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Abstract: The maximum correntropy criterion (MCC) has recently been successfully applied 

to adaptive filtering. Adaptive algorithms under MCC show strong robustness against large 

outliers. In this work, we apply the MCC criterion to develop a robust Hammerstein adaptive 

filter. Compared with the traditional Hammerstein adaptive filters, which are usually derived 

based on the well-known mean square error (MSE) criterion, the proposed algorithm can 

achieve better convergence performance especially in the presence of impulsive non-Gaussian 

(e.g., α-stable) noises. Additionally, some theoretical results concerning the convergence 

behavior are also obtained. Simulation examples are presented to confirm the superior 

performance of the new algorithm. 
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1. Introduction 

Nonlinear system identification is still an active research area [1]. Although linear systems have 

established a solid theory [2], most practical systems (e.g., hands-free telephone systems) may be more 

adequately represented as a nonlinear model. One of the main challenges for nonlinear system identification 

is the choice of an appropriate nonlinear filtering structure that accurately captures the characteristics of 

the underlying nonlinear system. A common structure used in nonlinear modeling is the block-oriented 

representation. The Wiener model and the Hammerstein model are two typical block-oriented nonlinear 

models [3]. Specifically, the Wiener model consists of a cascade of a linear time invariant (LTI) filter 

followed by a static nonlinear function, indicated as a linear-nonlinear (LN) model [4–6], and the 

Hammerstein model consists of a cascade of a static nonlinear function follow by a LTI filter, known as 

a nonlinear-linear (NL) model [7–19]. Other nonlinear models include neural networks (NNs) [20], 

Volterra adaptive filters (VAFs) [21], kernel adaptive filters (KAF) [22–25], among others. 

Hammerstein filters can accurately model many real-world systems and, as a consequence, they have 

been successfully used in various applications of engineering [26–29]. Due to its simplicity and efficiency, 

the mean square error (MSE) criterion has been widely applied in Hammerstein adaptive filtering [30]. 

Adaptive algorithms under MSE usually perform very well when the desired signals are disturbed by 

Gaussian noises. However, when the desired signals are disturbed by non-Gaussian noises, especially in the 

presence of large outliers (observations that significantly deviate from the bulk of data), the performance of 

the MSE based algorithms may deteriorate rapidly. Actually, MSE is rather sensitive to outliers. In most 

practical situations, heavy-tailed impulsive noises may occur, which often cause large outliers. For 

instance, different types of artificial noises in electronic devices, atmospheric noises, and lighting spikes 

in natural phenomena, can be described as an impulsive noise [31,32]. 

In this work, instead of using the MSE criterion, we apply the maximum correntropy criterion (MCC) 

to develop a robust Hammerstein adaptive filtering algorithm. Correntropy is a nonlinear similarity 

measure between two signals [33,34]. The MCC aims at maximizing the similarity (measured by 

correntropy) between the model output and the desired response such that the adaptive model is as close 

as possible to the unknown system. It has been shown that, the MCC in terms of the stability and accuracy, 

is very robust with respect to impulsive noises [33–39]. Compared with the traditional Hammerstein adaptive 

filtering algorithms based on the MSE criterion, the new algorithm can achieve better performance especially 

in the presence of impulsive non-Gaussian noises. 

The organization of the rest of the paper is as follows. In Section 2, after briefly introducing the 

correntropy, we derive a Hammerstein adaptive filtering algorithm under MCC criterion. In Section 3, we 

carry out the convergence analysis. In Section 4, we present simulation examples to demonstrate the 

superior performance of the proposed algorithm. Finally, we give the conclusion in Section 5. 

2. Hammerstein Adaptive Filtering under the Maximum Correntropy Criterion 

Figure 1 shows the structure of a Hammerstein adaptive filter under MCC criterion, where the filter 

consists of a polynomial memoryless nonlinearity followed by a linear FIR filter. This structure has been 

commonly used in Hammerstein adaptive filtering [8,9,27]. As shown in Figure 1, under the MCC 
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criterion, the parameters of the linear and nonlinear parts are adjusted to maximize the correntropy 

between the model output and desired response. 

Polynomial 
nonlinearity

FIR filterx(n)
s(n)

MCC

d(n)

y(n)

e(n)

- ∑

v(n)

Unknown System ∑

+

 

Figure 1. Structure of a Hammerstein adaptive filter under maximum correntropy criterion 

(MCC) criterion. 

