
Entropy 2015, 17, 7118-7132; doi:10.3390/e17107118

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

A Novel Method for Increasing the Entropy of a Sequence of
Independent, Discrete Random Variables

Mieczyslaw Jessa

Faculty of Electronics and Telecommunications, Poznan University of Technology, ul. Polanka 3,

61-131 Poznan, Poland; E-Mail: mjessa@et.put.poznan.pl; Tel.: +48-61-665-3854

Academic Editor: Raúl Alcaraz Martínez

Received: 23 April 2015 / Accepted: 12 October 2015 / Published: 22 October 2015

Abstract: In this paper, we propose a novel method for increasing the entropy of a

sequence of independent, discrete random variables with arbitrary distributions. The method

uses an auxiliary table and a novel theorem that concerns the entropy of a sequence in which

the elements are a bitwise exclusive-or sum of independent discrete random variables.

Keywords: entropy; sequences; random variables; distribution; combining exclusive-or

PACS Codes: 05.10.±a

1. Introduction

Sequences of random variables play an important role in many fields of science. If we have a

sequence of k random variables, then a natural and important question is as follows: what is the

entropy of the sequence, and how does it grow with k? Examples include dynamical systems,

cryptography, simulations, and statistics. Usually, we require that the value of the entropy be maximal

or at least close to the maximum.

The literature devoted to sequences includes many books, journals and conference papers. The

authors consider various aspects of sequences and their applications [1] but most of these papers

concentrate on the mathematical description of sequences, e.g., as a ring of integers, the correlation

within a sequence elements, measures of sequence complexity, whether a sequence can be modeled as

a sequence of independent, identically distributed random numbers, and so on. The problem of

maximizing the entropy of a sequence of independent, discrete random variables is considered mainly

OPEN ACCESS

Entropy 2015, 17 7119

by scientists involved in the theory and practice of random numbers. Because high entropy of a

random sequence is a necessary condition of its use in cryptography, several general methods that

increase the sequence entropy have been proposed [2–11]. These methods include both very simple

correctors and complicated hash functions or ciphers. Examples of simple correctors are combining

exclusive-or two or more neighbor bits produced by a random source, feeding a linear feedback shift

register (LFSR) with a sequence with small entropy, or using the von Neumann corrector. Examples of

complicated correctors are hash functions SHA-1, SHA-2, decryption-encryption standard (DES),

advanced encryption standard (AES), and so on. Solutions using extractor algorithms and resilient

functions that “filter out” any deterministic bits from a raw sequence with a deterministic function also

exist [5–10]. A good review of post-processing methods is given in [6].

In this paper, we define a bitwise exclusive-or sum of discrete random variables and prove formally

that under certain assumptions, an infinite bitwise exclusive-or sum of independent discrete random

variables with values encoded by l bits has a uniform distribution. We propose to use this property, the

symbols that have already been produced, and an auxiliary table to produce a sequence that has almost

maximal entropy using a single random source. The differences between existing algorithms and the

algorithm XOR-B proposed in this paper are such that the uniform distribution has been proven

formally and the algorithm does not need auxiliary deterministic circuit. Known algorithms are based

on heuristic arguments and empirical experiments or introduce deterministic bits such as methods

using LFSRs. The exception is the von Neumann corrector. Unfortunately, the von Neumann corrector

produces sequences with variable and difficult to predict bit rates, which significantly limits its

applications. Consequently, the most frequently used post-processing without an external auxiliary

deterministic circuit and significant bit reduction uses a hash function or a cipher implemented in a field

programmable gate array (FPGA) or in an application specific integrated circuit (ASIC) [11].

The organization of this paper is as follows. Section 2 contains the basic definitions. The proof of

the proposed theorem and the algorithms for producing a sequence with almost maximal entropy with

the use of a sequence with smaller entropy and an auxiliary table are contained in Section 3. The same

section contains an example that illustrates a practical use of the proposed theorem. The paper ends

with the conclusions in Section 4.

2. Bitwise Exclusive-or Sum of Random Variables

The mathematical environment for the method and theorem proposed in this paper is the probability

space and operations on its elements. The probability space is a measurable space that is defined by a
triple (, ,)F PΩ , where [12–14]:

(1) Ω is any non-empty set called the sample space.

(2) F is a σ -algebra or σ -field, i.e., a collection of subsets of Ω that satisfies four postulates:

i. FΩ ∈ ,

ii. for any subset A ⊆ Ω , if A F∈ , then cA F∈ ,

iii. for any countable collection of subsets { }iA ⊆ Ω , 1, 2,...i = , if iA ⊆ Ω , then i
i

A F
 
  
 

∈ ,

and,

Entropy 2015, 17 7120

iv. for any countable collection of subsets { }iA ⊆ Ω , 1,2,...i = , if iA ⊆ Ω , then i
i

A F

 

 
∈ .

