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Abstract: In the theory of energy and momentum relaxation in semiconductor devices,
the introduction of two temperatures and two mean velocities for electron and phonons is
required. A new model, based on an asymptotic procedure for solving the kinetic equations
of electrons and phonons is proposed, which naturally gives the displaced Maxwellian at the
leading order. After that, balance equations for the electron number, energy densities and
momentum densities are constructed, which constitute now a system of five equations for
the chemical potential of electrons, the temperatures and the drift velocities. Moreover,
Poisson’s equation is coupled, in order to calculate the self-consistent electric field. In
Bloch’s approximation, we derive a telegrapher’s-Poisson system for the electron number
density and the electric potential, which could allow simple semiconductor calculations, but
still including wave propagation effects.
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1. Introduction

In the past [1], a telegrapher’s approach in semiconductor theory has already proposed, based on a
stochastic model. Here, we resort strictly to the kinetic theory based on the Bloch–Boltzmann–Peierls
(BBP) equations [2]. The telegrapher’s equation we derive does not contain phenomenological
constants, like relaxation times. Here, all of the coefficients are derived from the collision kernels
of the electron-phonon, electron-electron and phonon-phonon interactions. Moreover, we introduce a
self-consistent electric field by means of the coupled Poisson’s equation.
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In semiconductor modeling, three approaches are widely applied, according to the physical situation
with which we deal. The microscopic approach is based on Monte Carlo simulations, which can account
for as many aspects of semiconductor physics as we want. Nevertheless it is well known that these
simulations are time consuming and therefore expensive.

The mesoscopic approach is based on the Boltzmann transport equation (BTE). Several numerical
techniques are developed in order to face a numerical solution of the problem. The distribution function
depends on seven variables (momentum, position, time), so that the task is quite formidable.

The macroscopic approaches are based on the weak form of the BTE, which give rise to a hierarchy of
coupled equations for the moments of the distribution function. Such an approach requires a truncation
at some order based on closure assumptions for the higher order fluxes and for the production terms for
non-conservation equations.

Most of the semiconductor macroscopic models have in common the assumption, at the basis
of the closure approximation, that some higher moments can be calculated by utilizing a displaced
Maxwellian. This approach would be justified if one had a systematic approximation for solving the
Boltzmann transport equations, asymptotic with respect to some parameters, whose leading terms would
be displaced Maxwellians. Such an approximation (asymptotic expansion) is now available [3] and gives
rise to a system of equations that recalls the extended thermodynamics model [4].

The thermalization, due to the electron-phonon interactions, of a non-equilibrium electron-phonon
system occurs if electrons in metals or semiconductors are heated to a temperature Te greater than the
lattice temperature Tp. In [2], a homogeneous medium is considered. Here, more in general, we consider
a non-uniform electron-phonon system. The result of [2] is recovered. Moreover, the momentum
relaxation is accounted for.

We start from the Bloch–Boltzmann–Peierls (BBP) coupled equations for the distribution functions
of electrons and phonons.

After that, by means of an expansion of both the unknowns and the interaction kernels with respect to
a small parameter that accounts for the Umklapp processes (with no momentum conservation), the lowest
order equations show that the displaced Maxwellian approximation is justified. A closed set of two-fluid
equations is constructed for the chemical potential of electrons, the temperatures and the drift velocities.
In Bloch’s approximation, a telegrapher’s-Poisson system can be derived for the electron number density
and the electric potential. This result opens new possibilities for a simplified semiconductor modeling,
which could include wave propagation effects [5].

We stress that in the present model:

(1) the displaced Maxwellian approximation is not an ad hoc assumption, but is justified by the
expansion that we apply;

(2) phonons are treated as a participating species, which brings energy and momentum;

(3) the correct phonon-phonon, electron-phonon and electron-electron interaction kernels are utilized;
we avoid the use of relaxation time approximations;

(4) a new telegrapher’s-Poisson system is derived here, starting from kinetic theory.

The main differences with respect to [3] are:
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(i) the electron-electron (e-e) collisional operator (wee) is now considered;

(ii) the asymptotic expansion is now singular for wee and regular for the electron-phonon collisional
operator (wep);

(iii) different temperatures and drift velocities for electrons and phonons now are taken into account.

With respect to [6], we observe that:

(iv) the generalization is dropped; here, we adopt Maxwell and Bose–Einstein statistics for electrons
and phonons, respectively;

(v) the calculation is performed in the case of cubic symmetry;

(vi) a self-consistent electric field is accounted for.

