn) = 1.
The optimal strategy for Eve is to transmit a codeword xn(m, t) (m ̸= m∗) corresponding to the secret
key k that has the largest probability of being accepted by Bob to replace the intercepted one. Hence,
based on the information zn, the success probability of a substitution attack PS is

PS =
∑
zn

p(zn) max
m∈M
m ̸=m∗

max
t∈T

∑
k∈K

Pr[t = g(m, k)|zn]. (6)

To simplify the analysis, we have the following theorems.

Theorem 1. The opponent’s success probability of the substitution attack is lower bounded by

PS ≥ 2−I(K;Xn|Zn) (7)

where Xn and Zn come from two distinct source messages with the same secret key.

Proof. Please refer to Appendix A for technical details.

Theorem 2. The lower bound
PS ≥ 2−I(K;Xn) (8)

is achievable iff H(K|Zn) = H(K).

Proof. Please refer to Appendix B for technical details.

Remark 2. The lower bound PS ≥ 2−I(K;Xn|Zn) in Theorem 1 is the infimum on PS . The condition
H(K|Zn) = H(K) means that Eve cannot acquire any knowledge about the secret key from her
observations. According to Lemma 1, Theorems 1 and 2 show that the performance of protecting against
the substitution attack relates to the codebook C and the function f(·). Furthermore, the lower bound
PS ≥ 2−H(K) is achievable due to the same reason in Remark 1.

According to the theorems and lemmas above and [9], we draw the following theorem.

Theorem 3. If K satisfies the uniform distribution, H(K|Xn) = 0 and the perfect secrecy capacity Cs

of the wiretap channel X → (Y ,Z) is nonzero, then there exist constants α > 0 and β > 0 so that

2−H(K|Zn) ≤ PD ≤ 2−H(K) + αe−nβ (9)

where n is the codeword length that satisfies n > max{ log2 |T |
I(X;Y )−I(X;Z)−2δ

, log2 |T ||M|
I(X;Y )−δ

} (δ > 0). The
sufficient and necessary conditions for PD = 2−H(K) are that K satisfies the uniform distribution,
H(K|Xn) = 0 and H(K|Zn) = H(K).

Proof. Please refer to Appendix C for technical details.

Remark 3. The condition that H(K|Xn) = 0 reveals the optimal design of the authentication coding
function g(·) (e.g., g(m, k) = hash(m) ⊕ k). The condition H(K|Zn) = H(K) reveals that it should
choose an appropriate codebook C and the function f(·) (e.g., [20–24]) to prevent the information
leakage of the secret key.
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Remark 4. PD ≥ 2−H(K|Zn) is the infimum on PD, and PD ≤ 2−H(K) + αe−nβ is the supremum on
PD. When the perfect secrecy capacity Cs of the wiretap channel X → (Y ,Z) is nonzero, there exist
a codebook C and a function f(·) such that I(K;Zn) → 0 when n → ∞ [12,23–25]. At this time,
it becomes secrecy from channel resolvability [26], that is, Eve cannot distinguish between the uniform
input distribution on sub-C (i.e., a subset of C) and C by observing only Zn. Then, the upper bound can be
derived. Thus, as n goes to infinity, the upper bound of PD matches its lower bound, i.e., PD = 2−H(K).

Remark 5. Theorem 3 shows that the substitution attack can be prevented due to the fact that the secret
key is completely hidden from Eve, then all the information about the secret key can be used to protect
against the impersonation attack.

4. Comparisons With Previous Works

Compared with conventional authentication modes over noiseless channels, introducing channel
noise to protect the transmission of the secret key brings additional security gain, which has been
discussed in [9]. Another merit is that the service life of the secret key can be efficiently extended.
In classical authentication schemes, after eavesdropping several transmissions between Alice and Bob,
the knowledge of encoded messages enables the information of the secret key to be determined [27].
However, if the information of the secret key is primarily protected by channel noise, its security
will not rely on any assumption on the computational power of attackers. Thus, it can efficiently
extend the service life of the secret key. Moreover, compared with the work in [9], ours has the
following advantages.

(1) Our work can scale the optimal security performance exactly even if the codeword length n is
limited. Specifically, this paper considers the intercepted observation Zn, directly derives the infimums
on PS and PD and gives the sufficient and necessary conditions for tightness. Moreover, these results
reveal the optimal design of the authentication scheme (i.e., Remark 3). However, the work in [9] only
proves the reachability of the optimal security performance when the codeword length n goes to infinity.
Thus, our work is more significant and practicable.