(3) P is a countably additive measure, i.e., a mapping from F to the closed interval 0,1   such

that () 0P ∅ = and () 1P Ω = .

The sample space Ω is the set of all possible random outcomes of some experiment. A random

variable assigns a numerical value to each of those outcomes [15]:

Definition 1. Given a probability space (, ,)F PΩ , a random variable is a function X from Ω to the

real numbers R such that

{ }; ()X x Fω ω∈Ω ≤ ∈ (1)

Formula (1) states that the function X must be measurable. For a continuous probability space, the

sample space Ω is uncountable, and the random variable X can assign an uncountable number of

values. For the discrete probability space, the sample space Ω is finite or countable [12–15].

Definition 2. We say that X is a discrete random variable if the function X assumes only a finite or
countable number of values.

In this paper, we assume that a random source XS produces the sequences of symbols kx ,

1,2,...k = . The symbols are represented unequivocally by l-bit integer words 0, 1, …, p − 1 from the
finite set {0,1,..., 1}A p= − , where 2lp = . The process of emitting symbols can be modeled as a

stochastic process

{ ()}XS X k= , 1,2,...k = (2)

where ()X k are discrete random variables with values from the closed interval [0,2 1]l − .

Definition 3. The entropy of a stochastic process { ()}XS X k= is defined by [16]

()1
() lim (1), (2),..., ()A X

n
H S H X X X k

k→∞
= (3)

when the limit exists.

Formula (2) determines the average rate of the asymptotic growth of the entropy ()A XH S with

increasing k if the limit exists [16]. The entropy ()A XH S is also termed the entropy rate. The value of

()A XH S is in bits per time-step (bit/time-step). If { ()}X k is a sequence of independent and identically

distributed (i.i.d.) random variables, then [16]

() () ()() (1) (2) ... ()XAH S H X H X H X k= = = = (4)

If { ()}X k is a sequence of independent but not identically distributed random variables, then [16]

1
{(()} (())

k

j
H X k H X j

=
= (5)

Entropy 2015, 17 7121

Following Thomas and Cover, it worth noting that we can choose sequences of distributions on

(0), (1),...X X such that the limit ()
1

1() ()
k

XA
j

H S H X j
k =

=  does not exist [16].

The greatest value of ()XAH S is equal to l bits per time-step. This value is obtained when { ()}X k

is a sequence of independent and uniformly distributed random variables. Thus, the key point for the
greatest entropy is the independence and uniformity of the distributions on (1), (2),...X X .

Because the values of ()X k are encoded by l bits, the random variable ()X k can be written

unequivocally as a sequence of l binary random variables ()iX k , 0,1,..., 1i l= − , i.e., { }() ()iX k X k= .

Let YS be another random source that produces sequences of symbols ky , 1,2,...k = . As previously

noted, the symbols are represented unequivocally by l-bit integer words 0, 1, …, p − 1 from the finite
set {0,1,..., 1}A p= − , where 2lp = , and the process of emitting symbols can be modeled as a

stochastic process

{ ()}YS Y k= , 1,2,...k = (6)

where ()Y k are random variables with values from the closed interval [0,2 1]l − . Each random variable

()Y k can be written unequivocally as a sequence of l binary random variables ()iY k , 0,1,..., 1i l= − ,

i.e., { }() ()iY k Y k= .

Definition 4. A bitwise exclusive-or sum ()Z k of independent random variables ()X k and ()Y k is an

operation on sequences { }()iX k and { }()iY k of equal length of binary random variables that combines

()iX k and ()iY k , 0,1,..., 1i l= − using the exclusive-or operation, i.e.,

{ } { } { }() () () () () () ()i i i iZ k X k Y k X k Y k X k Y k= ⊕ = ⊕ = ⊕ (7)

If ()iX k and ()iY k are binary random variables, then ()iZ k is also a binary random variable.

Consequently, { } { }() () () ()i i iZ k Z k X k Y k= = ⊕ are random variables with values in the closed interval

[0,2 1]l − . The probability that ()X k assumes a given value x from [0,2 1]l − is equal to

()() xP X k x p= = . Similarly, the probability that ()Y k assumes a given value y from [0,2 1]l − is

equal to ()() yP Y k y p= = . For the random variable ()Z k , ()() zP Z k z p= = , where [0,2 1]lz∈ − .