2. The BBP Equations

Consider two interacting populations: electrons (e), with charge -e, and phonons (p). Let Ng(k,x, t)

be the distribution function of phonons (quasi-momentum k, energy ωg(k)) of type g (i.e., branch g of
the phonon spectrum) and np = np(p,x, t) the distribution function of electrons (quasi-momentum p,
energy Ep).

In the present paper, we utilize the same notation of [7], like in [3,6], to which the reader is referred.
The BBP equations read:

SgNg =(∂Ng/∂t)pp + (∂Ng/∂t)pe

Spnp =(∂np/∂t)ep, (∂np/∂t)ee

where:

Sg = ∂/∂t+ ug · ∂/∂x
Sp = ∂/∂t+ v · ∂/∂x− eE · ∂/∂p

with:
ug = ∂ωg/∂k, v = ∂Ep/∂p, E = −∂P/∂x,

where P is the electric potential. Observe that, since ωg and Ep are even, ug and v are odd.
At the right-hand sides of the BBP equations for phonons [8], we have:

(∂Ng/∂t)pp =

∫
[(1/2)

∑
g1g2

wpp(k1,k2 → k)(−Ng(1 +Ng1)(1 +Ng2) + (1 +Ng)Ng1Ng2)+

+
∑
g1g3

wpp(k,k1 → k3)[(1 +Ng)(1 +Ng1)Ng3 −NgNg1(1 +Ng3)]]
dk1

8π3
,

where
k2 = k− k1 + b(k1,k2 → k), k3 = k+ k1 + b(k,k1 → k3),

which account for three-phonon processes:

(g,k) 
 (g1,k1) + (g2,k2), (g3,k3) 
 (g,k) + (g1,k1).
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In general, we must distinguish between normal processes (which conserve momentum) with b = 0, and
Umklapp processes (which do not conserve momentum) with b 6= 0, where b is an appropriate vector
of the reciprocal lattice [9].

Moreover, in the low density approximation,

(∂Ng/∂t)pe = 2

∫
wpe(p→ p′,k)(np(1 +Ng)− np′Ng)

dp

8π3
,

where p′ = p − k + b(p → p′,k) is the difference between the number of phonons k emitted by
electrons with any quasimomentum p and the number of phonons absorbed by electrons with any p′.

For electrons, we have:

(∂np/∂t)ep =
∑
g

∫
[wep(p

′,k→ p)(np′Ng − np(1 +Ng)) + wep(p
′′ → p,k)(np′′(1 +Ng)− npNg)]

dk

8π3
,

where
p′ = p− k+ b(p′,k→ p), p′′ = p+ k+ b(p′′ → p,k).

The first term corresponds to processes with the emission of a phonon having quasimomentum k by
an electron having a given quasimomentum p and reverse processes. The second term corresponds to
processes with absorption of a phonon by an electron with quasimomentum p and reverse processes.

The w’s, which come from quantum mechanical calculations [9], are transition probabilities, which
account for energy conservation, that is they contain a Dirac’s delta function, which imposes such
conservation. Moreover, the following symmetry relations are satisfied:

wpe(p→ p′,k) = wep(p→ p′,k) = wep(p
′,k→ p).

Furthermore, the e-e collision integral reads:

(∂np/∂t)ee =

∫ ∫
wee(p,p1 → p′,p′1)(np′np′

1
− npnp1)

dp1dp
′
1

64π6

3. Asymptotic Expansion and Balance Equations

By following [3], we expand the kernels and the unknowns with respect to a small parameter ε, which
takes into account the effect of the Umklapp (U) processes in addition to the normal (N) ones. We start
with electrons (the extension to phonons is trivial). The sought expansions for np and Ng read:

np = nNp + εnUp , Ng = NN
g + εNU

g .

Accordingly: (
∂np

∂t

)
ep

=

(
∂np

∂t

)N
ep

+ ε

(
∂np

∂t

)U
ep

,

where wep and wee read:

wep = wNep + εwUep, wee = (1/ε)wNee + wUep.

Observe that the expansion of wee is singular, since the relaxation due to e-e interactions is considered
quicker with respect to the case of the e-p ones [2].
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By introducing the expansions with respect to wep and wee, we can write:(
∂np

∂t

)N
ep

=

(
∂np

∂t

)NN
ep

+ ε

(
∂np

∂t

)NU
ep

,(
∂np

∂t

)U
ep

=

(
∂np

∂t

)UN
ep

+ ε

(
∂np

∂t

)UU
ep

,(
∂np

∂t

)N
ee

= (1/ε)

(
∂np

∂t

)NN
ee

+

(
∂np

∂t

)NU
ee

,(
∂np

∂t

)U
ee

= (1/ε)

(
∂np

∂t

)UN
ee

+

(
∂np

∂t

)UU
ee

.

