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Abstract: We study the correlation properties of word lengths in large texts from 30 ebooks
in the English language from the Gutenberg Project (www.gutenberg.org) using the natural
visibility graph method (NVG). NVG converts a time series into a graph and then analyzes
its graph properties. First, the original sequence of words is transformed into a sequence
of values containing the length of each word, and then, it is integrated. Next, we apply the
NVG to the integrated word-length series and construct the network. We show that the degree
distribution of that network follows a power law, P (k) ∼ k−γ , with two regimes, which are
characterized by the exponents γs ≈ 1.7 (at short degree scales) and γl ≈ 1.3 (at large degree
scales). This suggests that word lengths are much more strongly correlated at large distances
between words than at short distances between words. That finding is also supported by the
detrended fluctuation analysis (DFA) and recurrence time distribution. These results provide
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new information about the universal characteristics of the structure of written texts beyond
that given by word frequencies.

Keywords: words frequency; words recurrence; syllables; texts

1. Introduction

A widely-recognized property of language is Zipf’s law, in which the frequency of words exhibits
a power law behavior in terms of the rank, that is if f(r) is the frequency of a word and r the rank of
that word, then f(r) ∼ 1/rα, with α ≈ 1 [1]. As is well known, language is a system composed of
grammatical rules applied to a vocabulary or lexicon, where the words represent an essential unit, and
the order or sequence is related to the need to transmit information or ideas [2]. Since Zipf discovered
this property in the 1940s, several studies have focused on this direction and recently, other properties,
such as information content [2], polarities and information [3], recurrence times [4], correlations [5–7],
allometries [8,9], the length of words [2,10,11], and many others [12–17].

For instance, Piantadosi et al. [2] found that the word length has a non-linear relationship with
the frequency and that an efficient communication process is concomitant with the fact that the word
length increases with information content. Furthermore, Garcia et al. [3] noted that words with positive
emotional content are used more often, and they tend to carry less information than negative ones. In
the same direction, other studies have noted the important role of word length in meaning, emotional
and information content in the organization of human language. Particularly, word length has been
systematically studied in quantitative linguistics since 1851, when August de Morgan suggested the use
of word lengths as a hallmark of the text style and a possible factor in determining authorship [11]. For
a review about this topic, see [18]. Recently, Chen et al. [19] reported that the increase of word length
is an essential ingredient in the evolution of written Chinese. These recent studies have contributed new
approaches to the complex analysis of texts and, at the same time, have opened up new questions about
the underlying complexity of language, particularly in written texts. For example, longer words are more
likely to be used to express more abstract ideas [3].

An important trait of written texts is the appearance of temporal correlations as ideas or stories are
created. However, the direct evaluation of these correlations is not feasible, because words can be used
in different manners, which can make a quantitative analysis difficult. In past years, diverse methods
have been used to explore the presence of temporal correlations in texts [5,20,21], mainly focused on
the length or frequency of words. Very recently, it has been reported that there are some differences
between European languages when they are compared in terms of the frequency and correlations of the
word lengths [11]. As is recognized, written language is the conformation of grammar properties and
semantic connotations with the purpose of expressing ideas or information. It has been reported that the
temporal organization of word-length sequences from written texts can be characterized by the presence
of slightly positive correlations [5,20] and with local variations of the scaling exponents related to the
temporal organization of the texts [21].
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However, these studies have not considered the temporal organization over a wide dataset of large
literary texts, where the concatenation of ideas or stories is the most important trait. In this work, we
study the “temporal” correlations of word lengths in large literary texts by means of the natural visibility
graph algorithm (NVG) [22]. Specifically, we consider 30 ebooks in the English language from which
we extract the word-length time series. To evaluate the presence of correlations in the word-length
sequences, we use the NVG to relate every two words [22]. The NVG method has the advantage
of providing potential further insight into the temporal organization of sequences, by exploring the
emerging network structures in a quantitative manner. The NVG has been used to explore organizational
features in complex time series from different systems ranging from chaotic signals [23], heartbeat
variability [9] and economics to seismology [24,25].

Our results show that the resulting degree distribution follows a power law, P (k) ∼ k−γ , which
exhibits two different regimes of correlations over the short and long distances between words. These
findings are complemented with the application of the detrended fluctuation analysis (DFA) and the
calculations of recurrence times.

