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Abstract: We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement
hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a
definition for the entropy of a closed system as a real and objective quantity. We explain how
this approach offers an explanation for the Second Law of Thermodynamics in general and a
non-paradoxical understanding of information loss during black hole formation and evaporation
in particular. It also involves a radically different from usual description of black hole equilibrium
states in which the total state of a black hole in a box together with its atmosphere is a pure
state—entangled in just such a way that the reduced state of the black hole and of its atmosphere
are each separately approximately thermal. We also briefly recall some recent work of the author
which involves a reworking of the string-theory understanding of black hole entropy consistent
with this alternative description of black hole equilibrium states and point out that this is free from
some unsatisfactory features of the usual string theory understanding. We also recall the author’s
recent arguments based on this alternative description which suggest that the Anti de Sitter space
(AdS)/conformal field theory (CFT) correspondence is a bijection between the boundary CFT and
just the matter degrees of freedom of the bulk theory.
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What follows is a review, in the style of an essay, of the author’s matter-gravity entanglement
hypothesis—recalling the basic issues it addresses and its basic statement. It includes a discussion of
some more recent work of the author on how existing results on string theory and the Anti de Sitter
space (AdS)/conformal field theory (CFT) correspondence related to black hole equilibrium states
can be reworked and reconciled with our hypothesis. We argue that the resulting reworking leads
to a clearer understanding than hitherto available of black hole entropy in terms of string theory
and a clearer resolution to the information loss puzzle and also to some other puzzles including
the Arnsdorf-Smolin puzzle [1] related to AdS/CFT. Our purpose is to collect together, in a single
short and easily readable article, the main evidence obtained so far for the validity of our hypothesis.
The emphasis is on the main ideas. The referenced papers by the author should be consulted for
full details.

The Second Law of Thermodynamics originated with Carnot (1828) as a statement about which
changes of state are possible for machines such as heat engines and refrigerators. One way to state
it is:

The entropy of a closed system always increases with time.

Entropy (the term was coined by Clausius in 1856) was originally defined in terms of the
macroscopic phenomenological quantities, “heat” and “temperature”. But to go beyond systems
which depart from thermal equilibrium only slightly or at a slow rate, one needs a more
fundamental definition:
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In a classical setting, Boltzmann’s 1877 proposal was (in the terminology of Planck) that entropy
(S) equals Boltzmann’s constant (k) times the logarithm of the number (W) of microstates belonging
to a given macrostate:

S = k log W.

This equation was subsequently adapted to a quantum mechanical setting by von Neumann
with the formula

S = −k tr(ρ log ρ).

where ρ is the system’s coarse-grained density operator. And yet, as von Neumann famously
remarked in a conversation with Shannon in 1948, “nobody knows what entropy really is”.

Amongst the reasons entropy may seem a mysterious and elusive concept are, firstly, that
there seems to be a danger of a contradiction between the time-irreversible Second Law and the
time-reversal invariant (or at least PCT invariant) microscopic laws of physics. Secondly, the process
of coarse-graining by which we group together microstates into equivalence classes of macrostates to
define the Boltzmann entropy is necessarily partly arbitrary, based as it is on a subjective judgement
about which pairs of states are indistinguishable.

One might argue that none of this matters and entropy is not a fundamental quantity; the only
truly fundamental and natural value for the W in Boltzmann’s formula is 1 (all distinct microstates
are ultimately distinguishable) and the only natural value for the entropy, S, of any state of any closed
system is therefore zero. Likewise, a full description of a quantum closed system would be with a pure
density operator, for which the von Neumann entropy is again zero.

And yet, there seem to be reasons [2,3] to believe that the universe really does have a non-zero
entropy—and that this is quite independent from any subjective judgments that we may make about
what we can and cannot distinguish (see Endnote [4]—which refers to Reference [5]) Indeed its value
has been estimated (see e.g., [6]). Furthermore, thanks to Hawking [7], we know that a black hole
has an entropy equal to a quarter of the area of its event horizon—and there certainly seems to be
nothing subjective about a quarter of an area! Moreover, presumably the entropy of the universe
really is increasing and the entropy of a model closed system consisting of a star in empty space
which collapses to a black hole and subsequently Hawking-evaporates will (when we include the
contribution to the entropy from the radiated particles) increase monotonically with time.

