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Abstract: A probabilistic tripartite single-qubit operation sharing scheme is put forward

by utilizing a two-qubit and a three-qubit non-maximally entangled state as quantum

channels. Some specific comparisons between our scheme and another probabilistic scheme

are made. It is found that, if the product of the two minimal coefficients characterizing

channel entanglements is greater than 3/16, our scheme is more superior than the other

one. Nonetheless, the price is that more classical and quantum resources are consumed,

and the operation difficulty is rather increased. Moreover, some important features of

the scheme, such as its security, probability and sharer symmetry, are revealed through

concrete discussions. Additionally, the experimental feasibility of our scheme is analyzed

and subsequently confirmed according to the current experimental techniques.
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1. Introduction

Shared quantum entanglements as important quantum resources and play key roles in the field of

quantum information science, such as quantum key distribution [1–4], quantum state teleportation [5–9],
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quantum state sharing [10–13], quantum operation teleportation [14–16], and so on. Enlightened by the

generalization of quantum state teleportation to quantum state sharing, with shared entanglements Zhang

and Cheung [17] presented a new kind of quantum control named quantum operation sharing (QOS) in

2011. The QOS task in the simplest case can be depicted as follows. In a three-participant quantum

scenario, an initial performer of a single-qubit operation wants to perform the single-qubit operation

on a target state in a remote qubit in agents’ site with the aid of his/her two agents. To fulfill such

a task, they can make full use of local operations and classical communications as well as shared

entanglements. Nonetheless, the initial performer trusts neither agent but only their entity. Because

of this, the initial performer must assure the operation to be finally accomplished only via the two

agents’ collaboration. To some extent, QOS can be viewed as a generalization of quantum operation

teleportation from two aspects of participant and security. In quantum operation teleportation, there is

only one sender and one receiver, while in QOS the receiver is generalized to multi sharers. Moreover,

in the former, no special security is demanded, while in the latter, a specific security against any inside

sharers’ cheating or outsiders’ attack is required. Actually, QOS can be reduced to quantum operation

teleportation if all agents are regarded as one. Hence, like quantum operation teleportation, QOS is also

a kind of quantum remote control (encryption, decryption or destruction) on quantum information. In

the intending quantum networks, it might play a very important role in activating some performances in

life, such as missile emissions, quantum collective seal or unseam, remote joint destruction of quantum

money, etc. Due to its potential important applications, QOS has attracted much attention so far [18–24].

It is worth pointing out that maximally entangled states are employed as quantum channels in the

majority of existing QOS schemes. However, in a realistic situation, it is not currently possible to have a

maximally entangled state at one’s disposal. The decoherence and noise effect are usually unavoidable

because of the interaction from the environment. Therefore, it is quite possible that quantum channels are

disturbed and become non-maximally entangled states in practice though they might be initially prepared

as maximally entangled ones. Such a decoherence problem can be mitigated but cannot be completely

overcome easily. Consequently, it is necessary to consider how to utilize some non-maximally entangled

states to fulfill some quantum tasks. Moreover, if there exist only some non-maximally entangled

states, then one should make full use of them to realize QOS instead of doing nothing, particularly

in some urgent or passive conditions. Given that the situation mentioned above does exist, utilizing

non-maximally entangled states as quantum channels to fulfill the QOS task should be treated as an

alternative scheme. Hence, it is of special importance and significance to study the implementation of

some quantum tasks with non-maximally entangled states as quantum channels. As a matter of fact,

some researchers have already utilized non-maximally entangled states to treat some quantum tasks in

different quantum scenarios. For example, in 2002, Agrawal and Pati [9] first proposed a probabilistic

quantum teleportation protocol, which is applicable for teleporting an arbitrary single-qubit state with a

two-qubit non-maximally entnagled states; Gordon and Pigolin [25] presented two quantum state sharing

protocols by taking three-qubit and two-qubit non-maximally entangled states as quantum channels in

2006, and so on. In this paper, we will propose a tripartite QOS scheme by using a two-qubit and a

three-qubit non-maximally entangled state as quantum channels.

The rest of this paper is organized as follows. In Section 2, using a two-qubit and a three-qubit

non-maximally entangled state, we will concretely present a three-party probabilistic QOS scheme.
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In Section 3, we will compare our scheme with that probabilistic scheme in [17] from the four aspects:

the classical and quantum resource consumption, the difficulty or intensity of necessary operations, the

success probability and the intrinsic efficiency of the schemes. Furthermore, we will discuss our scheme,

including the scheme security, scheme probability, sharer symmetry and its experimental feasibility

problem. Finally, we will make a concise summary in Section 4.