By collecting all of these terms and neglecting ε` with ` ≥ 1, we have:

SpnNp = (1/ε)

(
∂np

∂t

)NN
ee

+

(
∂np

∂t

)NU
ee

+

(
∂np

∂t

)UN
ee

+

(
∂np

∂t

)NN
ep

.

At the orders −1 and zero, we get: (
∂np

∂t

)NN
ee

= 0(
∂np

∂t

)NU
ee

+

(
∂np

∂t

)UN
ee

+

(
∂np

∂t

)NN
ep

= SpnNp , (1)

respectively. Analogously, for phonons: (
∂Ng

∂t

)NN
pp

= 0(
∂Ng

∂t

)NU
pp

+

(
∂Ng

∂t

)UN
pp

+

(
∂Ng

∂t

)NN
pe

= SgNN
g . (2)

The equations of order −1 for both phonons and electrons are solved (see the Appendix) by:

ln[NN
g /(1 +NN

g )] = (Vp · k− ωg)/Tp, lnnNp = (µ+Ve · p− Ep)/Te

(with α = e, p) where Tα = Tα(x, t) are the absolute temperatures, while µ = µ(x, t) is the chemical
potential of the electron gas (the meaning of Vα is discussed later). Thus, at the leading order of this
expansion, we find the drifted Bose–Einstein (BE) and Maxwell–Boltzmann (MB) distribution functions:

NN
g = B[βp(ωg −Vp · k)], nNp =M[βe(Ep − µ−Ve · p)],

where β` = 1/T`, ` = e, p:
B(ζ) = 1/(eζ − 1), M(ζ) = e−ζ ,

that is, the BE and MB distribution functions are recovered. Usually [10], NN
g and nNp are factored into

two components, a symmetric component (zero), which is even in momentum, and an anti-symmetric
component (one), which is odd, by expansion with respect to Ve and Vp, respectively:

NN
g = B(βpωg) + βpVp · k|B′(βpωg)| = N0

g +N1
g ,
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nNp = M[βe(Ep − µ)] + βeVe · pM[βe(Ep − µ)] = n0
p + n1

p

where B′(ζ) = dB/dζ = −B2(ζ)eζ . This simplification is justified in the frame of the drift-diffusion
approximation [10]. Observe that, under this assumption, the drift velocities < v > and < ug > of
electrons and phonons, respectively, are given by:

< v >=

∫
npvdp∫
npdp

= Ve, < ug >=

∫
Ngugdp∫
Ngdp

= Vp.

In fact:∫
vnpdp = −βe

∫
Ve · pM′(βeEp)vdp = −

∫
Ve · p

∂

∂p
M(βeEp)dp = Ve

∫
M(βeEp)dp

and analogously for
∫
ugNgdk. Moreover, by taking into account the MB and BE distribution functions,

for electrons and phonons, respectively, after some calculations, we find, at the first order with respect to
Ve and Vp,

(∂Ng/∂t)
NU
pp =βpVp · {

∫
[(1/2)

∑
g1g2

(1 +N0
gN

0
g1
N0
g2
wUpp(k1,k2 → k)(k2 + k1 − k)+

+
∑
g1g3

(1 +N0
g3
N0
gN

0
g1
wUpp(k,k1 → k3)(−k3 + k1 + k)]

dk1

8π3
},

(∂np/∂t)
NU
ee =βeVe ·

∫ ∫
wUee(p,p1 → p′,p′1)n

0
pn

0
p1
(p+ p1 − p′ − p′1)

dp1dp
′
1

64π6

Finally:

(∂Ng/∂t)
NN
pe

=4
∑
g

∫
wpe(p

′,k→ p)(n′Ngn(1 +Ng))
1/2 × sinh{[(βeVe − βpVp) · k+ (βp − βe)ωg]/2}

dp

8π3
(3)

and in the linear non-equilibrium thermodynamic approach,

(∂Ng/∂t)
NN
pe

=2(βeVe − βpVp) ·
∑
g

∫
wpe(p

′,k→ p)n′∗N∗gk
dp

8π3
+ 2(βp − βe)