(2) The authentication model in [9] may incur the power-substitution attack, especially in linear code
schemes (e.g., superposition coding is encapsulated in f(·) [10]). For example, as is depicted in Figure 3,
a codeword could be modified into another one by a synchronously transmitted and well-designed
malicious signal. However, in our scheme, since the authentication tag encapsulates the source message
and the secret key (i.e., Equation (2)), the power-substitution attack can be effectively limited in the
subsets of the source message, and with an additional trick it can be prevented. (Please refer to
Appendix D for more technical details.) Instead of designing specific code schemes in f(·), our scheme
introduced g(·) (i.e., Equation (2)) to defend against the power-substitution attack. Thus, our scheme can
be applied in the existing wireless communication systems with minimal modifications.

(3) Our authentication model degrades to the one in [9] when T = g(M,K) = K. Thus, the
authentication model in [9] can be seen as a special case of ours. This special case is not the optimal
one and is not permitted in our scheme due to the reasons above. In addition, it is obvious that the
scheme in [9] exposes the secret key when the wiretap channel’s secrecy capacity cannot be guaranteed
to be nonzero according to its codebook. However, when the authentication tag leaks to Eve, our
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scheme degrades to the Simmons’ model [27]. Thus, we can adjust the construction of g(·) to adapt
the time-varying channels.

5. Conclusions

In this paper, we have reformulated the authentication problem in [9] and proposed an enhanced
authentication scheme. We primarily analyzed the eavesdropping agent’s success probability of
impersonation and substitution attacks, derived the necessary and sufficient conditions for secure
authentication codes, and offered the optimal constructions of the authentication scheme. Consequently,
we provided general perspectives to show that it is a reliable way to utilize channel noise in message
authentication applications.
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Appendix

A. Proof of Theorem 1

By recalling (6), it can be seen that
∑
k∈K

Pr[t = g(m, k)|zn] = p(t|m, zn) [7,28], thus PS is updated to

PS =
∑

zn∈Z
p(zn) max

m∈M\{m∗}
max
t∈T

p(t|m, zn). Hence, we have
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− logPS

=− log
∑
zn

p(zn) max
m∈M\{m∗}

max
t∈T

p(t|m, zn)

(a)

≤ − log
∑
zn

p(zn)
∑
m∈M

q(m|zn)max
t∈T

p(t|m, zn)

(b)

≤ −
∑
zn

p(zn)
∑
m∈M

q(m|zn) logmax
t∈T

p(t|m, zn)

(c)
= −

∑
zn

p(zn)
∑
m∈M

q(m|zn)
∑
t∈T

p(t|m, zn) logmax
t′∈T

p(t′|m, zn)

(d)

≤ −
∑
zn

p(zn)
∑
m∈M

q(m|zn)
∑
t∈T

p(t|m, zn) log p(t|m, zn)

=
∑
zn

p(zn)
∑
m∈M

q(m|zn)H(T |m, zn)

(e)
=
∑
zn

p(zn)
∑
m∈M

q(m|zn)[H(K|zn,m)−H(K|zn,m, T )]

=
∑
zn

p(zn)[H(K|zn,M)−H(K|zn,M, T )]

=H(K|Zn,M)−H(K|Zn,M, T )

(f)
=H(K|Zn)−H(K|Zn, Xn)

=I(K;Xn|Zn).

(10)

In this expression, the inequality (a) follows from the fact that the maximum must be greater than or
equal to the weighted average of a distribution, and q(m|zn) is the probability of substituting the original
source message with m when given the observation zn, especially q(m|zn) = 0 if m = m∗; (a) with
equality iff max

t∈T
p(t|m, zn) is constant for all m ∈ M\{m∗}; the inequality (b) comes from Jensen’s

inequality, and (b) with equality iff max
t∈T

p(t|m, zn) is constant for all zn ∈ Zn\ {zn : p(zn) = 0} and

m ∈ M\{m∗}; the equality (c) holds due to the fact that max
t∈T

p(t|m, zn) is constant when m and

zn are given; the inequality (d) follows from the fact that the maximum must be greater than all other
individuals of a distribution, and (d) with equality iff p(t|m, zn) is constant for all t ∈ T ; the equality
(e) comes from the fact that

H(K,T |zn,m) = H(K|zn,m) +H(T |zn,m,K)

= H(T |zn,m) +H(K|zn,m, T )

where H(T |zn,m,K) = 0, since the source message and the secret key uniquely determine the
authentication tag; the equality (f) holds due to the fact that K → Zn → M forms a Markov chain.