2. Probabilistic Tripartite Scheme for Remotely Sharing Single-Qubit Operation

In this section, we will put forward a probabilistic tripartite QOS scheme by utilizing a set of

non-maximally entangled states. Before presenting the scheme, let us briefly depict the quantum task. In

the scheme there are three legitimate participants, say Alice, Bob and Charlie. The latter two are Alice’s

distant agents. Alice needs to operate a state |ϕ〉 in a qubit in an agent’s position via the concerned

operation U . Without loss of generality, suppose the target qubit b′ in the state |ϕ〉 is at Bob’s site at the

beginning, and its state is generally written as

|ϕ〉b′ = (α|0〉+ β|1〉)b′, (1)

where α and β are complex and satisfy |α|2 + |β|2 = 1. The state U |ϕ〉 = |ϕ′〉 is referred to as the

conceivable state later. To fulfill the quantum task, Alice demands her two agents to help her and to

collaborate with each other. Nevertheless, she is not willing to let the concerned operation be finally

fulfilled by either agent solely, as she trusts neither of them but their entity. Hence, she must assure

the operation to be implemented if and only if her agents cooperate. Taking advantage of the shared

entanglements and local operation as well as classical communication, Alice and her agents can fulfill

the quantum task as follows. The schematic demonstration is illustrated in Figure 1.
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Figure 1. Illustration of the tripartite scheme for probabilisticslly sharing any arbitrary

single-qubit operation with a two-qubit and a three-qubit non-maximally entangled states.

Solid lines with arrows stand for the classical-message transfer. Solid dots denote

qubits a1, a, a
′, b1, b, b

′, b′′ and c, respectively. Solid squares and solid rectangles represent

single-qubit and Bell-state measurements, respectively. The grey circle lables the concerned

operation U to be shared. Dotted ellipses label two-qubit unitary operations. The operations

on any qubit are arranged from inner to outer.
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The entangled states they shared consist of a two-qubit and a three-qubit non-maximally states:

|B〉a1b1 = (
√
1− n|00〉+

√
n|11〉)a1b1 , |G〉abc = (

√
1−m|000〉+

√
m|111〉)abc, (2)

where m and n are two known parameters and 0 < m < 1/2, 0 < n < 1/2, and the subindices denote

the qubits securely distributed among the three users. Alice owns the qubit pair (a1, a), Bob has the pair

(b1, b), and Charlie possesses the qubit c, respectively. After the preparation, they can do as follows:

I. Bob starts to operate. [See Figure 1(1)]

Bob performs a Bell-state measurement on his qubit pair (b1, b
′). Complementally, throughout this

paper four Bell states are defined as:

|ψ±〉a1b1 =
1√
2
(|00〉 ± |11〉)a1b1 , |φ±〉a1b1 =

1√
2
(|01〉 ± |10〉)a1b1 . (3)

The state of qubits a1, b1 and b′ is initially in

|T 〉a1b1b′ = |B〉a1b1 ⊗ |ϕ〉b′. (4)

By virtue of the Bell state bases, it can be expanded as:

|T 〉abb′ =
1√
2
[|ψ+〉b1b′ |χ00〉a1 + |ψ−〉b1b′ |χ01〉a1 + |φ+〉b1b′|χ10〉a1 + |φ−〉b1b′ |χ11〉a1 ], (5)

where

|χ00〉a1 = (
√
1− nα|0〉+√

nβ|1〉)a1, |χ01〉a1 = (
√
1− nα|0〉 − √

nβ|1〉)a1,
|χ10〉a1 = (

√
1− nβ|0〉+√

nα|1〉)a1, |χ11〉a1 = (
√
1− nβ|0〉 − √

nα|1〉)a1.

}

. (6)

Easily one can see that Bob’s measurements result in one of the following collapses (unnormalized):

|ψ+〉b1b′ ⇒ |χ00〉a1 , |ψ−〉b1b′ ⇒ |χ01〉a1 , |φ+〉b1b′ ⇒ |χ10〉a1 , |φ−〉b1b′ ⇒ |χ11〉a1 . (7)

For example, if Bob gets |ψ+〉b1b′ , the state of qubit a1 has collapsed to the state |χ00〉a1 . Similarly, other

three measurement results induce other three collapses, respectively. See Formula (7). The occurrence

probabilities of different collapses can be easily worked out. For |ψ+〉b1b′ , it is