2.1. Correntropy 

Correntropy is a nonlinear similarity measure between two signals. Given two random variables X and 

Y, the correntropy is [33–39] 

( , ) [ ( , )] ( , ) ( , )XYV X Y E X Y x y f x y dxdy= κ = κ  (1)

where E[·] denotes the expectation operator, κ(·,·) is a shift-invariant Mercer kernel, and fXY(x, y) stands 

for the probability density function (PDF) of (X, Y). The most widely used kernel in correntropy is the 

Gaussian kernel, given by 

2

2

1
( , ) exp( )

22

e
x yσκ = −

σσ π
 (2)

where e = x − y, and σ stands for the kernel bandwidth. In this work, without being mentioned otherwise, 

the kernel function is a Gaussian kernel. In practical situations, the join distribution of X and Y is usually 

unknown and only a finite number of data {(d(i), y(i))}K 
i=1 are available. In these cases, one can use a sample 

mean estimator of the correntropy: 

,
1

1ˆ ( , ) ( ( ) ( ))
K

N
i

V X Y d i y i
Kσ σκ

=

= −  (3)

The optimization cost under MCC is thus 

1

max ( ( ))
K

MCC
i

J e iσ
=

= κ  (4)

where e(i) = d(i) − y(i). We can evaluate the sensitivity (derivative) of the MCC cost JMCC with respect 

to the error e(i), 
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2

23

1 ( )
exp ( )

( ) 22
MCCJ e i

e i
e i

 ∂ − −= ⋅  ∂ σπσ  
 (5)

The derivative curves of −JMCC for different kernel widths are illustrated in Figure 2. As one can see, 

when the magnitude of error is very large, the derivative will become rather small especially for a smaller 

kernel width. Therefore, the MCC training is insensitive (hence robust) to a large error. 

 

Figure 2. Derivative curves of −JMCC with respect to e(i) for different kernel widths. 

2.2. Hammerstein Adaptive Filtering 

Assuming that the input-output mapping of the memoryless polynomial nonlinearity is 
2

1 2( ) ( ) ( ) ( )M
Ms n p x n p x n p x n= + + +  (6)

where M and pM denote the polynomial order and the m-th order coefficient, Expression (6) can be 

rewritten as 

( ) p ( )x ( )T
ps n n n=  (7)

where xp(n) = [x(n) x2(n)···xM(n)]T is the polynomial regressor, and p(n) = [p1 p2···pM]T is the polynomial 

coefficient vector. The output of the FIR filter can be expressed as  

( ) w ( )s( )Ty n n n=  (8)

where w(n) = [w0 w1···wN−1]T is the FIR weight vector, and s(n) = [s(n) s(n − 1)···s(n − N + 1)]T is the 

FIR input vector, with N being the FIR memory size. Let X(n) = [xp(n) xp(n − 1)···xp(n − N + 1)]T. Then 

we have 

s( ) ( )p( )Tn n n= Χ  (9)

Combining Equations (8) and (9) yields 

( ) w ( )s( ) w ( ) ( )p( )T T Ty n n n n n n= = Χ  (10)
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Assume that the unknown system that needs to be identified is also a Hammerstein system with 

parameter vectors p* = [p* 
1  p* 

2 ···p* 
M]T and w* = [w* 

0  w* 
1 ···w* 

N−1]T. Then, the desired signal can be expressed as 
*( ) w ( )p ( )T Td n n v n∗= Χ +  (11)

where v(n) stands for an additive disturbance noise. The error signal can then be calculated as  

e(n) = d(n) − wT(n)XT(n)p(n). In the following, we derive an adaptive algorithm to estimate the 

Hammerstein parameter vectors using MCC instead of MSE as an optimization criterion. Let us consider 

the following cost function 

1

2

2
1

( ) ( ( ), ( ))

1 ( )
exp

22

n

MCC
j n L

n

j n L

J d j y j

e j

σ
= − +

= − +

= κ

 −=  σπσ  





p,w

                 

 (12)

where e(j) = d(j) − y(j), and L denotes the sliding data length. Then, a steepest ascent algorithm for estimating 

the polynomial coefficient vector can be derived as follows: 