3. Increasing the Entropy of a Sequence of Discrete Random Variables with an Auxiliary Table

As noted in the previous section, the process of emitting symbols from {0,1,..., 1}A p= − can

be modeled as a stochastic process { ()}XS X k= , 1,2,...k = . The maximal entropy of { ()}XS X k= is

obtained when ()X k are independent and uniformly distributed random variables. In this section,

we assume that ()X k are independent but not uniformly distributed. They can also have different

distributions for different k. We search for a computationally efficient algorithm for processing a
sequence of symbols kx emitted by XS that provides at the output a sequence that can be modeled as

a sequence of independent and uniformly distributed random variables. The proposed algorithm uses

an auxiliary table T with L cells and has the following form:

Entropy 2015, 17 7122

Algorithm XOR-A

Initialization:

Fill all of the cells of T with the L subsequent l-bit words produced by XS ;

Computations:

for : 1n = to N do

() ()

Produce

Produce 0, 2 1

1

: mod , 2

ˆ ˆ: [mod] ... [mod]

,

ˆ

[]:

L n

m
n

n

m

n L n n n

n

L n

l bit word x

m bit random number

j n L L R

x T j s L T j R s L

s with uniform distribution

s s

z

T j x

+

+

+

−


 − ∈ −  
 +


= ≥ ⋅
 = ⊕ + ⊕ ⊕ + ⋅


=

=

end;

The subsequent l-bit words kx are written cyclically into table T and addressed from 0 to 1L− .

During each step, we choose R + 1 l-bit words 0 1, ,..., Rt t t , where 0t is the current kx and 1,..., Rt t are

read from T. The addresses of 1,..., Rt t depend on the random number [0, 2 1]m
ns ∈ − being produced

by an auxiliary random source with a uniform distribution. The elements of the R + 1 vectors

0 1, ,..., Rt t t are next summed modulo 2, which forms a single output nz with values from [0, 2 1]l − . To

avoid multiple summing of the same number, the size of T satisfies the condition 2mL R≥ ⋅ , where R is
an integer. For the same reason, we use 1n̂ ns s += instead of ns . Producing an N-element sequence

{ }nz requires the emission of (N + L) l-bit words kx .

Algorithm XOR-A uses the property that a sequence formed from a sequence of independent

random numbers is also random. This property has been used by MacLaren and Marsaglia [17] to permute

sequences from the linear congruential pseudorandom generator with an auxiliary and simpler,

pseudorandom number generator. They noticed that the shuffled sequence might have better statistical

properties and a longer period. This method is known in the literature as Algorithm M [18]. Another

heuristic approach used in algorithm XOR-A is the observation that combining XOR random words

can also provide sequences with better statistical properties, in particular with higher entropy rates [19].

No exact theory explaining why combined generators can significantly improve the properties of

sequences has been published yet. We know only the heuristic arguments. For example, Deng and

George, and later Deng et al., provided arguments based on probability densities [20,21]. Some

heuristic arguments come from Marsaglia [22]. One of the intuitive arguments for why combining

improves the statistical properties of sequences and why it is better than shuffling is that a combined

generator can produce new numbers, whereas shuffling only permutes existing elements.

An important factor in combined generators is the choice of mathematical operation that combines

independent digital words. Because combining should not significantly increase the computation

effort, only simple operations are considered: addition, addition modulo p, where p is an integer, and

Entropy 2015, 17 7123

bitwise exclusive-or. The latter has a mixing property, commonly used, e.g., in ciphers. Examples

include the decryption-encryption standard, the advanced encryption standard or the secure hash

algorithms SHA-1 or SHA-2, etc., [11,23,24]. The XOR operation applied to sequences of bits

produced by independent source generators also reduces the correlation between adjacent bits [3,6]. To

use this property, we can divide a sequence into, e.g., l-bit disjoint blocks and compute the XOR

function for each block. As the result, a sequence with a lower correlation between adjacent bits is

obtained, but this method reduces the bit rate l times. Combining source streams according to

Algorithm XOR-A decreases the output speed only slightly because of the fast operations used (this

problem will be discussed at the end of Section 3). The distance between the elements that form the
i-th, 1,2,...,i R= , source stream changes randomly because ns is random. Let us emphasize, that this

distance cannot be constant because the obtained source sequences are shifted versions of the same

sequence. It cannot also be deterministic because elements of the source streams may repeat

periodically, producing periodic patterns in the output sequence. This limits the use of algorithm

XOR-A to sequences with a length not greater than the period of the auxiliary generator when the
source of numbers { }ns is deterministic. However, if { }ns is produced by an entropy source, then this

limitation does not exist.
Algorithm XOR-A provides a sequence { }nz of l-bit words. Because a bitwise exclusive-or sum of

random variables is also a random variable, each nz is a value of a certain discrete random variable ()Z n ,

1,2,...,n N= . A set of l-bit words 0 1, ,..., Rt t t is formed randomly and independently of the previous

sets. Consequently, ()Z n and ()Z n j+ are also independent for any 0j ≠ . The open problem is the

distribution of variables ()Z n when ()X k can have arbitrary, the same or different distributions.

Theorem 1.