P =a1b1b′ 〈T |Ia1 ⊗M †
b1b′Mb1b′ ⊗ Ia1 |T 〉a1b1b′ =

(1− n)|α|2 + n|β|2
2

, (8)

where M = |ψ+〉〈ψ+| and I = |0〉〈0| + |1〉〈1|. Analogously, probabilities of other outcomes |ψ−〉,
|φ+〉 and |φ−〉 are [(1 − n)|α|2 + n|β|2]/2, [(1 − n)|β|2 + n|α|2]/2 and [(1 − n)|β|2 + n|α|2]/2,

respectively. Obviously, both |ψ+〉 and |ψ−〉 lead to the same probability and |φ+〉 and |ψ−〉 lead to

the same probability but different to the previous one. Toward the final goal of QOS task, Bob further

notifies Alice of his measurement result by sending two classical-bit (cbit) messages. Complementarily,

as a priori agreement in the scheme, the four Bell states |ψ+〉, |ψ−〉, |φ+〉 and |φ−〉 correspond to the two

cbit messages (0,0), (0,1), (1,0) and (1,1), respectively.
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II. After receiving Bob’s message, Alice does as follows. [See Figure 1(2–3)]

First, Alice incorporates an auxiliary qubit a′ in the state |0〉 to form a pair (a1, a
′), and performs

a peculiar two-qubit operation on the pair according to the two cbit messages Bob has promulgated.

Specifically, she operates V (jk)(n) on the composite state |χjk〉a1 |0〉a′ , where V (jk)(n) in the ordering

bases {|00〉, |01〉, |10〉, |11〉} take the following explicit matric forms

V (00)(n) =
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. (10)

Alice’s operation entangles the qubit pair and makes the state evolve to one of the following states:

V
(00)
a1a′

(n)|χ00〉a1 |0〉a′ =
√
n|ϕ〉a1|0〉a′ +

√
1− 2nα|1〉a1|1〉a′ ,

V
(01)
a1a′

(n)|χ01〉a1 |0〉a′ =
√
n|ϕ〉a1|0〉a′ +

√
1− 2nα|1〉a1|1〉a′ ,

V
(10)
a1a′

(n)|χ10〉a1 |0〉a′ =
√
n|ϕ〉a1|1〉a′ +

√
1− 2nβ|0〉a1|0〉a′,

V
(11)
a1a′

(n)|χ10〉a1 |0〉a′ =
√
n|ϕ〉a1|1〉a′ +

√
1− 2nβ|0〉a1|0〉a′.



















































(11)

Second, Alice measures the ancilla a′ with the bases {|0〉, |1〉}. Obviously, in the case that Alice

received the two cbit messages (0,0) or (0,1) from Bob, if she gets |0〉a′ , the initial quantum state |ϕ〉 is

recovered in her qubit a1, and the success probability is n/[(1 − n)|α|2 + n|β|2]. Otherwise, the initial

state is destroyed and accordingly the teleportation fails. As for the other case Alice got the messages

(1,0) or (1,1), the initial state will be rebuilt in her qubit a1 as long as her measurement out is |1〉. In this

case, the success probability is n/[(1 − n)|β|2 + n|α|2]. Consequently, the total success probability of

the teleportation is 2n.

Thirdly, Alice performs the concerned operation U on her qubit a1, i.e., Ua1 |ϕ〉a1 ≡ |ϕ′〉a1 ≡
(α′|0〉 + β ′|1〉)a1 . Note that, at this moment the conceivable state Ua1 |ϕ〉a1 has been constructed, but

in Alice’s qubit a1. It is obviously not the final goal of QOS. The final goal is to perform the concerned

operation U on the target state |ϕ〉 in the qubit located at remote agents’ site. Hence, after this process

further treatments are still needed in order to accomplish the task.

Finally, Alice measures her qubit pair (a1, a) with the Bell state bases and announces her measurement

result to Bob in terms of the priori agreement. It is known that the state of the total system consisting of

the qubit quartet (a1, a, b, c) reads:

|Q〉a1abc = |ϕ′〉a1 ⊗ |G〉abc. (12)
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It can be rewritten as:

|Q〉a1abc =
1√
2
[|ψ+〉a1a(

√
1−mα′|00〉+

√
mβ ′|11〉)bc

+ |ψ−〉a1a(
√
1−mα′|00〉 −

√
mβ ′|11〉)bc

+ |φ+〉a1a(
√
mα′|11〉+

√
1−mβ ′|00〉)bc

+ |φ−〉a1a(
√
mα′|11〉 −

√
1−mβ ′|00〉)bc].