The paper is organized as follows. In Section 2, we provide a brief description of the NVG and the
collection of texts that we studied. The results are described in Section 3. Finally, some concluding
remarks are given in Section 4.

2. Methods and Data

2.1. Natural Visibility Graph Algorithm

The NVG algorithm [22] was proposed to transform irregular time series into networks, with the idea
of exploring the complexity of the original time series with the help of methodologies from network
science. Consider a time series y1, y2, y3, ...yn. For any two data values, (ta, ya) and (tb, yb), where the
time ti refers to the time of event yi, we define a link between them if there is no other element, (tc, yc),
placed in between that intercepts the line connecting both values, that is (tc, yc) fulfills,

yc < yb + (ya − yb)
tb − tc
tb − ta

. (1)

In this way, we can define a node for every single item of the sequence, so that the resulting
network is always connected, undirected and invariant under affine transformations of the series [22].
Lacasa et al. [23] have shown that, for example, stochastic time series lead to networks characterized by
their degree distributions, P (k), which follow a power-law function, P (k) ∼ k−γ , with γ an exponent
that reflects the level of correlations; in particular, γ = 4 − β, where β is the exponent of the power
spectra of fractional Brownian motions (fBm) [23]. In addition to the success of the NVG, modified
versions of the original method, such as the horizontal visibility algorithm and its directed version [26],
have also previously proven to be rather useful to characterize features, such as correlation [26] and
reversibility [7], when applied to a number of other time series, such as chaotic ones [26], polluted
periodic signals [6], as well as other randomly-correlated ones.
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2.2. Data

Our input data consisted of 30 ebooks in the English language downloaded mainly from the
websites of the Gutenberg Project (http://www.gutenberg.org) and the Project Gutenberg Australia
(http://gutenberg.net.au). There was not a particular strategy to select the titles, other than considering
well-known works, as well as some that have been considered polemic or that treated polemic topics;
and the selected books were first published in different epochs, therefore giving diversity in time. Table 1
lists the books considered in our study, including the total number of words M and of different words
NU . For a simple comparison, Figure 1 shows the scatter plot of M vs. NU .

Table 1. Books considered in our study. The number of words and the number of different
words are denoted by M and NU , respectively.

# Title and Author M NU

1 The Aeneid, Virgil 112,478 8250
2 Animal Farm, G. Orwell 30,383 3921
3 Around the World in 80 Days, J. Verne 63,759 6822
4 The Bible, King James Ed. 884,964 12,806
5 Madame Bovary, G. Flaubert 117,536 10,298
6 The Catcher in the Rye, J. D. Salinger 77,555 4024
7 The Conquest of Bread, P. Kropotkin 72,016 7473
8 On the Origin of Species, C. Darwin 156,811 7237
9 The Picture of Dorian Gray, O. Wilde 80,407 6819
10 Dracula, B. Stoker 162,316 9291
11 The Diary of Anne Frank 104,753 8078
12 The Great Gatsby, F. S. Fitzgerald 50,102 5820
13 The Grapes of Wrath, J. Steinbeck 187,578 8696
14 Gulliver’s Travels, J. Swift 104,797 8188
15 Hopscotch, J. Cortázar 195,702 15,338
16 The Iliad, Homer 157,581 9117
17 Mein Kampf, A. Hitler 273,387 12,697
18 Moby Dick, H. Melville 218,704 17,150
19 Pierre and Jean, G. de Maupassant 46,543 5400
20 Pride and Prejudice, J. Austen 122,878 6450
21 The Koran (Al-Qur’an) 210,967 11,058
22 Siddhartha, H. Hesse 39,773 3550
23 The Idiot, F. Dostoyevsky 247,952 10,102
24 Three Men in a Boat, J. K. Jerome 68,804 6779
25 The Time Machine, H. G. Wells 32,775 4594
26 The Trial, F. Kafka 86,391 4776
27 Ulysses, J. Joyce 272,415 29,898
28 War and Peace, L. Tolstoy 572,627 17,543
29 The War of the Worlds, H. G. Wells 60,896 6758
30 Thus Spake Zarathustra, Nietzsche 92,400 7534
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Figure 1. Scatter plot of the number of words M vs. the number of different words NU

for the books considered in our study. Notice that the longest book is The Bible with
M = 884,964, whereas the shortest one is Animal Farm with M = 30,383. For new words
in the text, that is how much innovation is present, the highest is Ulysses, while the lowest
is Siddhartha.