If

(1) Random variables ()X k , 1,2,...k = are independent,

(2) An auxiliary source provides the random numbers ns with a uniform distribution

(3)
1[0,2]

0
l x

x
p

−∈
≠∀ ,

(4)
1[0,2]

1
l x

x
p

−∈
≠∀ ,

then the random variable ˆ ˆ() () () ... ()n nZ n X k X k s X k R s= ⊕ + ⊕ ⊕ + ⋅ has a uniform distribution in the

interval [0,2 1]l − for R→∞ .

Proof. Independently of k and the value of n̂s , the random variable ()Z n , 1,2,...n =

is a bitwise exclusive-or sum of 1R + independent random variables with theoretically arbitrary,

the same or different distributions. Consequently, proving the distribution of
ˆ ˆ() () () ... ()n nZ n X k X k s X k R s= ⊕ + ⊕ ⊕ + ⋅ , 1,2,...k = can be reduced to proving the distribution of

the random variable

(0) (1) ... ()Z U U U R= ⊕ ⊕ ⊕ (8)

where (0), (1),..., ()U U U R are independent with arbitrary, the same or different distributions. Because

Entropy 2015, 17 7124

the values of ()U r , 0,1,...,r R= are encoded by l bits, the random variable ()U r can also be written

unequivocally as a sequence of l binary random variables ()iU k , 0,1,..., 1i l= − , i.e., { }() ()U r U r
i

= .

Similarly, the values of Z are also encoded by l bits, and Z can be written unequivocally as a sequence
of l binary random variables iZ , 0,1,..., 1i l= − , i.e., { }iZ Z= . It is also that

(0) (1) ... () { } { (0) (1) ... ()}i i i iZ U U U R Z U U U R= ⊕ ⊕ ⊕ = = ⊕ ⊕ ⊕ (9)

To prove that Z has a uniform distribution, we first show that (0) (1) 1/ 2i iP Z P Z= = = = for

R → ∞ , where P denotes the probability and 0,1,..., 1i l= − . The key to this proof is a calculation trick

and the methodology introduced by R. B. Davies in a private paper [3]. The link to this page can also
be found at the National Institute of Standards and Technology (NIST) webpage [25]. If iU takes the

values of 0 and 1, then () 1 2i if U U= − takes the values of 1 and −1. Consequently [3],

() () () ()() (0) (1) ... () (0) (1) ()i i i i i i if Z f U U U R f U f U f U R= ⊕ ⊕ ⊕ = ⋅ ⋅ ⋅ (10)

If () 1 2i if Z Z= − , then ()1 () / 2i iZ f Z= − . Assuming that ()iE Z is the expected value (mean) of

the random variable iZ , we obtain the following:

[] () () ()1 () 1 1 1 1
() () (0) (1) ()

2 2 2 2 2
i

i i i i i

f Z
E Z E E f Z E f U f U f U R

− = = − = − ⋅ ⋅ ⋅    
 (11)

If (0), (1),..., ()i i iU U U R are independent, then

() () (){ }1 1
() (0) (1) ... ()

2 2i i i iE Z E f U E f U E f U R= − ⋅ ⋅ ⋅           (12)

Because

() ()() 1 2 ()i iE f U k E U k= −   (13)

we obtain

() () ()1 1
() { 1 2 (0) 1 2 (1) ... 1 2 () }

2 2i i i iE Z E U E U E X R= − − ⋅ − ⋅ ⋅ −           (14)

or

{ }
0

1 1 1
() 2 (0) 2 (1) 2 () 2 ()

2 2 2

R

i i i i i
r

R
E Z R r

=

= − Δ ⋅ Δ ⋅ ⋅ Δ = − Δ∏ (15)

where

()1
() ()

2i ir E X rΔ = − (16)

Considering the sign of iΔ ,

0 0

0 0

1 2 () () 0
2

()
1 2 () () 0
2

R R
R

i i
r r

i R R
R

i i
r r

r for r
E Z

r for r

= =

= =









− Δ Δ ≥
=

+ Δ Δ <

∏ ∏

∏ ∏
 (17)

Entropy 2015, 17 7125

Based on the assumption, the random variables can assume any value from the interval [0, 2 1]l −

with a nonzero probability, and no value from [0,2 1]l − is “certain,” i.e., it cannot be assumed with a

probability equal to unity. Consequently, any subsequence of an l-bit sequence also appears with a
nonzero and smaller than unity probability, and the variables ()iU r , 0,1,...,r R= , 0,1,..., 1i l= − assume

both zero and one for each i. In this case, the expected value ()()iE U r is always nonzero and is

smaller than unity, i.e.,

0,1,..., 1, 0,1,...,
0 2 () 1i

i l r R
r

= − =
< Δ <∀

(18)

Because the product of the numbers with values in the interval (0,1) decreases to zero as the

quantity of multiplied numbers increases, we obtain

0 0

0 0

1 2 () 0
2 1lim () lim

21 2 () 0
2

()

()