2

23
1

2

23
1

( ) 1 ( ) ( )
exp ( )

( ) 2 ( )2

1 ( )
exp ( ) ( ) ( )

22

n
MCC

j n L

n

j n L

J e j e j
e j

n j

e j
e j j j

= − +

= − +

 ∂ − ∂= ⋅ ⋅ ∂ σ ∂πσ  
 −= ⋅ ⋅ Χ σπσ  





p,w

p p

                   w

 (13)

2

23
1

( ) ( )
( 1) ( ) ( ) exp ( ) ( ) ( )

( ) 22

n
pMCC

p
j n L

J e j
n n n e j j j

n = − +

μ  ∂ −+ = + μ = + ⋅ ⋅ Χ ∂ σπσ  
p,w

p p p w
p

 (14)

In a similar way, we propose the following weight update equation for the coefficients of the FIR filter: 

2

23
1

2

23
1

( ) 1 ( ) ( )
exp ( )

( ) 2 ( )2

1 ( )
exp ( ) ( ) ( )

22

n
MCC

j n L

n
T

j n L

J e j e j
e j

n j

e j
e j j j

= − +

= − +

 ∂ − ∂= ⋅ ⋅ ∂ σ ∂πσ  
 −= ⋅ ⋅ Χ σπσ  





p,w

w w

                   p

 (15)

2

23
1

( ) ( )
( 1) ( ) ( ) exp ( ) ( ) ( )

( ) 22

n
TMCC w

w
j n L

J e j
n n n e j j j

n = − +

 ∂ μ −+ = + μ = + ⋅ ⋅ Χ ∂ σπσ  
p,w

w w w p
w

 (16)

In Equations (14) and (16), μp and μw are, respectively, step-sizes for polynomial nonlinearity subsystem 

and FIR subsystem. In this work, for simplicity we consider only the stochastic gradient based algorithm 

(i.e., L = 1). In this case, we have 

2

2

( )
( 1) ( ) exp ( ) ( ) ( )

2p

e n
n n e n n n

 −+ = + η ⋅ ⋅ Χ σ 
p p w  (17)

2

2

( )
( 1) ( ) exp ( ) ( ) ( )

2
T

w

e n
n n e n n n

 −+ = + η ⋅ ⋅ Χ σ 
w w p  (18)
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where 32
p

p

μ
η =

πσ , and 32
w

w

μη =
πσ . The above update equations are referred to as the Hammerstein 

adaptive filtering algorithm under MCC criterion, whose pseudocodes are presented in Algorithm 1.  

The proposed algorithm is in form similar to the traditional Hammerstein adaptive filters under MSE 

criterion [7], but the step-sizes are different. 

Algorithm 1: Hammerstein adaptive filtering Algorithm under MCC. 

Parameters setting: μp, μw, σ 

Initialization: p(0), w(0) 

For n = 1, 2, … do 
(1) ( ) ( ) ( )Tn n n= Χs p  

(2) ( ) ( ) ( )Ty n n n= w s  

(3) ( ) ( ) ( )e n d n y n= −  

(4) 
2

2

( )
p( 1) p( ) exp ( ) ( )w( )

2p

e n
n n e n n nη

σ
 −+ = + ⋅ ⋅ Χ 
 

 

(5) 
2

2

( )
w( 1) w( ) exp ( ) ( )p( )

2
T

w

e n
n n e n n nη

σ
 −+ = + ⋅ ⋅ Χ 
 

 

End for 

3. Convergence Analysis 

3.1. Stability Analysis 

Using the Taylor series expansion of the error e(n + 1) around the instant n and keeping only the 

linear term, we have [4,7,40] 

w ( ) p( )

( ) ( )
( 1) ( ) p( ) w( ) . .

p( ) w( )n const n const

e n e n
e n e n n n h o t

n n= =
∂ ∂+ = + Δ + Δ +
∂ ∂

 (19)

where h.o.t denotes higher-order terms. Combining Equations (11), (17) and (18), we can obtain 

( )
( )w( )

p( )

e n
n n

n

∂ = −Χ
∂

 (20)

( )
( )p( )

w( )
Te n

n n
n

∂ = −Χ
∂

 (21)

2

2

( )
p( ) exp ( ) ( )w( )