In 1998 I made a proposal [8–10] as to what the connection between the microscopic laws
of physics and the laws of thermodynamics might be according to which the entropy of a closed
system is a real and objective quantity. With this proposal, the question of whether entropy increases
monotonically with time becomes, with suitable assumptions about the microscopic laws of physics
and suitable assumptions about initial conditions, a well-defined and meaningful mathematical
question. As for what those microscopic laws of physics are, we don’t need to say in detail to see
how the proposal might work. All we need to assume is that there is an approximate quantum gravity
theory valid for energies well below the Planck energy and that this can be formulated along the
lines of a standard quantum mechanical theory with a total Hilbert space, H, which arises as the
tensor product of a matter Hilbert space, Hmatter, and a gravity Hilbert space, Hgravity, together with
a unitary time-evolution for an ever pure total density operator (see Endnote [11]—which refers to
References [12–18]) .

In such a theory, the von Neumann entropy of the total state will of course be zero at all times.
But, and this is the crucial new feature of the proposal, we don’t identify the physical entropy of
the total state with its von Neumann entropy. Rather [8–10] we identify it with the total state’s
matter-gravity entanglement entropy—i.e., with the von Neumann entropy of the reduced density
operator for the matter—obtained by taking the partial trace of the total pure density operator over
the gravity Hilbert space (which, since the total state is pure, happens, by a well-known easy theorem,
to equal the von Neumann entropy of the reduced density operator for gravity—obtained by taking
the partial trace of the total pure density operator over the matter Hilbert space). There is no reason
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why this quantity should remain zero for all time and indeed, with the further assumption that the
initial state of the closed system has a low degree of matter-gravity entanglement, it is plausible that
it will increase monotonically for all time.

Thus we have a plausible explanation for the Second Law for a general closed system. Applied
to our collapsing star closed system, and bearing in mind that information may be defined as negative
entropy, this specializes to a (non-paradoxical) explanation of how information is lost in black-hole
collapse. So we see that, on our view, the “information-loss puzzle” [19] is just a special instance of
the more general puzzle of how, for any closed system, its entropy increase can be reconciled with a
unitary time evolution. Once one ceases to identify the physical entropy of the closed system with
the von Neumann entropy (a unitary invariant) of its total state and identifies it instead with the
total state’s matter-gravity entanglement entropy, both the general puzzle and its special case, which
relates to black holes, go away.

Our proposal resembles the environment induced decoherence paradigm [20,21] but with a
crucial difference: In the environment paradigm, one separates one’s total closed system into a
“subsystem of interest” and an “environment” and regards the subsystem-environment entanglement
entropy as the physical entropy of the (open) subsystem. But in our proposal, the matter-gravity
entanglement entropy is identified with the entropy of the total closed system—and will, in general,
be non-zero even though the state of the total closed system is, at all times, a pure state!

Our proposal can easily be extended to include both closed and open syste a matter-environment
Hilbert space: In some given closed matter-gravity system in some given total pure state, we then
define the entropy of some given open subsystem of the matter to be the von Neumann entropy of its
reduced density operator—obtained by taking the partial trace of the total density operator over the
appropriate matter-environment Hilbert space as well as over the gravity Hilbert space (i.e., by taking
the partial trace over the tensor product of the latter two Hilbert spaces). See Endnote (xii) of [10] for
details. Now as one considers increasing the size of what we consider to be the matter system, and
concomitantly reducing the size of what we consider to be the matter environment—schematically
indicated by sliding the vertical dotted line to the right in Figure 1a, one expects the entropy of the
matter system to tend, in the limit as one slides it fully to the right, to the non-zero value for the
entropy of the total closed system—as in the schematic graph in Figure 2a. This is to be contrasted
with what would happen on the standard environment paradigm (on the assumption of a total pure
state) schematically illustrated by sliding the dividing line between system and environment to the
right in Figure 1b. The entropy may increase at first, but eventually it must decrease towards the
value zero for the total closed system as in the schematic graph in Figure 2b. (See also Endnote [4].)