R R
R

i
r r
R RR R

R
i

r r

i

i

i

for r
E Z

for r

r

r

= =
→∞ →∞

= =

 
 
 
 
 
 
 

− Δ ≥
= =

+ Δ <

Δ

Δ

∏ ∏

∏ ∏
 (19)

Variable iZ takes only two values, zero or one. It leads to the following equality

(0) (1) 1/ 2i iP Z P Z= = = = (20)

Because the random variables ()U r , 0,1,...,r R= assume all values from [0,2 1]l − with a nonzero

and smaller than unity probability and (0) (1) 1/ 2i iP Z P Z= = = = for all 0,1,..., 1i l= − , the variable

{ }iZ Z= has a uniform distribution in [0,2 1]l − for R approaching infinity. This completes the proof.

Let us emphasize that the assumption that ()U r , 0,1,...,r R= assumes values from [0,2 1]l − with a

nonzero and smaller than unity probability is necessary to draw the conclusion that equal probabilities
of assuming zeros and ones by iZ results in a uniform distribution of { }iZ Z= . This assumption

eliminates all of the specific situations, i.e., combining variables with fixed (probability equal unity)

values or the lack of some numbers (zero probability). As an example, let us consider the case of
2l = . If ()U r assumes, e.g., only two values, 3 and 0, with a probability of 1/2 (the numbers 1 and 2

are assumed to have zero probability), then the result of the combination is the numbers 3 or 0,

independent of R. The number 3 is obtained if we combine an odd number of number 3s, and the
number 0 is obtained for an even number of number 3s, although 0 0(0) (1) 1/ 2P Z P Z= = = = and

1 1(0) (1) 1/ 2P Z P Z= = = = .

Words 1 2, ,..., Rt t t are chosen from the words that were already produced by the random source XS .

Theorem 1 shows that perfect uniformity (the entropy equal to l bits/time-step) can only be obtained in

the limit R→∞ , i.e., for table T with L→∞ cells. In a practical system, L is finite, and consequently,

the entropy can only be close to the theoretical limit. Assuming a fixed R, which results from the

assumed acceptable value of the entropy ()ZAH S of sequence { }()Z n , the smallest L is equal to 2R

(1m =). A small m enables some of the words 1 2, ,..., Rt t t chosen in step n to repeat for the next several

iterations with a large probability. A greater value for m reduces this probability but increases the size
of table T. A smallest acceptable m should ensure that the smallest distance, i.e., ˆ 1ns = , repeats

statistically no more frequently than every R iterations when we use n Lx + as 0t . This condition can be

written as

Entropy 2015, 17 7126

1ˆ(1)nP s
R

= ≤ (21)

where P is the probability. Because { }ˆns has a uniform distribution, Condition (21) takes the following

form:

1 1
2m R

≤ (22)

or

2logm R≥ (23)

Because m must be an integer, inequality (23) takes the form

2logm R  ≥ (24)

where α   is the smallest integer number that is greater than α , α 0≥ . A given distance ˆns repeats

statistically every R iterations for 2logm R= or rarely, when 2logm R> .

The basic weakness of algorithm XOR-A is the necessity of using an additional source of
randomness that provides random numbers ns with a uniform distribution. Because the proof of the

proposed theorem indicates that such numbers are available at the output of algorithm XOR-A, they
can be used to produce the numbers ns . We exploit here the fact that any subsequence of digits of a

random number can be used to form another random number. Therefore, if nz is random, then any

sequence formed from bits of nz is also random [19]. Assuming that

ˆ : 1 trunc ()n m ns z= + (25)

where the truncation operation leaves the m higher-order bits of number nz , the algorithm XOR-A can
be modified in the following way:

Algorithm XOR-B

Initialization:

Choose the size L of an auxiliary Table T;
Fill all of the cells of T with the L subsequent l-bit words produced by XS ;

1̂ : 1s =

Computations:

for : 1n = to N do

() ()

1

Produce

: mod , 2

ˆ ˆ: [mod] ... [mod]

[] :

ˆ : 1 trunc (),

L n

m

n L n n n

L n

n m n

l bit word x

j n L L R

z x T j s L T j R s L

T j x

s z m l

+

+

+

+

−
 = ≥ ⋅
 = ⊕ + ⊕ ⊕ + ⋅
 =
 = + ≤

end;

Entropy 2015, 17 7127

A limitation for algorithm XOR-B is the number R of words 1 2, ,..., Rt t t that are read from T.

Parameter R must satisfy the condition

2lR ≤ (26)

One of the factors determining the utility of a proposed algorithm is its computational complexity.

The framework for the complexity of computations is contained in a classical paper by M. O. Rabin [26].

