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Abstract: Assuming that the motions of a complex system structural units take place on
continuous, but non-differentiable curves of a space-time manifold, the scale relativity model
with arbitrary constant fractal dimension (the hydrodynamic and wave function versions)
is built. For non-differentiability through stochastic processes of the Markov type, the
non-differentiable entropy concept on a space-time manifold in the hydrodynamic version
and its correspondence with motion variables (energy, momentum, etc.) are established.
Moreover, for the same non-differentiability type, through a scale resolution dependence
of a fundamental length and wave function independence with respect to the proper time,
a non-differentiable Klein–Gordon-type equation in the wave function version is obtained.
For a phase-amplitude functional dependence on the wave function, the non-differentiable
spontaneous symmetry breaking mechanism implies pattern generation in the form of
Cooper non-differentiable-type pairs, while its non-differentiable topology implies some
fractal logic elements (fractal bit, fractal gates, etc.).

Keywords: non-differentiable entropy; fractal bit; space-time manifold; space-time scale
relativity theory
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1. Introduction

Analyzing the motion of a particle on a fractal curve [1–4], we observe a big discrepancy between
the space coordinates and the temporal one (considered as the affine parameter of motion curve), the
latter being non-fractal. This discrepancy also has an immediate abnormal consequence: the particle
travels on an infinite length curve in a finite time span, and so, it has an infinite velocity. In order to
eliminate this contradiction, we will assume that the temporal coordinate of the fractal curve is also a
fractal one. Thus, most elements of the non-relativistic approach of scale relativity theory with arbitrary
constant fractal dimension, as described in [5–11], remain valid, but the time differential element dt
is now replaced by the proper time differential element dτ . In this way, not only the space, but
the entire space-time continuum is considered to be non-differentiable and, therefore, fractal. In a
such frame, we shall extend in the present paper the results from [12] by introducing the concept of
relativistic non-differentiable entropy (non-differentiable entropy on a space-time manifold). Some of
its characteristics and implications are also given.

The paper is organized as follows: in Section 2, some consequences of non-differentiability are
presented; in Section 3, the relativistic non-differentiable motion operator is introduced; in Section 4,
relativistic non-differentiable geodesics and the non-differentiable Klein–Gordon-type equation are
given; in Section 5, relativistic non-differentiable entropy and its correspondence with relativistic motion
variables are studied; in Section 6, non-differentiable spontaneous symmetry breaking and pattern
generation are investigated; and in Section 7, non-differentiable topology and logic are considered.

2. Consequences of Non-Differentiability on a Space-Time Manifold

Let us suppose that in a Minkowski-type space-time, the motions of structural units (complex system
components [13–18]) take place on continuous, but non-differentiable curves (in particular, fractal
curves). The non-differentiability of motion curves implies the following:

(i) Any continuous, but non-differentiable curve is explicitly scale dependent (which will be referred
to as δτ ). In other words, its length tends to infinity when its proper time interval, ∆τ , tends to zero.
Then, a continuous, but non-differentiable space-time is fractal in Mandelbrot’s sense [4].

(ii) The differential proper time reflection invariance of any field variable is broken. For example, the
proper time derivative of four-coordinate field Xµ can be written two-fold:[

dXµ

dτ

]
+

= lim
∆τ→0+

Xµ(τ + ∆τ)−Xµ(τ)

∆τ[
dXµ

dτ

]
_

= lim
∆τ→0_

Xµ(τ)−Xµ(τ −∆τ)

∆τ
(1)

These relations are equivalent in the differentiable case, ∆τ → −∆τ . In the non-differentiable case,
the previous definitions fail, since the limits ∆τ → 0± are no longer defined. In the approach of the
non-differentiable model, the physical phenomena are related to the behavior of the function during the
“zoom” operation on the proper time resolution δτ . Then, by means of the substitution principle, δτ
will be identified with the differential element dτ , i.e., δτ ≡ dτ and will be considered as independent
variables. Thus, every standard field Q(τ) is replaced by the non-differentiable field Q(τ, dτ) explicitly
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dependent on the proper time resolution interval whose derivative is undefined only in the unobservable
limit, ∆τ → 0. As a consequence, two derivatives of every non-differentiable field as explicit functions
of τ and dτ will be defined. For example, the two derivatives of the four-coordinate fieldXµ(τ,∆τ) take
the following form:

d+X
µ

dτ
= lim

∆τ→0+

Xµ(τ + ∆τ,∆τ)−Xµ(τ,∆τ)

∆τ

d−X
µ

dτ
= lim

∆τ→0−

Xµ(τ,∆τ)−Xµ(τ −∆τ,∆τ)

∆τ
(2)