Gravity

Matter System Matter environment

System Environment

(a) (b)

Figure 1. Schematic diagrams contrasting our approach to open systems (a) with that on the
traditional “environment-induced decoherence” paradigm (b).
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Figure 2. Schematic behaviour of entropy against “size of open system” for our approach to open
systems (a) contrasted with the corresponding behaviour on traditional ideas (b). (We note that
Figures 1 and 2 first appeared as “Figure 4” in Reference [10].)

One expects that, in accounting for the entropy of ordinary macroscopic open subsystems of
matter with typical laboratory sizes and energies (such as gases in boxes etc.) or indeed typical
terrestrial sizes and energies, it won’t make any significant difference whether one neglects gravity
and regards the entropy of some such system as arising from tracing over the matter environment
or whether one includes gravity in the theory and traces over the matter environment as well as the
gravitational field as we propose. This is an important check that our matter-gravity entanglement
proposal is reasonable. Had we instead based our hypothesis on the factorization of the total Hilbert
space as a tensor product, say, between a Hilbert space for matter except for the electromagnetic field
and a Hilbert space for gravity together with the electromagnetic field, then (since the electromagnetic
field is such an important component of ordinary matter) one would no longer be able to view
the theory of the origin of the entropy of ordinary macroscopic systems provided by the usual
environment paradigm as a limiting case of our new theory. However, our main argument for basing
our hypothesis on the factorization of H as Hmatter ⊗ Hgravity is based on the fact that it offers a
resolution to the thermal atmosphere puzzle, as we discuss below.

Our above proposed explanation of the Second Law relies on our closed system having an
initially low entropy (i.e., low degree of matter-gravity entanglement). If a supposedly closed system
(e.g., our collapsing star model system) is really an approximately closed part of a bigger universe,
this low entropy will (cf. [2]) presumably be traceable to a low initial entropy of the universe as a
whole. We don’t explain why that might be low, but one might hope that a more ambitious theory
might do so.

In the traditional approach, one can similarly [2,3] reconcile irreversibility with reversible
microscopic laws by assuming a low entropy initial state for the universe. But the explanation will
inherit an unsatisfactory subjective aspect due to the subjective nature of entropy as traditionally
understood. To make this clear, consider, e.g., the classic thought experiment where one removes a
partition separating two equal halves of a, say, rectangular box containing a single non-relativistic
particle, initially confined, say, to the left half of the box (say with a pure-state wave function
satisfying vanishing boundary conditions at the walls of the box and at the partition). The initial
state is deemed to have a lower entropy—by a factor of klog 2—than the state after the removal of the
partition but only because we declare ourselves able to distinguish between a state where the particle
is definitely confined to one half of the box and a state where all we know about it is that it is located
somewhere in the entire box with (one expects) roughly equal probabilities of being in the left and
right halves.
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In the traditional (von Neumann [22]) approach to quantum mechanics, one can understand this
traditional explanation of the increase of entropy in this box model as due to the performance of a
quantum mechanical measurement to answer the question whether the particle is in the left or right
half of the box. Before the partition is removed, the measurement outcome will be that the particle is
definitely in the left half of the box and the density operator will remain the (pure) projector onto the
initial wave function—with von Neumann entropy zero. At most times after the partition is removed,
the density operator after the measurement will be a mixture, with roughly equal probabilities, of a
projector onto a wave function localized in the left half of the box and a projector onto a wave
function localized in the right half of the box; and this density operator will, of course, therefore
have von Neumann entropy (approximately) equal to klog 2. The unsatisfactory subjective element
in the understanding of entropy (and of entropy increase) in this quantum mechanical version of the
traditional approach is the fact that it needs to refer to the notion of “measurement”. In fact we see
that the unsatisfactory [23] subjective aspect of the traditional approach to quantum mechanics and
the unsatisfactory subjective aspect of the traditional understanding of entropy that we are focussing
on in this essay are closely interrelated.