∑
g

∫
wpe(p

′,k→ p)n′∗N∗gωg
dp

8π3
,

where ∗ stands for complete equilibrium (see the Appendix).
The equations of order zero are the starting point of our macroscopic model. By integrating (1), the

continuity equation for electrons reads:

∂

∂t

∫
n0
pdp+∇ ·

∫
vn1

pdp = 0 (4)

By projecting the (1) over p and (2) on k, we get the following balance equations for momentum:

∂

∂t

∫
n1ppdp+∇ ·

∫
n0pv ⊗ pdp

= −eE
∫
n0pdp+

∫ (
∂np
∂t

)NN
ep

pdp+

∫ (
∂np
∂t

)NU
ee

pdp
∑
g

[
∂

∂t

∫
N1
gkdk+∇ ·

∑
g

∫
N0
gug ⊗ kdk

]

= +
∑
g

∫ [(
∂Ng

∂t

)NU
pp

+

(
∂Ng

∂t

)NN
pe

]
kdk, (5)
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where we took advantage of:∫ (
∂np

∂t

)UN
ee

pdp = 0,
∑
g

∫ (
∂Ng

∂t

)UN
pp

kdk = 0,

due to momentum conservation for N-processes. For the same reason, we have:

2

∫ (
∂np

∂t

)NN
pe

pdp+
∑
g

∫ (
∂Ng

∂t

)NN
pe

kdk = 0,

where:∑
g

∫
(∂Ng/∂t)

NN
pe kdk = (βeVe − βpVp) ·

∑
g

∫ ∫
2wNpe(p

′,k→ p)n∗p′N∗gk⊗ kdpdk/8π3.

This term is responsible for the momentum relaxation.
Finally, by projecting the electron equation over Ep and the phonon ones over ωg, we get the following

balance equations for energy:

∂

∂t

∫
Epn0

pdp+∇ ·
∫

vEpn1
pdp

=− 2eE ·
∫

vn1
pdp+

∫ (
∂np

∂t

)NN
ep

Epdp
∂

∂t

∑
g

∫
ωgN

0
g dk+∇ ·

∑
g

∫
ugωgN

1
g dk

=+

∫ ∑
g

(
∂Ng

∂t

)NN
pe

ωgdk,

(6)

where we took advantage of:∫ (
∂np

∂t

)UN
ee

Epdp = 0,
∑
g

∫ (
∂Ng

∂t

)UN
pp

ωgdk = 0,

∫ (
∂np

∂t

)NU
ee

Epdp = 0,
∑
g

∫ (
∂Ng

∂t

)NU
pp

ωgdk = 0,

due to energy conservation for N-processes. For the same reason, we have:

2

∫ (
∂np

∂t

)NN
ep

Epdp+
∑
g

∫ (
∂Ng

∂t

)NN
pe

ωgdk = 0,

where: ∫
(∂Ng/∂t)

NN
pe ωgdk = 2βeβp(Te − Tp)

∑
g

∫ ∫
wpe(p

′,k→ p)n∗p′N∗gω
2
gdpdk/8π

3.

This term, responsible for energy relaxation, is proportional to Te − Tp, as in [2].
Equations (4), (5) and (6) constitute now a closed set of equations for the unknowns µ, βα, Vα

(α = e, p), which recall the extended thermodynamical one [4].
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More explicitly, by inserting the expressions of n0
p and n0

p for electrons and N0
g and N1

g for phonons,
as given in Section 3, Equation (5) can be rewritten as follows:

(∂/∂t)(LpV̂p) + βpCp =D(V̂e − V̂p)−BpV̂p

(∂/∂t)(LeV̂e) + βeCe =D(V̂p − V̂e)−BeV̂e, (7)

where V̂α = βαVα and:

Ce = 2βeR2∇Te + 2eR1E
∗, Cp = βpR3∇Tp,

with E∗ = E+ (1/e)∇µ.
By assuming a cubic symmetry, Bα can be written as follows:

Bp =
1

6

∑
g1g2g3

∫ ∫
N0
g2
N0
g3
(1 +N0

g1
)wpp(k2,k3 → k1)(k1 − k2 − k3)

2dk1dk2 =

Be =(1/6)

∫ ∫ ∫
wee(p,p1 → p′,p′1)npnp1(p+ p1 − p′ − p′1)

2dpdp1dp
′

8π3

while:

Le =(2/3)

∫
M[βe(Ep − µ)]|p2dp

Lp =(1/3)
∑
g

∫
|B′(βpωg)|k2dk.