In algorithm XOR-B the following operations on l-bit words can be extracted during the production a
single l-bit word nz :

i modA B —division of two l-bit numbers with a rest,

ii A B⋅ —multiplication of two l-bit numbers,

iii A B+ —addition of two l-bit numbers,

where operation (i) can be reduced to multiplication by an inverse number. Assuming that the
elementary operation is addition, the complexity of computations of (i) and (ii) can be equal to 2()O l ,

1.58()O l or (log / loglog)O l l l , where O is one of the family of Bachmann-Landau notations known as

“Big O” [27,28]. The concrete value depends on the assumed multiplication algorithm. The complexity
of the computation of (iii) is ()O l or (log)O l . As previously, the details depend on the addition

algorithm assumed. Algorithm XOR-B also uses logic operation XOR on l-bit words. The
computational complexity of this operation can be reduced to l multiplications of one-bit numbers with
addition in the Galois field GF(2). The complexity of this operation is ()O l . The dominating operation

in algorithm XOR-B is:

() ()ˆ ˆ: [mod] ... [mod]n L n n nz x T j s L T j R s L+= ⊕ + ⊕ ⊕ + ⋅ (27)

The assignment from Equation (27) can be factored into R operations XOR of the form

[(()) mod]A A T B C D E= ⊕ + ⋅ (28)

The complexity of Equation (28) is equal to:
2 2() () () ()

(constant time of reading elements from table T)+ (-bit XOR)

f l l multiplications l addition l division with rest

C l l

= + +
+

 (29)

Omitting a constant C, Equation (29) is reduced to

() 2 (1)f l l l= + (30)

Because the dominating operation is multiplication, the computational complexity of algorithm
XOR-B can be assessed as 2()O l for a simple multiplication of l-bit numbers, 1.58()O l

for the multiplication of l-numbers with Karatsuba’s algorithm and (log / loglog)O l l l for the

Schönhage–Strassen algorithm. When algorithm XOR-B is implemented in a hardware supporting

multiplication of l-bit numbers, the time of multiplication can be the same as for the elementary
operation. Consequently, the complexity of Equation (28) can be reduced to ()O l . It is the same as the

complexity of hash algorithms with the same word length (32l = for SHA-1 and SHA-256/224 and

64l = for SHA-512/384).

Entropy 2015, 17 7128

The total computational effort depends on both l and parameter R. Parameter R does not depend on l

and is assumed to be fixed value for algorithm XOR-B. Computational effort determines a total time of

computations and is usually measured in clock cycles necessary to execute an algorithm. In our case,
it is production of a single number nz . It requires: R operations XOR defined by Equation (28), one

load of l-bit word, one computation of modj n L= , one truncation, and one substitution []:T j x= . The

detailed comparison of XOR-B with SHA-1 and SHA-2 is reliable when the same software and

hardware platform is used for all algorithms. We limit our considerations to general comment, because

it is not a subject of this paper. For very large R, greater than 80 rounds for SHA-1, SHA-512/384 and

64 rounds for SHA-256/224, the algorithm XOR-B can theoretically be slower. However, the high
value of R indicates that some numbers nx occur with very small probability. There is no proof that

SHA-1 and SHA-2 always provide uniform distribution at the output for biased raw sequences [29].

Example

Theorem 1 indicates that the simplest method for increasing the entropy of a sequence is to group

its elements into blocks with 1R + elements and compute the bitwise exclusive-or sum of all of the

elements for each block. This method is numerically inefficient because to obtain an N-element
sequence with a greater entropy, a random source XS must produce ()1N R + symbols kx . Using an

auxiliary table and the symbols already produced by source XS , the production of the N-element

sequence with theoretically the same entropy requires emitting N L+ symbols, where 2mL R= ⋅ ,

2logm R  = . For example, if 1000N = and 10R = , then the source XS must produce 11,000 symbols

for the first method and 1160 symbols when algorithm XOR-B is used.

To compare different methods and assess the uniformity of the distribution of numbers obtained

using the proposed theorem, a pseudorandom number generator with a Gaussian distribution of

generated numbers was used. The Gaussian distribution occurs in many physical phenomena and plays

a key role in the Shannon model of communication. As a source of independent numbers, we used a

pseudorandom number generator from the Mathematica package [30]. The instruction
[μ,σ]NormalDistribution provides numbers with a Gaussian distribution with an average μ and standard

deviation σ . Because the obtained numbers are both positive and negative, we first compute their
absolute values. Next, we consider numbers from the interval encoded by int fracl l l= + bits, where intl

is the number of bits that encode the integer part and fracl is the number of bits that encode the

fractional part. If a generated number does not belong to the interval int[2 , 2 1]fracl l− − (generated

numbers can, theoretically, assume values from minus to plus infinity), then we repeat the generation

to obtain a number from this interval. The output is the bitwise exclusive-or sum of the 1R + numbers

0 1, ,..., Rt t t , for which the values belong to int[2 , 2 1]fracl l− − . The distance between the addresses of

0 1, ,..., Rt t t changes randomly for each iteration. This additional randomness comes from the

higher-order bits of the output number nz , excluding the first iteration, when it is fixed and equal to
unity. In the experiment, fracl is fixed and equal to 16 bits. The value of intl is changed to obey the

three exemplary ranges of the Gaussian distribution: 3± , 5± , and 7± . Consequently, int 2l = for the

range 3± , and int 3l = for the ranges 5± and 7± . It was also assumed that μ 1= and σ 2= . The size of

table L is equal to 2mL R= ⋅ , where 2logm R  = .