On the usual environment-induced decoherence paradigm, one overcomes this unsatisfactory
subjectiveness and arrives at an objective notion of entropy, but only for open systems. If the entire
box in our above box model is deemed to be an open system, coupled (even if perhaps only very
weakly) to an environment in such a way that the system together with the environment is in an
overall pure state, then one expects that, when the partition is removed, the entropy of the box—now
understood as its entanglement entropy with its environment—will rapidly increase by the same
factor of k log 2 predicted on the above traditional approach. However, if such a box were truly a
closed system, without any environment, then, in the spirit of the environment approach where one
does not admit the occurence of measurements, one would say that its entropy would not increase on
removing the partition, the state remaining at all times pure.

The extension of our matter-gravity entanglement proposal to open systems, mentioned above,
would lead to essentially the same conclusion for the removal of the partition in our box model
when it is coupled to a matter environment. However, as we have already explained above, our
matter-gravity entanglement hypothesis also predicts, as an objective fact, the increase of entropy for
closed systems. In particular, for our box model, one expects it would predict an increase in entropy,
even if our box were a truly closed system, with no matter environment—albeit this increase might
be very small. This is because, on our matter-gravity entanglement hypothesis, we would include the
gravitational field in the description of our total system and we would not neglect the interaction
of the particle with gravity (even though, for many other questions, the effects of that coupling
might be quite negligible) and we would equate the total system’s entropy with its matter-gravity
entanglement entropy.

Our conclusions from the above four paragraphs are: The traditional approach to entropy and to
entropy-increase applies to closed systems, but (at least when it is applied to closed systems) it has an
unsatisfactory subjective element; the usual environment-induced decoherence paradigm provides
an objective understanding of entropy and of entropy-increase but only for open systems; our
matter-gravity entanglement hypothesis provides an extension and completion of the environment
paradigm which seems to be capable of offering an objective definition of entropy and an objective
explanation of entropy increase also for closed systems.

Where our proposal most sharply distinguishes itself from the traditional account is in its
description of the equilibrium states of a black hole in a (say, spherical) box. Traditionally [24] such
a state is modelled as a—highly impure—total thermal state of matter and gravity at the Hawking
temperature. On our proposal it is a total pure state of matter and gravity which is entangled in just
such a way that the partial state of the matter alone as well as the partial state of the gravity alone are
each approximately thermal (again, at the Hawking temperature). In the traditional understanding of
the equilibrium states of quantum black holes, it has never been clear what is the relationship between
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the entropy of the black hole itself (which one supposes is made out of pure gravitational field)
and the entropy of the black hole’s thermal atmosphere (which is mostly matter—see Endnote [25]).
In particular it was unclear whether the total entropy should be equated with the former, or the
latter, or the sum of the two. And while there were a number of indications [26,27] that the black
hole entropy and the thermal atmosphere entropy had the same value (see Endnote [28]—which
refers to References [10,29–31]) there was no understanding of why this should be the case. We
call this the thermal atmosphere puzzle. On our proposal, it would clearly be wrong to add them
and natural that they should be equal in the sense that the von Neumann entropy of the reduced
state of the gravitational field necessarily equals the von Neumann entropy of the reduced state of
the (matter part of the) thermal atmosphere and both are necessarily equal to the matter-gravity
entanglement entropy. We remark that, as we anticipated above, this satisfactory resolution of the
thermal atmosphere puzzle relies on the fact that our hypothesis (i.e., of matter-gravity entanglement)
is based on the factorization of the total Hilbert space as a tensor product between matter and
gravity rather than some other factorization such as into the tensor product of a Hilbert space
for matter except for the electromagnetic field and a Hilbert space for gravity together with the
electromagnetic field.

