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Abstract: The present paper revolves around two argument points. As first, we have 

observed a certain parallel between the reliability of systems and the progressive disorder 

of thermodynamical systems; and we import the notion of reversibility/irreversibility into 

the reliability domain. As second, we note that the reliability theory is a very active area of 

research which although has not yet become a mature discipline. This is due to the 

majority of researchers who adopt the inductive logic instead of the deductive logic typical 

of mature scientific sectors. The deductive approach was inaugurated by Gnedenko in the 

reliability domain. We mean to continue Gnedenko’s work and we use the Boltzmann-like 

entropy to pursue this objective. This paper condenses the papers published in the past 

decade which illustrate the calculus of the Boltzmann-like entropy. It is demonstrated how 

the every result complies with the deductive logic and are consistent with Gnedenko’s 

achievements. 
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1. Introduction 

The reliability of machineries and the mortality of individuals are topics of great interest for the 

scientific community and common people as well. Reliability theory is an abstract approach aimed to 

gain theoretical insights into engineering and biology. Presently, the vast majority of researchers make 

conclusions about populations based on information extracted from random samples; in short, authors 

follow statistical inductive logic.  

A mature discipline instead complies with deductive logic, that is to say theorists derive the results 

from principles and axioms using theorems. Gnedenko was the first to take this course in the reliability 

domain [1]. He assumes that the system S is a Markov chain and from this assumption concludes that 

the probability of good functioning without failure is the general exponential function:  
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where the hazard function λ(t) determines the reliability of the system in each instant: 

λ(t) = – P' (t)/P(t) (2)

Gnedenko demonstrates that the probability distribution (Equation (1)) comes from the conditional 

probability typical of Markov chains. Equation (1) originates from the operations that a system 

executes one after the other, and the following formal logic statement summarizes Gnedenko’s 

inference: 

Chained Units  General Exponential Function (3)

The hazard (or mortality) function λ(t) is the key element in Equation (1) in that λ(t) tunes up the 

general exponential function (1). Some authors hold that the hazard function is characterized by three 

phases: a new system has the decreasing hazard rate in the early part of lifetime where it is undergoing 

burn-in and debugging of machines. This period is followed by an interval when failures are due to 

causes resulting in a constant failure rate. The last period of life is one in which the system is 

experiencing the most severe wear out and thus has an increasing failure rate. However significant 

evidence contradicts this tripartite form of λ(t) which authors usually call bathtub curve. For instance, 

researchers show the irregular degeneracy of electronic circuits [2]. The hazard rate presents humps so 

evident that Wong [3] labels this: “roller coaster distribution”. In biology λ(t) has very differing trends [4]. 

For example the mortality function of Hidra magnipapilata is constant throughout the entire lifetime. 

Several experts notice the discrepancy between empirical data and the bathtub model, and negate any 

validity to it. Ascher [5] claims that “the bathtub curve is merely a statement of apparent plausibility 

which has never been validated”. More recently Kececioglu and Sun [6], Zairi [7], and Klutke with 

others [8] share this skeptical judgment.  

One cannot deny that the hazard rate has not yet determined in a rigorous manner, and in our 

opinion we should proceed with the deductive logic inaugurated by Gnedenko in the reliability 

domain. This is the objective of the present mathematical work. 

We begin with a preliminary theoretical inquiry  
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2. A Lesson from Thermodynamics 

The second law of thermodynamics claims that the entropy of an isolated system will increase as 

the system goes forward in time. This entails—in a way—that physical objects have an inherent 

tendency towards disorder, and a general predisposition towards decay. Such a wide-spreading process 

of annihilation hints an intriguing parallel with the decadence of biological and artificial systems to us. 

The issues of reliability theory are not far away from some issues inquired by thermodynamics and this 

closeness suggests us to introduce the entropy function for the study of reliable/reparable systems.  