3. Results

We consider the sequences of word- length obtained from the 30 books described above. We
emphasize that the word length is given in terms of the number of letters forming a word. First, we
notice that a direct application of the NVG to the word length sequences reveals that the NVG is highly
inaccurate at capturing temporal correlation/organization structures in signals close to the transition from
anti-persistent to persistent behavior [23]. For a more reliable application of the NVG to the word-length
data, the sequence {l(1), l(2), ..., l(N)} is first integrated to obtain the profile, L(i) = Σj=i

j=1(l(j) − l̄),
where l(j) is the j-th word length, l̄ is the mean value and i = 1, .., N (see Figure 2). In this way, the
integrated signal is within the fractional Brownian motion regime, and the NVG provides more reliable
information of the emerging networks by means of, for example, quantities, like the degree distribution.

The NVG was applied to the integrated word length sequences in the dataset to get the corresponding
networks, where nodes are the words (length value), and a link exists if there is a direct visibility between
two values in the sequence, as shown in Figure 2.
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Figure 2. (a) Representative word-length sequence. (b) Visibility graph method applied to
the integrated sequence of word lengths. Two values are connected if there is “visibility”
between them.

The number of nodes of the resulting networks correspond to the number of words in the original
literary text, while the order (number of edges) depends on the “visibility” restriction. First, we construct
the probability degree distribution P (k) from this network in order to characterize the connectivities. In
Figure 3a, we depicted the degree distribution of the visibility networks from individual data. We find
that a power-law behavior is observed for each book (Figure 3a), that is P (k) ∼ k−γ , with approximately
two regimes; for the range 10 ≤ k ≤ 102, the average exponent is γs = 1.72 ± 0.02, while for
102 < k ≤ 103, the value is γl = 1.34 ± 0.07. A significant difference is observed between γs and
γl when comparing both groups of exponents (p-value < 10−3 by student’s test). It is important to
evaluate the extent to which these distributions from different books correspond to the same distribution.
To this end, we used the Kolmogorov–Smirnov (K-S) test to accept or reject the null hypothesis that any
pair of distributions (books) has the same distribution. We computed the p-value between the cumulative
distributions from all of the pairs of books.

In Figures 3b,c, we present the results obtained from the application of the K-S test to our dataset.
We observe that, at the 5% level of significance, in all cases, we accept the null hypothesis that any
two books have the same distribution, justifying that we can pool the data (degrees) from all books to
get better statistics (see the caption of Figure 3 for a description). The results of pooling the data are
shown in Figure 3b, where we find that P (k) is consistent with a power law with two regimes separated
by the crossover degree scale located at k∗ ≈ 100; over short scales, the probability of degrees decays
following an exponent γ̄s = 1.70± 0.01, which is bigger than the one corresponding to the large scales
γ̄l = 1.32± 0.01, confirming that the connectivities exhibit two different tendencies.
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Figure 3. Visibility graph method (natural visibility graph (NVG)) analysis. Degree
distributions of the degree probability P (k) versus the degree k of the number of visible
connections from the graph of the integrated word-length sequences. (a) Log-log plot of
P (k) vs. k of individual data. We observe that each book follows an overall function
of the form P (k) ∼ k−γ , but with two apparent regimes having different exponents. (b)
As in (a), but for pooled original and shuffled data. The original data follow a power-law
function with two regimes separated by the degree scale value k∗ ≈ 102; over short degree
values, the scaling exponent is γs ≈ 1.7, while for large scales, γl ≈ 1.3. We also show the
distribution from shuffled data, and we observe that they follow a power law with exponent
value γr ≈ 2.1. (c) The matrix of p-values from the application of the Kolmogorov–Smirnov
(K-S) test to all pairs of individual distributions shown in (a). We observe that at the 5% level
of significance, for all of the books in our dataset, we cannot reject the null hypothesis that
any pair of books has the same distribution. Therefore, we can pool the degree data from all
of the texts and improve the statistics.



Entropy 2015, 17 7805

Lacasa et al. [23] have reported that the exponent γ, which characterizes the connectivities
in fractional Brownian motion (fBm), is related to the exponent of power spectrum β through the
relationship γ = 4− β. Since our work here is based on the NVG analysis of the integrated word-length
series, the corresponding relationship for the increments (i.e., the original word-length values) would be
γ = 2 − β

′ , with β ′
= β − 2 [27]. Given our values of γs ≈ 1.7 and γl ≈ 1.3, this means that the

corresponding exponents of the power spectrum are given by β ′
s ≈ 0.3 and β ′

l ≈ 0.7, in agreement with
previous results obtained for small datasets [5,20,21].