Recently we have explored how our very different understanding of black hole equilibrium
states can be reconciled with work of string theory related to black hole entropy which, in its present
versions, seems to presuppose the traditional view. Our results so far [17,18,32] show some promising
indications that not only can they indeed be reconciled, but that a clearer understanding of black hole
entropy and a clearer resolution of the information loss puzzle emerges once the string theory results
are reworked and reinterpreted so as to be compatible with our proposal. Further results [33–35]
suggest a different from usual interpretation of the AdS/CFT correspondence according to which it is
a bijection between the boundary CFT and a subtheory of the bulk theory consisting of just its matter
degrees of freedom. To end this essay, we outline the main ideas and results of each of these pieces
of work.

Our first set of results concerns the impressive quantitative agreement between the results of
Strominger and Vafa [36] and subsequent authors for the entropy of extremal and near-extremal black
holes and the original Hawking entropy formulae and also between the semi-qualitative results of
Susskind [14] and of Horowitz and Polchinski [15,16] for the entropy of, say, Schwarzschild black
holes and the original Hawking entropy formula for those. These results clearly indicate that string
theory is capable of providing an understanding of black hole entropy. But there are unsatisfactory
puzzling issues too: Strominger and Vafa obtain the entropy as the logarithm of the degeneracy
of an energy-level. Yet (to quote our paper [17]) the degeneracy of the nth energy level of the
textbook Hydrogen atom Hamiltonian is n2 but we would not conclude that the Hydrogen atom
has an entropy of k log n2! There is a related unsatisfactory puzzling issue in the work of Susskind
and of Horowitz and Polchinski. They derive the entropy of a Schwarzschild black hole up to a
small unknown constant with an argument which we now sketch. (In what follows, we take h̄ and
c to equal 1. Following [15,16] we assume we can work with (1+3)-dimensional strings; ` stands
for the string length scale, g for the string coupling constant and G for Newton’s constant, related
to g and ` by G = g2`2.) Horowitz and Polchinski assume that, as one scales ` up and g down
from their physical values, keeping G = g2`2 fixed, a Schwarzschild black hole of mass M will go
over to a long string with roughly the same energy, ε = M. The density of states of such a long
string, for small enough g, is known, very roughly (i.e., omitting an inverse-power prefactor) to
take the exponential form, σls(ε) = Clse`ε (Cls a constant with the dimensions of inverse energy of
the same order of magnitude as `). Horowitz and Polchinski then say that the “logarithm” of this
is approximately given by `ε and propose that k times this should be equated with the entropy, S
of a (Schwarzschild) black hole provided that one does the equating when, to within an order of
magnitude or so, ` = GM. Combining these latter two equations (and replacing ε by M) they arrive
at the conclusion that the entropy of the black hole will be a moderately sized constant times kGM2
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which agrees, up to an undetermined value for the constant, with the Hawking value, 4πkGM2 for
the entropy of a black hole.

The unsatisfactory puzzling issue in this apparent derivation of black hole entropy is that it is,
of course, not really meaningful to take the logarithm of such a (dimensionful!) quantity. Really,
before one takes the logarithm, one would need to multiply σls(ε) by a constant with the dimensions
of energy but, in [15,16] no such constant is provided by the theory.

What we propose in [17] (see also [18,32]) is that the Horowitz-Polchinski scenario be replaced
by a scenario in which, as one scales the string length scale, `, up and the string coupling constant,
g, down from their physical values, keeping G = g2`2 fixed, an equilibrium state consisting of a
(4-dimensional) Schwarzschild black hole of mass M in contact with its (mostly matter) atmosphere in
a box of given total energy, E, will go over to an equilibrium state of similar total energy, E, consisting
of a single long string, with mean energy, ε̄ of a similar magnitude to M, in contact with an atmosphere
of small strings in a, suitably rescaled, box. If we ignore certain inverse-power prefactors, each of the
long string and the stringy atmosphere densities of states, which we call σls and σsa, will take the form
Ce`ε (with different values, Cls and Csa, say).