In addition, notice that Xn and Zn come from two distinct source messages with the same secret key
K. In this way, it is necessary to define a probability distribution on X n × Zn, with the stipulation that
pXn×Zn(m1,m2) = 0 when m1 = m2.

Hence, we have
PS ≥ 2−I(K;Xn|Zn),
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with equality iff p(t|m, zn) is constant for all t ∈ T , zn ∈ Zn\ {zn : p(zn) = 0}, and m ∈ M\{m∗}
due to the concentration of the conditions for the equality of (a), (b) and (d) in (10).

B. Proof of Theorem 2

We prove sufficiency followed by necessity.
Sufficiency: According to (7), when H(K|Zn) = H(K), we have

PS ≥ 2−I(K;Xn|Zn)

= 2−H(K|Zn)+H(K|Zn,Xn)

= 2−H(K)+H(K|Xn)

= 2−I(K;Xn).

(11)

Then, the sufficiency is proved.
Necessity: By recalling Lemma 1, from the intercepted observation zn, the eavesdropping agent Eve

can obtain a correct source message estimate m but with a fuzzy authentication tag estimate t̃, i.e.,
d(zn) = (m, t̃). Thus, the equivocation about the authentication tag is H(T |Zn) = H(T |Zn,M) ∈
[0, H(K)] due to the fact that t = g(m, k). When H(T |Zn) = H(K), it means that Eve cannot acquire
any information about the secret key, that is, it is equivalent to H(K|Zn) = H(K).

On the other hand, we draw that I(K;Xn|Zn) is an increasing function as the equivocation of Zn

grows, since

I(K;Xn|Zn) = H(Xn|Zn)−H(Xn|K,Zn)

where H(Xn|Zn) increases as H(T |Zn) grows, and H(Xn|K,Zn) is constant.
Thus, I(K;Xn|Zn) = I(K;Xn) only if H(K|Zn) = H(K). Then, the necessity is proved.

C. Proof of Theorem 3

C.1. Proof of PD ≥ 2−H(K)

By recalling the lower bound on PI in (5),

PI

(g)

≥ 2−I(K;Xn)

= 2−H(K)+H(K|Xn)

(h)

≥ 2−H(K)

(12)

where (g) with equality iff p(t|m) is constant for all m ∈ M and t ∈ T [7]; the inequality (h) follows
from the fact that H(K|Xn) ≥ 0, and (h) with equality iff H(K|Xn) = 0. H(K|Xn) = 0 holds iff
p(k) = p(t|m), which means ∀m ∈ M, k1, k2 ∈ K such that k1 ̸= k2 satisfies f(m, k1) ̸= f(m, k2).
Thus, the lower bound PI ≥ 2−H(K) is achievable iff H(K|Xn) = 0 and K is uniformly distributed.
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Next, according to (7), we have

PS ≥ 2−I(K;Xn|Zn)

= 2−H(K|Zn)+H(K|Zn,Xn)

(i)

≥ 2−H(K|Zn)

(13)

where (i) with equality iff H(K|Xn) = 0.
Hence, we have the infimum

PD = max {PI , PS}
≥ 2−H(K|Zn),

(14)

with equality iff K is uniformly distributed and H(K|Xn) = 0.
According to Theorem 2, we have that the lower bound PD ≥ 2−H(K) is achievable iff K is uniformly

distributed, H(K|Xn) = 0 and H(K|Zn) = H(K).

C.2. Proof of PD ≤ 2−H(K) + αe−nβ

We reprise the derivation of the upper bound of PS from the channel resolvability. Let

dav(f) =
∑

zn∈Zn

p(zn)
∑
k∈K

|p(k|zn)− q(k)| (15)

be the average L1 (i.e., variational) distance between the conditional distribution p(k|zn) and the prior
distribution q(k), where q(k) represents the probability of guessing the secret key

q(k) =
∑
m∈M

p(m)Pr[t = g(m, k)|m]. (16)

Notice that in our work, k is uniformly distributed. Thus, q(k) satisfies the uniform distribution. When
H(K|Xn) = 0, we have

min q(k) = 2−H(K). (17)

If dav(f) can be arbitrarily small by appropriately choosing a codebook C and function f(·), Eve
cannot distinguish the distributions between p(k|zn) and q(k). That is, Eve cannot acquire any
information about k by only observing zn.