Entropy 2015, 17 7129

To assess the uniformity of the obtained distributions, a chi-square test was used. This test measures

the agreement between the empirical distribution and the theoretical distribution for a given degree of
freedom (number of categories) and significance level. The value of the statistic 2χ is computed using

the formula [18,19]

()2

2
H

i i

i i

N N P
N P

χ
− ⋅

= ⋅ (31)

where H is the number of categories, Ni is the number of samples from the i-th category, Pi is the

probability that each sample falls into category i, and N is the total number of samples. The critical
value cχ of the chi-square test for 50 categories and the significance level β 0.01= , chosen in the

numerical experiment, is equal to 74.92 (we do not assess the parameters of the distribution). The

results of the tests for 510N = , ranges 3± , 5± , 7± , and the two methods of producing uniformly

distributed random numbers are summarized in Tables 1–3.

The results shown in Table 1 indicate that we require only four numbers from the interval 3± to
form uniformly distributed numbers from the numbers with Gaussian distributions with μ 1= and

σ 2= for both methods. When the probability of producing certain numbers from int[2 , 2 1]fracl l− −

decreases, the parameter R increases.

Table 1. The values of the statistic 2χ for the range 3± .

Grouping Subsequent Elements into 1R + Element Blocks

R 1 2 3 4 5 6
2χ 226.41 76.42 55.28 39.59 53.14 51.69

Algorithm XOR-B

R
1 (m = 0,

L = 1)

2 (m = 1,

L = 4)

3 (m = 2,

L = 12)

4 (m = 2,

L = 16)

5 (m = 3,

L = 40)

6 (m = 3,

L = 48)
2χ 219.81 97.13 37.19 37.52 45.13 34.85

Table 2. The values of the statistic 2χ for the range 5± .

Grouping Subsequent Elements into 1R + Element Blocks

R 4 5 6 7 8 9
2χ 109.98 85.61 65.79 21.93 33.99 48.16

Algorithm XOR-B

R
4 (m = 2,

L = 16)

5 (m = 3,

L = 49)

6 (m = 3,

L = 48)

7 (m = 3,

L = 56)

8 (m = 3,

L = 128)

9 (m = 4,

L = 144)
2χ 173.56 86.24 54.96 41.76 38.86 51.23

Table 3. The values of the statistic 2χ for the range 7± .

Grouping Subsequent Elements into 1R + Element Blocks
R 5 10 15 20 25 30

2χ 4400.60 383.53 80.57 50.69 51.81 48.97

Algorithm XOR-B

R
5 (m = 3,

L = 40)

10 (m = 4,

L = 160)

15 (m = 4,

L = 240)

20 (m = 5,

L = 640)

25 (m = 5,

L = 800)

30 (m = 5,

L = 960)
2χ 3589.55 362.47 75.39 64.20 50.29 53.58

Entropy 2015, 17 7130

Considering the numbers from the interval 5± , we must sum the bitwise exclusive-or for at least

seven numbers to pass the chi-square test. Exploiting the numbers from the tail of the Gaussian

distribution, we need 21 or more numbers from the interval 7± for both methods. The use of algorithm
XOR-B requires significantly fewer numbers kx to produce an N element output sequence than

grouping subsequent kx into 1R + element blocks.

4. Conclusions

In this paper, a novel method for increasing the entropy of a sequence of discrete random variables

has been proposed. The elements of this sequence are a bitwise exclusive-or sum of independent

random variables that model the output of a random source. The proposed algorithms use an auxiliary

table and a novel theorem proved in this paper. The theorem and the algorithms provide an efficient

method for converting a sequence of independent random variables with a practically arbitrary

distribution into a sequence of independent and uniformly distributed random variables, i.e., with

entropy close to maximal. The algorithm XOR-B does not need an additional circuit and requires only

1 /L N+ input words per one output word. Grouping the subsequent words into 1R + element blocks

requires 1R + input words per one output symbol.

The areas for applications include dynamical systems, especially chaotic systems as a source of

random numbers, chaos-based cryptography, traditional cryptography, statistics, simulation

experiments, and many others fields in which random sequences with entropy close to the maximal

value are needed.