2p

e n
n e n n nη

σ
 −Δ = ⋅ ⋅ Χ 
 

 (22)

2

2

( )
w( ) exp ( ) ( )p( )

2
T

w

e n
n e n n nη

σ
 −Δ = ⋅ ⋅ Χ 
 

 (23)

Substituting Equations (20)–(23) in Equation (19), and after simple manipulation, we have 
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2 2
22

2 2

( ) ( )
( 1) 1 exp ( )w( ) exp ( )p( ) ( )

2 2
T

p w

e n e n
e n n n n n e nη η

σ σ
    − −+ = − ⋅ ⋅ Χ − ⋅ ⋅ Χ    

    
 (24)

To ensure the stability of the proposed algorithm, we must assure that |e(n + 1)| ≤ |e(n)|, and hence 

2 2
22

2 2

( ) ( )
1 exp ( )w( ) exp ( )p( ) 1

2 2
T

p w

e n e n
n n n nη η

σ σ
   − −− ⋅ ⋅ Χ − ⋅ ⋅ Χ ≤   
   

 (25)

which yields 
22

2

2

2
0 ( )w( ) ( )p( )

( )
exp

2

T
p wn n n n

e n
η η

σ

< ⋅ Χ + ⋅ Χ ≤
 −
 
 

 
(26)

Since 
2

2

( )
exp 1

2

e n

σ
 − ≤ 
 

, the following condition guarantees convergence: 

22
0 ( )w( ) ( )p( ) 2T

p wn n n nη η< ⋅ Χ + ⋅ Χ ≤  (27)

Remark 1. The derived bound on step-sizes is only of theoretical importance as in general, Equation (27) 

cannot be verified in a practical situation. Similar theoretical results can be found in [7]. 

3.2. Steady-State Mean Square Performance 

We denote epw(n) the a priori error of the whole system, ep(n) the a priori error when only the nonlinear 

part is adapted while the linear filter is fixed, and ew(n) the a priori error when only the linear filter is 

adapted while the nonlinear part is fixed. Let 
2lim ( )p pn

E e n
→∞

 Η =   , 
2lim ( )w wn

E e n
→∞

 Η =   , and 
2lim ( )pw pwn

E e n
→∞

 Η =    be the steady-state excess mean square errors (EMSEs). In addition, we denote 

2

2

( )
( ( )) exp ( )

2

e i
f e i e i

σ
 −=  
 

 (28)

Before evaluating the theoretical values of the steady-state EMSEs, we make the following assumptions: 

(A) The noise v(n) is zero-mean, independent, identically distributed, and is independent of the input 
X(n), ˆ( )s n  and e(n). 

(B) The a priori errors ep(n) and ew(n) are zero-mean Gaussian, and independent of the noise v(n). 

(C) ||X(n)w(n)||2 and ||XT(n)p(n)||2 are asymptotically uncorrelated with f2(e(n)), that is  

2 2 2lim ( )w( ) ( ( )) ( ) lim ( ( ))WX
n n

E n n f e n Tr R E f e n
→∞ →∞

   Χ =     (29)

2 2 2lim ( )p( ) ( ( )) ( ) lim ( ( ))T
XPn n

E n n f e n Tr R E f e n
→∞ →∞

   Χ =    
 (30)

where ( ( )w( ))( ( )w( ))T
WXR E n n n n = Χ Χ   and ( ( )p( ))( ( )p( ))T T T

XPR E n n n n = Χ Χ   are the covariance 

matrices, and ( )Tr ⋅  denotes the trace operator. 

Remark 2. For the assumption (A), it is very common to assume that the noise is independent of  

the regression vector [41–43]. In addition, the noise is often restricted to be zero-mean, identically 
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distributed [33–35]. As discussed in [44,45], the assumption (B) is reasonable for long adaptive filters.  

Since ep(n) is the a priori error when only the nonlinear part is adapted while the linear filter is fixed, we 

have the approximation w* ≈ w(n) such that w(n) is asymptotically uncorrelated with f2(e(n)). Due to the 

independent assumption (A), X(n) is also asymptotically uncorrelated with f2(e(n)). So ||XT(n)w(n)||2 is 

asymptotically uncorrelated with f2(e(n)). Similarly, ||XT(n)p(n)||2 is asymptotically uncorrelated with 

f2(e(n)). Therefore, the assumption (C) is rational.  