We then appeal to a separate piece of work [32] on the foundations of statistical mechanics
(which we carried out partly in preparation for the analysis of this string theory scenario and which
we will briefly outline below) to conclude that, if we regard the total system consisting of the
long string weakly coupled to its stringy atmosphere to be in a pure total quantum state which is
chosen at random from the set of all possible pure states with energy in a narrow band around E,
then their reduced states will highly probably be very close (in a certain sense which is explained
in [32]) to approximately thermal states at inverse temperature k`, each with mean energy very
close to E/2, while the entanglement entropy between the long string and the atmosphere of small
strings will highly probably be very close to k`E/4 (up to a small logarithmic correction). We then
replace the Horowitz-Polchinski assumption by the assumption that when one scales things back,
the total pure state of the long string/string atmosphere system goes over to a pure state of the
black hole/atmosphere system and we can equate this mean energy with a constant of order 1 times
the black hole mass M and also equate this entanglement entropy with the entanglement entropy
between the black hole and its atmosphere provided we do the equating when, to within an order
of magnitude or so, ` = GM—and also that the approximately thermal reduced states of long string
and stringy atmosphere go over to approximately thermal reduced states of the black hole and its
atmosphere at the same temperature. In this way, we arrive at the conclusion that our black hole
equilibrium (total pure!) state has the property that the reduced states of the black hole (i.e., most of
the gravity) and of its (mostly matter) atmosphere are each thermal at inverse temperature a constant
of order one times kGM while their entanglement entropy (by our matter-gravity entanglement
hypothesis, approximately the physical entropy) is a constant of order one times kGM2. In fact (but
see [17,18] for further discussion of the significance of this) by equating ` with 8πGM one obtains
exactly Hawking’s formula, 1/T = 8kπGM for the inverse temperature and exactly Hawking’s
formula, S = 4kπGM2, for the entropy.

Our paper [32] considers a very general setting in which one has a total closed system (we use
the term “totem” for short) consisting of two weakly coupled quantum systems (called “system” and
“energy bath”) with prescribed densities of states, σsys and σbath, and investigates what can be said
about the reduced state of the system when the totem is in a random pure state with energy in a
narrow band around some fixed energy E. In the earlier paper [37], Goldstein et al. had considered
such a setting in the case that the system is much smaller than the energy bath and showed that, with
high probability, the system will find itself in a thermal state (at inverse temperature kdσbath(ε)/dε).
This provided an attractive replacement for the traditional explanation of the thermality of a small
system in contact with an energy bath based on the assumption that the totem is in a microcanonical
ensemble. By considering, instead, the totem state to be a pure state (randomly chosen with energy
in a narrow band) one obtains foundations for statistical mechanics which are more on a par with
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the usual foundational assumption of quantum mechanics that the state of a closed system be
pure. [32] goes beyond the work in [37] by considering the case where system and energy bath
are of comparable size. It shows that (as also is the case for a total microcanonical ensemble) for
general densities of states (and in particular, for densities of states which grow as a large power of
the energy as one expects to hold approximately for ordinary non-gravitational physical systems) the
reduced state of the system (or of the energy bath) will not necessarily be thermal but, whether or not
it is thermal, the values of the mean energy as well as of the entropy and of other thermodynamic
quantities of our system will, with high probability, hardly depend on the particular random pure
state one chooses for the totem. Moreover, it provides a formula for a universal density operator
for the system (see Endnote [38]), ρ

modapprox
S (also reproduced in [17]) which, if used to compute

quantities such as the system’s mean energy or entropy, give values close to those one obtains for
the vast majority of our random totem pure states. (there is, of course, a similar universal density
operator, ρ

modapprox
B , for the energy bath.) Moreoever, in the special case that the densities of states

rise exponentially with energy, ρ
modapprox
S , and its counterpart for the energy bath, turn out to be

approximately thermal in a certain sense. We remark that the value one obtains with ρ
modapprox
S for

the system entropy is (of course) the same as the value one obtains with ρ
modapprox
B for the energy bath

entropy and is of course the same as the system-energy bath entanglement entropy.
The formalism of [32], and in particular the appropriate ρ

modapprox
S , is/are what we used

in [17,18] in order to compute the mean energy and the entanglement entropy quoted above—by
identifying the system with the long string and the energy bath with the atmosphere of small strings.