For a comparison, we repeated our procedure, but for the case of randomized versions of the
word-length sequences, i.e., the initial word-length series are shuffled in order to destroy correlations,
and then, the NVG is applied to construct the degree distribution of those integrated series. The results
are shown in Figure 3b for the case of pooled data. The randomized data lead to a degree distribution,
which follows a power law Prandom(k) ∼ k−γr , with γr = 2.1. According to the relation γ = 4 − β,
the shuffled data lead to the value β ′

= β − 2 = 0.1, in good agreement with the expected exponent for
uncorrelated sequences.

We also compared these results from the NVG with the detrended fluctuation analysis (DFA) [28]. The
DFA is a reliable method to detect long-range correlations in time series. In the DFA, the original time
series is integrated; the resulting series is divided into boxes of size n, and for each box, a straight line is
fitted to the points. Next, the root-mean-square fluctuation F (n) is computed of the detrended sequence
within each box. If a scaling function of the form F (n) ∼ nα is present, then the correlation exponent
α characterizes the original signal. It is known that α = 0.5 corresponds to white noise (non-correlated
signal) and that α = 1 corresponds to a long-range correlated process. In many cases, the scaling
behavior in the fluctuation is not expressed through a single exponent, and two or more of them are
necessary to characterize the signal [29,30]. For these cases and in order to get a good estimation of
the α-values and the crossover point, we consider the following procedure: given the statistics of F (n),
a sliding pointer along the scale n is considered to perform linear regression fits to the values on the
left and to the elements on the right. At each position of the pointer, we calculate the errors in the fits
(el and er), monitor the total error defined by et = el + er and find the position of the minimum of et.
We then define two stable exponents (αs and αl) as the power law fit to the left and right, respectively,
of et. For our data, et reaches its minimum value, and the position of the crossover point is within the
interval 10 ≤ n ≤ 103.

We use the DFA method to verify the presence of long-range correlations in the word-length
sequences. We notice that in this case, the DFA method is applied to the original world-length series. As
shown in Figure 4, the scaling behavior is characterized by two regimes; over short scales (n < n×), the
average exponent is αs = 0.52± 0.04, whereas for large scales (n > n×), the value is αl = 0.71± 0.07.
We observe that for short scales, the average exponent is close to 0.5, indicating an uncorrelated behavior,
while over large scales, the average exponent is larger than 0.5, revealing a persistent behavior with
long-range correlations. A significant difference is observed between αs and αl for the whole dataset
(p-value < 10−3 by Student’s test). For a comparison, we shuffled the original word-length sequences in
order to destroy correlations and repeated our procedure. The results are also depicted in Figure 4.
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Figure 4. Detrended fluctuation analysis (DFA). Correlation exponents αs and αl of the
detrended fluctuation analysis (DFA) for the books in the dataset. (a) Plots of F (n) vs. n for
four representative cases of crossover scaling in word-length sequences from the books The
Picture of Dorian Grey, Gulliver’s Travels, Ulysses and The War of Worlds. Two regimes
in the exponent values are identified, and they are separated by the crossover scale n×, as
is indicated. (b) Histogram of crossover scale position n× for the DFA data. Most of the
cases lie between the range of a 50–400 window size. (c) Correlation exponents α for the
31 books in our study. Here, the exponents’ values were determined by means of two linear
fittings for which the error is minimum (see the text for details). For most cases, the scaling
exponents (αs ≈ 0.5) from the small scales (squares) are close to that for the randomized data
from the small and large scales (diamonds, triangles), indicating that there are no significant
correlations in word lengths at small distances between the words. This contrasts with the
behavior of most of the data at large scales (squares), where (αl > 0.5) indicates the presence
of positive long-range correlations. However, for three books, The Bible, Madame Bovary
and The Koran, the exponent values, αs and αl, at both small and large scales, are the same.