When only the polynomial part with parameter vector p is adapted, the error ep(n) is 
*( ) w ( )p w ( ) ( )p( ) w ( ) ( )p( )T T T T T T

pe n n n n n n n n∗= Χ − Χ ≈ Χ   (31)

where *( ) ( )p p pTn n= − . In Equation (31), we use the approximation w* ≈ w(n) at steady-state. From 
Equation (17), it follows easily that 

p( 1) p( ) ( ( )) ( )w( )pn n f e n n nη+ = − ⋅ ⋅ Χ   (32)

Squaring both sides of Equation (32), we have 

2 2 22 2p( 1) p( ) 2 ( ( )) ( ) ( ( )) ( )w( )p p pn n f e n e n f e n n nη η+ = − ⋅ ⋅ + ⋅ ⋅ Χ   (33)

Taking the expectations of the both sides of Equation (33) yields 

2 2 22 2p( 1) p( ) 2 ( ( )) ( ) ( ( )) ( )w( )p p pE n E n E f e n e n E f e n n nη η      + = − ⋅ ⋅ + ⋅ ⋅ Χ         (34)

Assuming the filter is stable and attains the steady state, it holds 

2 2
lim p( 1) lim p( )
n n

E n E n
→∞ →∞

   + =      (35)

Combining Equations (34) and (35) and the above assumptions, we obtain 

22 lim ( ( )) ( ) ( ) lim ( ( ))p p WX
n n

E f e n e n Tr R E f e nη
→∞ →∞

  ⋅ ⋅ =     (36)

In order to derive a theoretical value of the steady-state EMSE, we consider two cases below. 

Case A. Gaussian Noise 

Recalling that e(n) = ep(n) + v(n), and assuming that the noise v(n) is zero-mean Gaussian, with 

variance ϛ2 
v , we get [34] 

3

2 2 3/2
lim ( ( )) ( ) =

( )
p

p
n

v p

E f e n e n
σ

σ ς→∞

Η
 ⋅  + + Η

 (37)

where σ2 
e  denotes the variance of the error, and σ2 

e  = E[e2 
p (n)] + ϛ2 

v . Similarly, we obtain [29] 
3 2

2
2 2 3/2

( )
lim ( ( ))

( 2 2 )
p v

n
v p

E f e n
σ ς

σ ς→∞

Η +
  =  + + Η

 (38)

Substituting Equations (37) and (38) into Equation (36), we have 
3 3 2

2 2 3/2 2 2 3/2

( )
2 ( )

( ) ( 2 2 )
p p v

p WX
v p v p

Tr R
σ σ ς

η
σ ς σ ς

Η Η +
⋅ =

+ + Η + + Η
 (39)
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Therefore, the steady-state EMSE Hp satisfies 
2 2 2 3/2

2 2 3/2

( )( )
( )

2 ( 2 2 )
p p v v p

p WX
v p

Tr R
η ς σ ς

σ ς
Η + + + Η

Η =
+ + Η

 (40)

Theorem 1. In a Gaussian noise environment and with the same step-size, the proposed nonlinear 

Hammerstein adaptive filter under MCC criterion has a smaller steady-state EMSE than under MSE criterion. 

As the kernel width increases, their values of the steady-state EMSE will become almost identical. 

Proof. It can be shown that [34] 
2( )

2 ( )
p WX v

p MSE
p WX

Tr R

Tr R

η ς
η−Η =

−
 (41)

where Hp−MSE denotes the steady-state EMSE under MSE criterion. From Equation (40), we have 
2( )

2 ( )
p WX v

p
p WX

Tr R

Tr R

εη ς
εη

Η =
−

 (42)

where 
2 2 3/2

2 2 3/2

( )

( 2 2 )
v p

v p

σ ς
ε

σ ς
+ + Η

=
+ + Η

. Since 1ε < , it holds 

p p MSE−Η < Η  (43)

Further, as σ → ∞, we have Hp → Hp−MSE. 

Case B. Non-Gaussian Noise 

Taking the Taylor series expansion of f(e(n)) around v(n) yields 

2

( ( )) ( ( ) ( ))

1
            ( ( )) ( ( )) ( ) ( ( )) ( ) . .