We mean to detail the Markovian model and assume that the continuous stochastic system S has  

m states which are mutually exclusive: 

S = (A1 OR A2 OR .... OR Am), m > 0 (4)

Each state is equipped with a set of sub-states or components or parts which work together toward 

the same purpose. Formally, the generic state Ai (i = 1, 2, … m) is equipped with n sub-states:  

Ai = (Ai1 AND Ai2 AND … AND Ain), n > 0 (5)

We consider that the states of the stochastic system S can be more or less reversible [9], and mean to 

calculate the reversibility property using the Boltzmann-like entropy Hi where Pi is the probability of Ai: 

Hi = H(Ai) = ln (Pi) (6)

The proof is in [10]. 

We confine our attention to: 

– The functioning state Af and the reliability entropy Hf ;  

– The recovery state Ar and the recovery entropy Hr. 

The meanings of Hf and Hr can be described as follows:  

When the functioning state is irreversible, the system S works steadily. In particular, the more Af is 

irreversible, the more Hf is high and S is capable of working and reliable. On the other hand, when Hf 

is low, S often abandons Af in the physical reality. The system switches to Ar since S fails and is 

unreliable. The recovery entropy calculates the irreversibility of the recovery state, this implies that the 

more Hr is high, the more Ar is stable and in practice S is hard to be repaired and/or cured in the world. 

In sum Hr expresses the aptitude of S to work or to live without failures; the entropy Hr illustrates the 

disposition of S toward reparation or restoration to health.  

As an application, suppose a and b are two devices in series with probability of good functioning: 

Pf(a) = 10−200, Pf(b) = 10−150. We can calculate the probability of the overall system and later capability 

of good working of S with the entropy: 

Pf (S) = [Pf (a) · Pf (b)] = 10−350 (7)

Hf (S) = log[Pf (S)] = log (10−350) = −805.9 (8)

The Boltzmann-like entropy is additive and one can follow this way with the same result: 

Hf (S) = [Hf (a) + Hf (b)] = log[Pf (a)] + log[Pf (b)] = log[Pf (a) · Pf (b)] =  

= log [10−200 · 10−150] = = log (10−350) = −805.9 
(9)
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As second case, suppose a device degrades during the interval (t1, t2); and the probability of good 

functioning are the following: Pf (t1) = 10−10, Pf (t2) = 10−200. The entropies Hf (t1) = log (10−10)  

= −23.0; and Hf (t2) = −460.5 qualify the irreversibility of the device and one obtains how much the 

capability of good functioning has sloped down: 

ΔHf = Hf (t2) − Hf (t1) = −460.5 − (–23.0) = −437.5 (10)

3. Basic Assumption 

Real events are multi-fold. Mechanical, electrical, thermal, chemical and other material effects 

interfere in the physical reality. The generic component Aig (g = 1, 2, … n) involves a series of 

collateral physical mechanisms that run in parallel Aig. Universal experience brings evidence how side 

effects change Aig. Parallel interferences work by time passing and at last impede the correct 

functioning to Aig. Thus we can establish a general property for the system components:  

The part Aig degenerates as time goes by (11)

For example, Carnot defines a model for the heat engine that includes two bodies at temperature T1 

and T2 (T1 ≠ T2), the gas Aig does the mechanical work via cycles of contractions and expansions. The 

mounting disorder of the molecules—qualified by the thermodynamic entropy—results in the 

decreasing performances of Aig. More unwanted side effects—e.g. the attrition amongst the gears and 

the heat dispersion—impact on other components and progressively harm the effectiveness of the  

heat engine.  

4. Simple Degeneration of Systems 

We detail Equation (11) and establish the regular degeneration of components. The reliability 

entropy of Aig decreases linearly as time goes by: 

Hfg = Hfg (t) = – cg t. cg > 0 (12)

From hypothesis Equation (12) one can prove that the probability of good functioning Pf follows 

the exponential law with constant hazard rate: 

Pf = Pf (t) = e −c t, c > 0 (13)

( )tλ = c  (14)

The proof may be found in [11]. 