Acknowledgments

The author wishes to thank Jakub Nikonowicz for the valuable discussion on the computational

complexity of the proposed algorithms. The presented work was founded by the Polish Ministry of

Science and Higher Education within the status activity task “08/83/DSPB/4707” in 2014.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Ding, C.; Helleseth, T.; Niederreiter, H. Sequences and Their Applications: Proceedings of

SETA’98; Springer; London, UK, 1999.

2. Von Neumann, J. Various techniques for use in connection with random digits. In Von Neumann’s

Collected Works, Vol. 5; Pergamon Press: Oxford, UK, 1962; pp. 768–770.

3. Davies, R. Exclusive OR (XOR) and Hardware Random Number Generators, 2002. Available

online: http://www.robertnz.net (accessed on 12 October 2015).

4. Tkacik, T.E. A hardware random number generator. In Cryptographic Hardware and Embedded

Systems (CHES); Kaliski, B.S., Jr., Koç, Ҫ.K., Paar, C., Eds.; Springer: London, UK, 2002;

pp. 450–453.

Entropy 2015, 17 7131

5. Sunar, B.; Martin, W.J.; Stinson, D.R. A provably secure true random number generator with

built-in tolerance to active attacks. IEEE Trans. Comput. 2007, 56, 109–119.

6. Sunar, B. True random number generators for cryptography. In Cryptographic Engineering;

Koç, Ҫ.K., Ed.; Springer: New York, NY, USA, 2009; pp. 55–73.

7. Golić, J.D. New methods for digital generation and postprocessing of random data. IEEE Trans.

Comput. 2006, 55, 1217–1229.

8. Shaltiel, R. How to get more mileage from randomness extractors. Random Struct. Algorithms

2008, 33, 157–187.

9. Lacharme, P. Post processing functions for a biased physical random number generator.

In Fast Software Encryption (FSE’08); Springer: Berlin/Heidelberg, Germany, 2008; Volume

5086, pp. 334–342.

10. Lacharme, P. Analysis and construction of correctors. IEEE Trans. Inf. Theory 2009, 55, 4742–4748.

11. Via Technologies, Inc., VIA PadLock Security Engine—Technology Brief, 2005. Available online:

http://www.via.com.tw/en/downloads/whitepapers/initiatives/padlock/VIAPadLockSecurityEngine.

pdf (accessed on 11 March 2015).

12. Billingsley, P. Probability and Measure; Wiley: New York, NY, USA, 1979.

13. Rosenthal, J.F. A First Look at Rigorous Probability Theory; World Scientific: Singapore,

Singapore, 2006.

14. Roth, S.M. Introduction to Probability Models, 7th ed.; Harcourt Academic Press: San Diego,

CA, USA, 2000.

15. Gubner, J.A. Probability and Random Processes for Electrical and Computer Engineers;

Cambridge University Press: Cambridge, UK, 2006.

16. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA,

2006.

17. MacLaren, M.D.; Marsaglia, G. Uniform random number generators. JACM 1965, 12, 83–89.

18. Knuth, D.E. The Art of Computer Programming, 3rd ed.; Addison Wesley: Reading, MA, USA,

1998; Volume 2.

19. Gentle, J.E. Random Number Generation and Monte Carlo Methods; Springer: New York, NY,

USA, 2003.

20. Deng, L.-Y.; George, E.O. Generation of uniform variates from several nearly uniformly

distributed variables. Commun. Stat. 1990, 19, 145–154.

21. Deng, L.-Y.; Lin, D.K.J.; Wang, J.; Yuan, Y. Statistical justification of combination generators.

Am. Stat. 1997, 54, 145–150.

22. Marsaglia, G. A current view of random number generators. In Computer Science and Statistics:

16th Symposium on the Interface; Billard, L., Ed., Elsevier: North-Holland, The Netherlands,

1985; pp. 3–10.

23. Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.C. Handbook of Applied Cryptography;

CRC Press: Boca Raton, FL, USA, 1997.

24. Azad, S.; al-Sakib Khan, P. Practical Cryptography, Algorithms and Implementations Using

C++; CRC Press: Boca Raton, FL, USA, 2015.

Entropy 2015, 17 7132

25. National Institute of Standards and Technology. Available online: http://csrc.nist.gov/groups/ST/

toolkit/rng/references.html (accessed on 12 October 2015).

26. Rabin, M.O. Complexity of Computations. Commun. ACM 1977, 20, 625–633.

27. Knuth, D.E. The Art of Computer Programming, 3rd ed.; Addison Wesley: Reading, MA, USA,

1998; Volume 1.

28. Arora, S.; Barak, B. Computational Complexity. A Modern Approach, 3rd ed.; Cambridge

University Press: Cambridge, UK, 2010.

29. Wayne, M.A.; Kwiat, P.G. Low-bias high speed quantum random number generator via shaped

optical pulses. Opt. Express 2010, 18, 9351–9357.

30. Ruskeepää, H. Mathematica Navigator, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2006.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