In conclusion, we obtain the same semi-qualitative results as Horowitz and Polchinski with their
entropy for a lone black hole replaced by our matter-gravity entanglement entropy of our black hole
equilibrium state in a box. Our scenario, though, is free from the unsatisfactory puzzling issue we
mentioned above; in a sense, our proposal supplies the missing constant with the dimensions of
energy. In the paper [18] we do a more sophisticated analysis with a more realistic string-theory
density of states involving a suitable inverse power prefactor. This both explains why (for suitable
ranges of the relevant parameters) there are multistring equilibrium states which consist of one
single long string and an atmosphere of small strings and leads to the same qualitative conclusions
regarding the values for the matter-gravity entanglement entropy and for the reduced temperatures.

Our second set of results concerns the AdS/CFT correspondence [39] which is usually thought
to be a full equivalence between a quantum gravity theory in the bulk of Anti de Sitter space (AdS)
and a conformal field theory (CFT) on the AdS conformal boundary. By considering states of quantum
gravity which contain black holes and which are modelled classically by the Schwarzschild-Anti-de
Sitter (Schwarwzschild-AdS) spacetime, and by arguing that it is correct to describe these states as
in our above discussed description of black hole equilibrium states in terms of a pure total state,
we have argued in [33] and [34] that the AdS/CFT correspondence is, instead, a bijection between
the boundary CFT and just the matter degrees of freedom of the bulk AdS quantum gravity theory.
As explained in those papers, this seems to offer a resolution to a puzzle raised [1] by Arnsdorf
and Smolin: The puzzle arises, if one adopts the usual view of full equivalence, from the fact that
Rehren has shown in [40,41] that any CFT on the conformal boundary of AdS is also equivalent,
under a natural form of fixed-background holography which he introduced in these papers, to a
quantum field theory on the AdS bulk (satisfying vanishing boundary conditions at the conformal
boundary and) obeying an appropriate version of commutativity at spacelike separation. Such a
commutativity condition would seem to be appropriate for a bulk theory involving matter, but not
for one involving gravity.

A key part of our discussion in [33] centers around the question: What becomes of a
(non-gravitational) quantum field theory on a fixed Schwarzschild-AdS spacetime background
when one switches on gravity? As is well-known, the maximally extended such classical
Schwarzschild-AdS spacetime has a quadruple-wedge structure similar to that of the Kruskal
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spacetime. If one studies quantum field theory in this fixed background, it is straightforward
and standard that there will be a pure Hartle-Hawking-Israel-like state [42–44] which is entangled
between the left and right wedge in just such a way as to be thermal on each wedge separately.
In [45], Maldacena assumes that the full state of quantum gravity, say in the right wedge, will be
similarly thermal and similarly entangled with a similar thermal state in the left wedge. But in [34]
(see also [35]) I argue (see below for an outline of the argument) that, once one switches on the
dynamical gravitational field, the horizon becomes unstable and the right wedge becomes a full
quantum spacetime (see Endnote [46]) in its own right with an overall pure state of matter and gravity
which—in line with the understanding of black hole equilibrium states that we propose here—is
entangled between matter and gravity in just such a way that each of matter and gravity separately
are approximately thermal. Interestingly, recently, a number of other authors [47–50] have argued
on quite different grounds internal to string theory that the right wedge becomes a full quantum
spacetime in its own right (see Endnote [51]—which refers to References [47–50]).