5. Complex Degeneration of Systems 

When assumption Equation (12) comes true over a certain period of time, the components Af1, Af2, …, 

Afn worsen to the extent that they set up a cascade effect [11]. The cascade effect consists of the 

generic part Aig that spoils one or more close components while the system proceeds to run. A cascade 

effect can be linear or otherwise compound. In the first stage we assume the component Aig harms the 

close part Aik and this in turn damages another one and so on: 

The cascade effect is linear (15)
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Suppose the linear cascade effect occurs while principle Equation (12) is still true of necessity, one 

can prove that the probability of good functioning is the exponential-power function: 

( )
nt

f fP P t e ab -= = , a, b > 1 (16)

The hazard function is a power of time: 

1( ) nt tλ −= a  (17)

In the second stage we suppose that the component Aig damages the components all around: 

The cascade effect is compound (18)

This hypothesis—alternative to linear waterfall effect—yields that the probability of functioning is 

the exponential-exponential function and the hazard rate is exponential of time:  

( ) ,
te

f fP P t eg d-= =  g, d > 1 (19)

( ) tt eλ = d  (20)

The proofs of Equations (16) and (19) may be found in [12]. 

6. Conclusive Remarks 

(A) The present paper adopts the Boltzmann-like entropy and develops the ensuing logical 

inferences:  

Regular degeneration of system’s components  Exponential Function 

Regular degeneration + linear cascade effect  Exponential-Power Function 

Regular degeneration + composite cascade effect  Exponential-Exponential Function 
(21)

Chaining implies a true dependency between chained operations, and Gnedenko derives the general 

exponential function (1) from the Markovian dependency. Gnedenko’s work and the present work are 

consistent despite the different mathematical techniques in use. In particular: 

 Assumptions of statements (21): We model S by mean of Equations (4) and (5) that are 

Markovian chains. The regular degeneration of Aig and the cascade effects make explicit some 

special behaviors of chained operations. 

 Conclusions of statements (21): Mathematical results (13), (16) and (19) are special cases of 

function (1). 

(B) The present approach adopts the deductive logic and Equations (14), (17) and (20) have been 

related to precise causes and not to precise periods of system lifetime. In other words, the function λ(t) 

can be a constant, it can follow the power or exponential distributions in any interval of the system 

life. Each result in (21) has been obtained from precise hypotheses, and those hypotheses may come 

true during the system juvenile period, the maturity and the senescence alike.  

(C) Authors recognize that sometimes the organs of appliances and biological beings degenerate at 

constant rate—in accord to Equation (14)—during the middle age. Several machines have linear 

structures and the probability of good functioning follows the Weibull distribution during ageing that 
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corresponds to Equation (17). The body of animals and humans appear rather intricate and during 

ageing λ(t) follow the Gompertz distribution in agreement with Equation (20). In conclusion, on one 

hand the present frame does not hold that the bathtub curve is the standard form of λ(t) in accordance 

with empirical evidence. On the other hand the theoretical results obtained here do not exclude that a 

special system can take after the bathtub curve. The bathtub curve is a concept that may be used for 

describing particular forms of hazard functions 

(D) The Boltzmann entropy plays a fundamental role on the theoretical plane as it clarifies why 

systems follow the second law of thermodynamics; instead it is not so common in engineering 

calculations. The Boltzmann-like entropy has the same virtues and limits of the Boltzmann entropy. It 

helps us to pass from studying “how” a system declines, to studying “why” a system declines, though 

the use of the Boltzmann-like entropy in applications is not so manageable and we mean to improve 

the present thread of research.  

In closing, we mean to highlight how the Boltzmann-like entropy sustains a promising approach for 

developing a deductive theory of aging integrating mathematical methods with engineering notions 

and specific biological knowledge. 
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