(13)

Obviously, Alice’s measurements collapse the state in Bob’s and Charlie’s qubits. Specifically,

|ψ+〉a1a =⇒ |O00〉bc = (
√
1−mα′|00〉+√

mβ ′|11〉)bc,
|ψ−〉a1a =⇒ |O01〉bc = (

√
1−mα′|00〉 − √

mβ ′|11〉)bc,
|φ+〉a1a =⇒ |O10〉bc = (

√
mα′|11〉+

√
1−mβ ′|00〉)bc,

|φ−〉a1a =⇒ |O11〉bc = (
√
mα′|11〉 −

√
1−mβ ′|00〉)bc.



















. (14)

For the probability of getting |ψ+〉a1a, it is

P =a1abc 〈Q|Ibc ⊗M †
a1aMa1a ⊗ Ibc|Q〉a1abc =

(1−m)|α′|2 +m|β ′|2
2

, (15)

where I = |00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |11〉〈11|. Similarly, the probability of getting |ψ−〉a1a is the

same as the probability of getting |ψ+〉a1a. For the probabilities of getting |φ+〉a1a and getting |φ−〉a1a,

they are same and are [(1−m)|β ′|2 +m|α′|2]/2.

III. Bob and Charlie collaborate to reconstruct the conceivable state. [See Figure 1(4)]

In this stage, if Bob and Charlie collaborate and decide Bob to conclusively fulfill the reconstruction,

then they can do as follows:

Charlie measures his qubit cwith the bases {|+〉, |−〉}. In this paper, |±〉 ≡ (|0〉±|1〉)/
√
2 is defined.

Then he informs Bob of his measurement outcome via a classical channel. In the priori agreement, the

single cbit message “0” (“1”) corresponds the state |+〉c (|−〉c). The four possible state in Bob’s and

Charlie’s qubits can be written as:

|O00〉bc = 1√
2
[(
√
1−mα′|0〉+√

mβ ′|1〉)b|+〉c + (
√
1−mα′|0〉 − √

mβ ′|1〉)b|−〉c],
|O01〉bc = 1√

2
[(
√
1−mα′|0〉 − √

mβ ′|1〉)b|+〉c + (
√
1−mα′|0〉+√

mβ ′|1〉)b|−〉c],
|O10〉bc = 1√

2
[(
√
mα′|1〉+

√
1−mβ ′|0〉)b|+〉c + (

√
mα′|1〉 −

√
1−mβ ′|0〉)b|−〉c],

|O11〉bc = 1√
2
[(
√
mα′|1〉 −

√
1−mβ ′|0〉)b|+〉c + (

√
mα′|1〉+

√
1−mβ ′|0〉)b|−〉c].























. (16)

Upon receiving Charlie’s message, Bob firstly introduces an auxiliary qubit b′′ in the state |0〉, and then

carries out a peculia two-qubit operation on the qubit pair (b, b′′) according to Alice’s and Charlie’s

messages. At last, he measures his qubit b′′ with the bases {|0〉, |1〉}. For example, if Bob receives the

message (0,0) from Alice and “1” from Charlie, he executes V (01)(m) on the qubit pair (b, b′′). The

operation transforms the state of qubit pair (b, b′′) to

V
(01)
bb′′ (m)(

√
1−mα′|0〉 −

√
mβ ′|1〉)b|0〉b′′ =

√
m|ϕ〉b|0〉b′′ +

√
1− 2mα′|1〉b|1〉b′′. (17)

If Bob measures his qubit b′′ and gets |0〉, the conceivable state is reconstructed in his qubit b, and the

probability is m/[(1 − m)|α′|2 + m|β ′|2]. Otherwise, the conceivable state is destroyed and hence



Entropy 2015, 17 847

the sharing fails. As for other cases, the circumstance is almost similar and in each case Bob can

deterministically get the conceivable state. In the state sharing process, one can easily work out the

total probability 2m. Hence, for our present scheme the total success probability is 2n× 2m = 4mn.

3. Comparisons and Discussions

Now let us compare our scheme (referred to as XLXZ ) with a probabilistic scheme (called ZC)

presented in Reference [17]. Before comparisons, we summarize the two schemes with respect to

the following four aspects: the cost of quantum and classical resources, the difficulty or intensity of

necessary operations, the scheme success probability, and the intrinsic efficiency. See Table 1 for details.

Table 1. Comparisons between schemes XLXZ and ZC. AQ: auxiliary quBit; QRC: quantum

resource consumption; NO: necessary operations; CRC: classical resource consumption;

BM: Bell-state measurement; SM: single-qubit measurement; TQUO: two-qubit unitary

operation; SQUO: single-qubit unitary operation. The intrinsic efficiency there is difined

as η = P/(Qt + Ct), where Qt is the number of the qubits used as quantum channels, Ct is

the classical bits transmitted via classical channels, and P is the final success probability.