2

p

p p

f e n f e n v n

f v n f v n e n f v n e n h o t

= +

′ ′′= + + +
 (44)

with 

2 2

2 2

2 3

2 4 2

( ) ( )
( ( )) exp 1

2

( ) ( ) 3 ( )
( ( )) exp

2

v n v n
f v n

v n v n v n
f v n

σ σ

σ σ σ

  −′ = −  
  
  −′′ = −  
  

 (45)

Under the assumptions (A) and (B), we get [34] 

[ ]lim ( ( )) ( ) ( ( ))p pn
E f e n e n E f v n

→∞
′ ⋅ ≈ Η   (46)

22 2lim ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) pn
E f e n E f v n E f v n f v n f v n

→∞
 ′′ ′   ≈ + + Η       (47)

Substituting Equations (46) and (47) into Equation (36), we have 
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[ ]

2

2

( ) ( ( ))

2 ( ( )) ( ) ( ( )) ( ( )) ( ( ))

p WX

p

p WX

Tr R E f v n

E f v n Tr R E f v n f v n f v n

η

η

  Η =
 ′ ′′ ′− + 

 (48)

Further, substituting Equation (45) into Equation (48), we obtain 
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When only the linear filter with parameter vector w(n) is adapted, we get 

[ ] 22 lim ( ( )) ( ) ( ) lim ( ( ))w p XPn n
E f e n e n Tr R E f e nη

→∞ →∞
 ⋅ ⋅ =    (50)

where ( ) w ( ) ( )p( )T T
we n n n n≈ Χ , *w( ) w w( )n n= − . For Gaussian noise case, we obtain 
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In non-Gaussian environments, we have 
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 (52)

Theorem 2. The Hpw satisfies the following condition 

pw p wΗ ≥ Η + Η  (53)

Proof. Using Equation (31), we derive 
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It follows that 
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 (55)

where lim ( ) ( )cross p wn
E e n e n

→∞
 Η =    stands for the cross-EMSE and Hcross ≥ 0 (Hcross = 0 when ep(n) and ew(n) 

are statistically independent and zero mean) [7]. Therefore, Hpw ≥ Hp + Hw, which completes the proof. 
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4. Simulation Results 

Now, we present simulation results to demonstrate the performance of the Hammerstein adaptive 

filtering under MCC. In order to show the performance of the proposed algorithm in non-Gaussian  

noises, we adopt the alpha-stable distribution to generate the disturbance noise, whose characteristic 

function is [32,46] 

(t) exp{j t | | [1 j sgn(t)S(t, )]}f t αδ γ β α= − +  (56)

in which 

tan 1
2S(t, )

2
log | | 1

if

t if

απ α
α

α
π

 ≠= 
 =


 (57)

where α ϵ (0, 2] denotes the characteristic factor, −∞ < δ < +∞ is the location parameter, β ϵ [−1, 1] stands 

for the symmetry parameter, and γ > 0 is the dispersion parameter. The characteristic factor α measures 

the tail heaviness of the distribution. The smaller α is, the heavier the tail is. In addition, γ measures the 

dispersion of the distribution. The distribution is symmetric about its location δ when β = 0. Such a 

distribution is called a symmetric alpha-stable (SαS) distribution. The parameters vector of the noise model 

is defined as V = (α, β, γ, δ). 

In the simulations below, the input signal considered is a colored signal obtained from the  

following equation: 

2( ) ( 1) 1 ( )x n ax n a nξ= − + −  (58)

with a = 0.95, and ξ(n) being a white Gaussian signal of unit variance. In addition, the coefficient vectors 

are initialized with the first coefficient equal to 1 and the others equal to zero [7]. 