Following from the same proof steps as those used in [9], we can get an upper bound

PS ≤ q(k) + αe−nβ (18)

where the constants α > 0, β > 0 and the codeword length n satisfies

n > max

{
log2 |T |

I(X;Y )− I(X;Z)− 2δ
,
log2 |T ||M|
I(X;Y )− δ

}
(δ > 0). (19)

According to (17), we draw that PS ≤ 2−H(K) + αe−nβ is the supremum on PS .
This completes our proof.
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D. The Power-substitution Attack

We assume that Alice’s messages can be predicted, since authentication does not provide privacy
and Eve can intercept Alice’s messages to cause message retransmission. Moreover, the linear code
scheme (e.g., superposition coding) is an easy and common implementation in practice [10]. Thus, the
power-substitution attack is potentially dangerous.

When the code scheme in f(·) is linear, Eve can successfully modify Alice’s message m into m′

(which also can be authenticated by Bob) with malicious message ε by the power-substitution attack
in [9]’s model. That is,

f(m, k) + ε = f1(m) + f2(k) + ε

= f1(m) + f2(k) + [f1(m
′)− f1(m)]

= f(m′, k)

(20)

where ε = f1(m
′) − f1(m). Therefore, to prevent the power-substitution attack, the model in [9]

has to construct specific nonlinear code schemes and may need lots of modifications on the existing
communication system.

However, in our model the authentication code function g(·) is introduced, and if Eve wants to
successfully modify Alice’s message m into m′ with a malicious message ε, we have

f(m, t) + ε = f1(m) + f2(t) + ε

= f1(m) + f2(g(m, k)) + [f1(m
′)− f1(m) + f2(g(m

′, k))− f2(g(m, k))]

= f(m′, g(m′, k))

= f(m′, t′)

(21)

where ε = f1(m
′) − f1(m) + f2(g(m

′, k)) − f2(g(m, k)). Obviously, if ε is varying with k, then the
power-substitution attack is prevented.

Since f2(·) is unknown, it is hard to construct explicit g(·) to prevent the power-substitution attack.
Furthermore, whether there exist constructions of g(·) to prevent the power-substitution attack relates to
the size of the alphabets M, T , and K.

Take t = g(m, k) = hash(m) ⊕ k (one of the construction of g(·) according to the conclusion
in Remark 3) for example, and assume that f2(·) represents BPSK modulation (define that BSPK
respectively modulates “0” to the symbol “+1” and “1” to the symbol “−1”). We have

f2(t
′)− f2(t) = f2(g(m

′, k))− f2(g(m, k))

= f2(hash(m
′)⊕ k)− f2(hash(m)⊕ k)

= f2(hash(m
′)). ∗ f2(k)− f2(hash(m)). ∗ f2(k)

= [f2(hash(m
′))− f2(hash(m))]. ∗ f2(k).

(22)

When |M| > |T |, there must exist a subset of M that has the same hash value. Thus, if Alice
transmits a message from this subset, Eve can successfully modify it into any other messages in the
same subset without any knowledge of the secret key.

However, if N = ⌈|M|/|T |⌉ is large, we can prevent the power-substitution attack by other
techniques. For example, divide M into N subsets (i.e., M = Ms1 ∪ · · · ∪ MsN ), and each subset
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satisfies that ∀m′ ̸= m ∈ Msi (1 ≤ i ≤ N ), hash(m′) ̸= hash(m). Then, it can design a protocol that
only one subset is valid in each transmission.

Furthermore, the example above contributes to the analysis of the relationship between Eve’s success
probability of the power-substitution attack and the size of the alphabets M, T , and K. We have the
following theorem.

Theorem 4. When |M| > |T |, there exist m′ ̸= m ∈ M and k ∈ K satisfying g(m′, k) = g(m, k), that
is, Eve has nonzero success probability of the power-substitution attack.

Proof. Assume that |M| = |T |+1, and M = Ms ∪{m′}. Then, there must exist a k ∈ K and a t ∈ T
satisfying t = g(m′, k).

According to (22), we can draw that when |M| = |T | there exists a g(·) (i.e., t = m ⊕ k, padding
zeros on the high-order bits of k when |K| < |M|) satisfying that ∀m ̸= m̄ ∈ M, k ∈ K, it has
g(m, k) ̸= g(m̄, k). Therefore, with the same k and t, there must exists a m ∈ Ms that satisfies
t = g(m, k).

In conclusion, though the power-substitution attack is inevitable when |M| > |T |, it is still feasible
to introduce g(·) into the existing linear code schemes (e.g., superposition coding) to defend against the
power-substitution attack. Together with other techniques, it is an efficient solution.
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