S QRC CRC NO P η

XLXZ |B〉, |G〉, 2AQs 5 cbits 2TQUOs, 2SMs, 2BMs 4mn mn/3

ZC |ψ+〉, |ψ+〉 4 cbits 2SQUOs, TQUO, 2SMs, BM 1/2 1/16

From the second and third columns of the table, one can see that, XLXZ consumes a 2-qubit and a

3-qubit non-maximally entangled states as well as two auxiliary qubits, while ZC consumes two 2-qubit

maximally entangled states. Very intuitively, the quantum resource consumption is reduced in ZC, the

classical resource consumption in ZC is less than that in XLXZ. Further inspect the fourth column.

Note that, Bell-state measurements can be decomposed an ordering combination of a two-qubit CNOT

operation and a single-qubit Hadamard operation as well as two single-qubit measurements. Taking

account of this decomposition, one can see that the operation difficulty in XLXZ is relatively higher

than that in ZC. This indicates that ZC is better than XLXZ as far as the cost of quantum and classical

resource consumptions as well as the operation difficulty are concerned. Nevertheless, inspecting the

fifth columns of the table, one can see that, (1) the success probability in XLXZ is 4mn, which increases

from 0 to 1 with the increasing m and n; (2) the success probability in ZC is 1/2. It is obvious that

both schemes are probabilistic. The success probability in XLXZ is dependent on m and n, while that

in ZC is a certain value. If mn > 1/8, then the success probability in XLXZ is bigger than that in ZC.

In particular, whenmn = 1/4, that is, when these states are maximally entangled, the success probability

in XLXZ reaches to 1, which is twice as higher as that in ZC scheme. It indicates that in this case our

present scheme overwhelms ZC from the aspect of the success probability. Moreover, if mn > 3/16,

apart from the success probability, the intrinsic efficiency in XLXZ is bigger than that in ZC. Consider

them comprehensively, one is readily to draw a conclusion that XLXZ is more superior than ZC if mn

is set to be mn > 3/16. Of course, the cost is that more classical and quantum resources are consumed,

and XLXZ has higher operation difficulty.



Entropy 2015, 17 848

Now let us make some brief discussions about the present scheme to show their important features.

Obviously, our present scheme is a probabilistic one, and its probability is dependent on the parameters

of the two non-maximally channels. In addition, in our scheme the conceivable state can be reconstructed

at either Bob’s or Charlie’s site, which can be seen from Formula (14). This indicates that our scheme

is symmetric as far as the shares are concerned. Hence, probability and symmetry are two features of

our scheme. As for the security of the scheme, being a QOS scheme, its security should be assured in

principle. Actually, we have assumed in priori that quantum channels are secure. They are preconditions

of our scheme. As a matter of fact, the states taken as quantum channels are very similar to those in

References [26–28] to some extent. Whether they are secure during the qubit distribution or not can be

easily checked by using the mature sampling technique and any attacker’s perturbation can be detected.

They are applicable for our present QOS scheme, too. For simplicity, here we do not repeat them

anymore. In this sense, we think our present scheme is secure. One the other hand, as mentioned just,

our scheme is symmetric for sharers. Such a feature of sharer symmetry relative to the uncertainty of

choosing the starter and the final constructor can enhance the scheme security to some extent.

At last, let us simply discuss the experimental feasibility of our scheme. In our scheme, a two-qubit

and a three-qubit non-maximally entangled states are employed as quantum channels. During the

whole sharing process only Bell-state, single-qubit measurements and two-qubit unitary operations

are needed and all of them are locally performed. To our knowledge, it has been reported that the

Bell-state measurements, the single-qubit measurements and two-qubit unitary operations have already

been realized in many quantum systems [29–34] by far. Therefore, our present probabilistic three-party

scheme is thoroughly feasible with respect to the current experimental technologies.

4. Summary

In this paper we have presented a three-party QOS scheme by using two non-maximally entangled

states as quantum channels. The scheme is applicable for probabilistically sharing an arbitrary

single-qubit operation on a remote qubit in any sharer’s position. After presenting the scheme, we have

compared the scheme with the ZC scheme [17]. It is found that in the case that mn > 3/16, the success

probability and the intrinsic efficiency in the present scheme are bigger than that in the ZC scheme. The

price the present scheme needs to pay is to consume more quantum and classical resources and to have a

little higher operation difficulty. Through concrete discussions, we have further revealed some important

features of our scheme, such as its security, probability and sharer symmetry. Finally, we have simply

demonstrated the experimental feasibility of our scheme in terms of current techniques.
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