4.1. Experiment 1 

First, we consider an unknown Hammerstein system with parameter vectors p* = [1, 0.6],  

w* = [1, 0.6, 0.1, −0.2, −0.06, 0.04, 0.02, −0.03, −0.02, 0.01]. Thus, M = 2, N = 10. The kernel width σ 

is 1.0. The noise vector V is set at (1.2, 0, 0.6, 0), and the noise signal is shown in Figure 3. Simulation 

results are averaged over 100 independent Monte Carlo runs, and in each simulation, 15,000 iterations 

are run to ensure the algorithm will reach the steady state, and the steady-state MSE is obtained as an 

average over the last 2000 iterations. The step-sizes are set at μp = μw = 0.005 and μp = 0.01, μw = 0.01 for 

MSE and MCC, respectively. Figure 4 shows the average convergence curves under MCC and MSE. As 

we can see, the Hammerstein adaptive filtering under MCC criterion achieves faster convergence speed 

and lower steady-state testing MSE than under MSE criterion. Here the testing MSE is evaluated on a 

test set with 100 samples. 
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Figure 3. A typical sequence of the alpha-stable noise with V = (1.2, 0, 0.6, 0). 

 

Figure 4. Convergence curves under maximum correntropy criterion (MCC) and mean 

square error (MSE) (for unknown system with polynomial nonlinearity). 

Second, we investigate the performance of the algorithms with different noise parameters. The  

steady-state MSEs with different γ (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6) and different α (0.2, 0.4, 0.6, 0.8, 

1, 1.2, 1.4, 1.6, 1.8, 2.0) are shown in Figures 5 and 6, respectively. We observe: (1) In most cases, the 

new algorithm performs better and achieves a lower steady-state MSE compared with the Hammerstein 

adaptive filtering under MSE criterion; (2) When α is close to 2.0, the Hammerstein adaptive filtering 

under MSE criterion can achieve better performance than under MCC criterion. The main reason for this 

is that, when α ≈ 2.0, the noise will be approximately Gaussian. Simulation results suggest that the 

proposed algorithm is particularly useful for identifying a Hammerstein system in non-Gaussian noises. 
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Figure 5. Steady-state mean square error (MSE) with different γ (α = 1.2). 

 

Figure 6. Steady-state mean square error (MSE) with different α (γ = 0.6). 

4.2. Experiment 2 

The second experiment is drawn from [47]. The nonlinear dynamic system is composed of two blocks. 

The first block is a non-polynomial nonlinearity 

3( ) ( )s n x n=  (59)

while the second block is an FIR filter with weight vector 

[ ]1 0.75 0.5 0.25 0 0.25
T

h = −  (60)

The noise vector V is set at (1.0, 0, 0.8, 0) (see Figure 7 for a typical sequence of the noise), and the 

polynomial order M and the FIR memory size N are set at 3 and 6, respectively. Simulation results are 
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averaged over 50 independent Monte Carlo runs, and in each simulation, 30,000 iterations are run to 

ensure the algorithm will reach the steady state, and the steady-state MSE is obtained as an average over 

the last 2000 iterations. The testing MSE is evaluated on a test set with 100 samples. Figure 8 demonstrates 

the convergence curves under MCC and MSE. For both adaptive filtering algorithms, the step-sizes are set 

at μp = 0.005, μw = 0.015. It can be seen that, the Hammerstein adaptive filter under MCC criterion performs 

better (say, with faster convergence speed and smaller mismatch error) than under MSE criterion. 

 

Figure 7. A typical sequence of the alpha-stable noise with V = (1.0, 0, 0.8, 0). 

 

Figure 8. Convergence curves under maximum correntropy criterion (MCC) and mean 

square error (MSE) (for unknown system with non-polynomial nonlinearity). 

Finally, we show the steady-state performance of the algorithms with different kernel widths  

σ (0.01, 1.0, 2.0, 3.0, 4.0, 5.0). Simulation results are shown in Figure 9. As we can see, the kernel width 
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has significant influence on the performance of the proposed algorithm. In this example, the lowest 

steady-state MSE is obtained when σ = 1.0. 

 

Figure 9. Steady-state mean square error (MSE) with different kernel widths. 

5. Conclusions 

The MCC has been successfully applied in domains of machine learning and signal processing due to 

its strong robustness in impulsive non-Gaussian situations. In this work, we develop a robust Hammerstein 

adaptive filter under MCC criterion. Different from the traditional Hammerstein adaptive filtering 

algorithms, the new algorithm use the MCC instead of the well-known MSE as the adaptation criterion, 

which can achieve desirable performance especially in impulsive noises. Based on [7,31], we carry out 

the convergence analysis, and obtain some important theoretical results. Simulation examples confirm 

the excellent performance of the proposed algorithm. How to verify the derived theoretical results is an 

interesting topic for future study. 
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