For all books, both scaling exponents collapse to the value of 0.5, confirming that the randomization
procedure has destroyed the correlations. We notice that the correlation exponents from large scales
are not uniform, and some deviations with respect to the mean are observed for specific texts, such
as Gulliver’s Travels, The Picture of Dorian Grey, Ulysses and The War of the Worlds, which exhibit
an exponent value above 0.8. It is also worth noticing that the obtained values of DFA exponents
are in qualitative concordance with the values observed under the visibility method, according to the
relationships γ = 2 − β′ and α = (β′ + 1)/2 [28,31]; the exponents α and γ are related through
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γ = 3 − 2α. Given our values of αs ≈ 0.5 (αl ≈ 0.7), the corresponding exponents of the power
spectrum and degree distribution are given by β′s ≈ 0.0 (β′l ≈ 0.4) and γs ≈ 1.9 (γl ≈ 1.5), respectively.
We recall that the results from the DFA indicate that for small scales, there is very weak correlation,
while for large scales, there are positive correlations, consistent with our results from the NVG.

Next, in order to test the presence of memory effects in word-length sequences, we consider the
return times of word-length values equal or bigger than a given threshold [32]. The return time is given
by the number of word lengths until the word length in question appears again. The threshold lengths
`0 = 2, 3, 4, 5 are considered. For each value of `0, we construct the cumulative probability distribution
of the return times of all of the books in our study. Figure 5 shows four representative cases of the
calculations. We observe that the return times for all thresholds can be approximately described by a
stretched exponential distribution of the form H(τ) ∼ e−aτ

b , with a and b two fitting parameters, which
reveal the information of the behavior of the distribution. This distribution is more skewed than a single
exponential distribution and less skewed than a power law distribution. As b→ 1, it approaches a single
exponential distribution, and as b→ 0, it approaches a power-law distribution. The fits to the individual
data lead to the average values b̄2 = 0.1.1±0.14, b̄3 = 0.93±0.06, b̄4 = 0.86±0.05 and b̄5 = 0.84±0.06,
where the subindex indicates the threshold value.
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Figure 5. Recurrence time analysis. Plot of − log10G(τ) versus. recurrence time τ for four
representative books in our study. We show the cases of threshold values `0 = 2 (circles),
`0 = 3 (squares), `0 = 4 (diamonds) and `0 = 5 (triangles). The exponent b = 1 here
represents the single exponential case, while b < 1 is a stretched exponential distribution.
Consistent with the NVG and DFA analysis in Figures 3 and 4, the exponent b is closer to
one, indicating no memory effects in word length for small values and b < 1 indicating the
presence of memory in return intervals of large word-length values.

As shown in Figure 5, for `0 = 2, the distributions are close to the exponential limit, indicating that
the mechanism of selecting a word with a length equal to or above the threshold is time independent and
can be explained as a simple Poisson process. As the value of the threshold increases, the value of b
decreases, revealing that the burstiness of larger words tends to increase. This burstiness in larger words
is also consistent with our results that the structure of the correlations changes at larger scales as these
larger words appear at lower frequency and, therefore, over larger scales in the text.
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4. Concluding Remarks

The frequency of word distributions has been well known for some time [1], but much less is known
about the correlations b etween words and word lengths. Here, we have studied the correlation properties
of word-length sequences from large literary texts. Our results, based on the visibility graph method
(NVG), reveal that the degree distribution of the integrated word-length visibility networks can be
described by a power-law function with approximately two regimes, while the corresponding distribution
from shuffled data is characterized by the exponent value γ = 2.1, as expected for uncorrelated data [23].
Specifically, the correlation behavior is different at short and large word length degrees. For word-length
degrees between 10 and 102, γs = 1.7, while for degrees between 102 and 103, γl = 1.3. These results
are corroborated by our results from the detrended fluctuation analysis (DFA) where we found that for
small scales, the sequences possess αs ≈ 0.5, indicating no correlation, while for large scales, the
word-length sequences have positive correlations, as expressed by the exponent αl ≈ 0.7. Furthermore,
the recurrence time distributions also exhibit a deviation with respect to pure exponential behavior as the
threshold parameter increases, that is for small values `0, the low word lengths dominate the dynamics
with no memory, while for the large `0, the high word lengths are distributed with recurrence times,
which exhibit memory (b < 1). Thus, all three methods find that the lack of correlation in word lengths
at small scales is replaced by a positive correlation in word lengths over large separations between words.
The large-scale linguistic structures in these books are different, in an important way, compared to the
small-scale structures. We hope that these new findings will serve as the basis for a linguistic or semantic
interpretation of what they tell us about language or, more specifically, about written language.
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