Moreover:
D = (2/3)

∑
g

∫ ∫
wpe(p

′,k→ p)n′∗N∗gk
2dpdk

and:

R1 =(1/3)

∫
M[βe(Ep − µ)]p · vdp

R2 =(1/3)

∫
M[βe(Ep − µ)]|(Ep − µ)p · vdp

R3 =(1/3)
∑
g

∫
|B′(βpωg)|ωgk · ugdk.

4. The Telegrapher’s-Poisson System

Consider now, according to Bloch (see [9]), the phonons as a fixed background. This means that we
must set in Equation (7) Vp = 0, Te = Tp = T :

(∂/∂t)(LeVe) +Ce = −DVe −BeVe.

Now, since exp(µ/T ) = 4π3N/
∫
M(βEp)dp, we can write:

L•e(∂/∂t)(NVe) +C•eN = −D•VeN−QVeN
2,
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where we have factored N and N2 as follows: Le = L•e(T )N, Ce = C•e(T )N, D = D•(T )N and
Be = Q(T )N2. By inserting J = NVe and E∗, one obtains:

L•e(∂J/∂t) + 2R•1(−eN∇P +∇N) = −(D• +QN)J, (8)

which, together with the continuity:
∂N/∂t+∇ · J = 0, (9)

and Poisson equations:
D∇2P = −e(Nd − Na − N) (10)

(Nd and Na are the number densities of acceptors and donors, respectively, while D is the dielectric
constant) constitute a system of three equations for three unknowns: N, J, P . Observe that, by neglecting
the product NJ (low-density and weak current) from (8) and (9), we can derive an equation for N and
P only:

∂N/∂t+ (1/D•)[L•e(∂
2N/∂t2) + 2R•1(e∇ · (N∇P)−∇2N)] = 0. (11)

Equations (10) and (11) constitute the sought telegrapher’s-Poisson system for N and P . With respect
to [5], this model is much more simplified, but still, it is able to describe wave propagation phenomena.
The present model is an improvement of the drift-diffusion approach; therefore, it is applicable whenever
the drift-diffusion approach is applicable.

5. Conclusions

A new two-fluid model for an electron-phonon system has been proposed, which is certainly related to
the extended thermodynamical one [4], for the purpose of the next calculations of energy and momentum
relaxation, which generalize the results available in the literature [2]. The treatment resorts here
strictly to kinetic theory, so that the model is closed. This means that we do not need the adjustment
of some free parameters (namely the relaxation times) by means of comparisons with Monte Carlo
calculations. Bloch’s approximation leads to a telegrapher’s-Poisson system, suitable for simplified
calculations in semiconductor modeling, with the capability to study wave propagation phenomena in
semiconductors [5].

Let us summarize the main hypotheses, which lead to the telegrapher’s-Poisson system that
we propose:

(1) The ee and pp collisions are active for driving the distribution functions of electrons and phonons,
respectively, towards the Maxwell–Boltzmann (by neglecting Pauli’s exclusion principle) and
Bose–Einstein distribution functions; [2]

(2) In the philosophy of the drift-diffusion approximation, we expand the distribution functions up to
the first order with respect to the mean velocities [10];

(3) A cubic symmetry of the lattice is adopted;

(4) In Bloch’s approximation [9], we consider finally electrons in a phonon background;

(5) Low-density and weak current are assumed for electrons.
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Appendix

Consider the equations at order −1:(
∂Ng

∂t

)NN
pp

= 0,

(
∂np

∂t

)NN
ee

= 0.

By means of the usual methods of kinetic theory, it can be shown that these conditions are equivalent to:

NN
g (1 +NN

g1
)(1 +NN

g2
) =(1 +NN

g )NN
g1
NN
g2
∀k,k1 (A1)

np′np′
1
=npnp1 ∀p,p1. (A2)

Condition (A1) shows that ln(NN
g /(1 + NN

g )) is collisional invariant for phonons. In the case of
N-processes:

ln(NN
g /(1 +NN

g )) = (Vp · k− ωg)/Tp.

Condition (A2) shows that lnnNp is collisional invariant for electrons. In the case of N-processes:

lnnNp = (Ve · k− Ep + µ)/Te.

Moreover, the complete equilibrium condition requires also:

nNp (1 +NN
g ) = nNp′NN

g ∀p,k

which gives:
(βeVe − βpVp) · k+ ωg(βp − βe) = 0

or:
−(βeVe − βpVp) · k+ ωg(βp − βe) = 0,

since ωg is even. From the last two equations, we get:

Ve = Vp, βe = βp.
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