It is not in doubt that, under the AdS/CFT correspondence, the CFT on the conformal boundary
of the right wedge is in a thermal state with a (von Neumann) entropy equal to the entropy of the
quantum gravity theory on the right wedge. But the standard intepretation of this (including the
interpretation implicit in [45]) is that the quantum gravity theory on the right wedge is also in a
(total) thermal state (due to entanglement with the left wedge) and its entropy is the von Neumann
entropy of this total thermal state. On our view, the right wedge has become a quantum spacetime in
its own right and the state of quantum gravity on it is a pure state, but what one means by its entropy
is not the von Neumann entropy of this total pure state (which is of course zero) but its matter-gravity
entanglement entropy—i.e., the von Neumann entropy of just the matter (also of just the gravity but
that’s bye the bye). Our argument for the AdS/CFT correspondence being a bijection between the
boundary CFT and just the matter degrees of freedom of the bulk theory is that this would naturally
fit with the equality of the latter von Neumann entropy of the bulk matter with the von Neumann
entropy of the thermal state of the boundary CFT. As a reasonableness check on this, we verified,
in [33] in a simple linear scalar field model (with vanishing boundary conditions on the conformal
boundary) on 1 + 1 and 1 + 2 dimensional analogues to the geometry of the Schwarzschild-AdS right
wedge that (when both are suitably regularized by regularizing the bulk entropy with the brick-wall
model of [30,31]) the entropy of the boundary CFT according to fixed background holography is the
same as the entropy of the bulk scalar field when the latter is in the Hartle-Hawking-Israel state.

It remains for us to explain why we believe the horizons of Schwarzschild-AdS to be unstable.
A strong clue towards this is already given by the fact—evident from the quadruple-wedge geometry
of the Schwarzschild-AdS spacetime—that (assuming that past-directed light rays which hit the
conformal boundary reflect off it in the obvious way) if an observer were to pass from (say) the
past wedge to (say) the right wedge, then just after they cross the past horizon of the right wedge,
they will see an infinite amount of the history of the past wedge in a finite amount of time. This is
strongly reminiscent of the celebrated fact [52,53] that if an observer crosses the Cauchy horizon of
the (non-extremal) Reissner-Nordström spacetime then they will see an infinite amount of history in a
finite amount of time just before they cross it. The latter observation is well-accepted as indicating the
instability of that Cauchy horizon (for recent results on this, see [54,55]) and similarly (although, for
a number of reasons which are explained in [34], the analogy is not an exact analogy) one expects the
above fact about Schwarzschild-AdS to indicate instability of its horizons. Our main argument that
there is actually such an instability concerns a simple analogue system: the massless Klein Gordon
equation on the region of 1 + 1 Minkowski space in between the two branches of the hyperbola (in
the usual Minkowski coordinates x and t and taking the speed of light, c, to equal 1) x2 − t2 = 1—in
double-null coordinates (u = t − x, v = t + x) the curve uv = −1—see Figure 3. We can think of
the two branches of the hyperbola as a pair of accelerating (/decelerating) mirrors and we assume
the physical effect of these on our field is to impose vanishing bondary conditions. These mirrors
are analogous in an obvious way to the disconnected conformal boundary of Schwarzschild-AdS
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spacetime. As one sees from Figure 3, an initially right-moving classical plane wave, emerging from
the past wedge will reflect off the mirror and its wave fronts will pile up on the horizonHB—with the
result (see [34] for details) that the vv-component of its stress-energy tensor becomes infinite there.
In [34] we show that there are also finite energy wave packets with a similar pile-up property and a
similar singularity in their stress-energy tensor. We further show that suitable compactly supported
arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy
scalar near where the two horizons cross. For the quantum theory, we show that while there is a
regular Hartle-Hawking-Israel-like state, there are coherent states built on this (whose expectation
values are the above sorts of classical solutions) for which there is a similar singularity in the
expectation value of the renormalized stress-energy tensor. We conjecture that similar results hold
for the Schwarzschild-AdS spacetime (in any dimension) and that they entail the sort of horizon
instability we referred to above.

v

II

IV

III I

HA

u

HB

Figure 3. (= “Figure 3” of Reference [34]. Reproduced here with kind permission from Springer
Science + Business Media.) Schematic diagram of the four wedges of the region of 1 + 1 Minkowski
space between the two components of a hyperbolic boundary (i.e., the curve uv = −1, in the indicated
double-null coordinates, u and v) which may be thought of as a pair of accelerated mirrors. Shown
are lines of constant phase of (the restriction to Region IV of) an initially right-moving plane wave.
The wave reflects off the mirror in Region I and so do its lines of constant phase, piling up towards
the horizon, HB (v = 0). We argue that a similar pile-up occurs in the Schwarzschild-AdS spacetime
leading to the instability of theHA andHB horizons there.
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