The sign + corresponds to the forward physical process and the sign − to the backwards one.
(iii) The differential of four-coordinate field dXµ(τ,∆τ) can be expressed as the sum of two

differentials, one not scale dependent (differentiable part d±xµ(τ)) and the other scale dependent
(non-differentiable part d±ξµ(τ, dτ)), i.e.,

d±X
µ(τ,∆τ) = d±x

µ(τ) + d±ξ
µ(τ, dτ); (3)

(iv) The non-differentiable part of the four-coordinate field satisfies the non-differentiable equation:

d±ξ
µ(τ, dτ) = λµ±(dτ)1/DF (4)

where λµ± are constant coefficients whose statistical significance will be given in what follows;
(v) The differential proper time reflection invariance is recovered by combining the derivatives d+/dτ

and d−/dτ in the non-differentiable operator:

d̂

dτ
=

1

2

(
d+ + d−
dτ

)
− i

2

(
d+ − d−
dτ

)
(5)

This specific procedure is called, according to [19], “extension in complex by differentiability”.
Applying now the non-differentiable operator to the four-coordinate field yields the complex velocity:

V̂ µ =
d̂Xµ

dτ
=

1

2

(
d+X

µ + d−X
µ

dτ

)
− i

2

(
d+X

µ − d−Xµ

dτ

)
=

=
1

2

(
d+x

µ + d−x
µ

dτ
+
d+ξ

µ + d−ξ
µ

dτ

)
− i

2

(
d+x

µ − d−xµ

dτ
+
d+ξ

µ − d−ξµ

dτ

)
= V µ − iUµ

(6)

with:

V µ =
1

2
(vµ+ + vµ−), Uµ =

1

2
(vµ+ − v

µ
−), vµ+ =

d+x
µ + d+ξ

µ

dτ
, vµ− =

d−x
µ + d−ξ

µ

dτ
(7)

The real part V µ is differentiable and scale resolution independent, while the imaginary one Uµ is
non-differentiable and scale resolution dependent.

(vi) There can be found an infinite number of non-differentiable curves (geodesics) relating any pair
of its points. This is true at all scales. The structural unit is substituted with the geodesics themselves,
so that any measurement is interpreted as a selection of the geodesics by the measuring device. The
infinity of geodesics in the bundle, their non-differentiability and the two values of the derivative imply
a generalized statistical fluid-like description (non-differentiable fluid). Then, the average values of the
fluid variables must be considered in the previously mentioned sense, so the average of d±Xµ is:

〈d±Xµ〉 ≡ d±x
µ (8)
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with:
〈d±ξµ〉 ≡ 0 (9)

3. Non-Differentiable Motion Operator on a Space-Time Manifold

Let us now consider that the movement curves (continuous and non-differentiable) are immersed in
the space-time and that Xµ are the four-coordinates of a point on the curve. We also consider a variable
field Q(Xµ, τ) and the following Taylor expansion, up to the second order:

d±Q(Xµ, τ) = ∂τQdτ + ∂µQd±X
µ +

1

2
∂µ∂νQd±X

µd±X
ν (10)

The relations (9) are valid in any point of the space-time manifold and more for the points “Xµ” on
the non-differentiable curve, which we have selected in Relation (9).

From here, forward and backward average values of (9) become:

〈d±Q(Xµ, τ)〉 = 〈∂τQdτ〉+ 〈∂µQd±Xµ〉+
1

2
〈∂µ∂νQd±Xµd±X

ν〉 (11)

We make the following stipulations: the average values of the variables field Q(Xµ, τ) and its
derivatives coincide with themselves, and the differentials d±Xµ and dτ are independent. Therefore,
the average of their products coincide with the product of their averages. In these conditions, (11) takes
the form:

d±Q(Xµ, τ) = ∂τQdτ + ∂µQ〈d±Xµ〉+
1

2
∂µ∂νQ〈d±Xµd±X

ν〉 (12)

or, using (3), (8) and (9)

d±Q(Xµ, τ) = ∂τQdτ + ∂µQd±x
µ +

1

2
∂µ∂νQ(d±x

µd±x
ν + 〈d±ξµd±ξν〉) (13)

Even the average values of the four-non-differentiable coordinate d±ξµ is null for the higher order of
the four-non-differentiable coordinate average, the situation can be different. Let us focus now on the
mean 〈d±ξµd±ξν〉. Using (4), we can write:

〈d±ξµd±ξν〉 = ±λµ±λν±(dτ)(2/DF )−1dτ (14)

where we accepted the following: the sign + corresponds to dτ > 0, while the sign − corresponds to
dτ < 0.

Then, (13) takes the form:

d±Q(Xµ, τ) = ∂τQdτ + ∂µQd±x
µ +

1

2
∂µ∂νQd±x

µd±x
ν±

±1

2
∂µ∂νQ[λµ±λ

ν
±(dτ)(2/DF )−1dτ ]

(15)

If we divide by dτ and neglect the terms that contain differential factors, using the method from
[5–11], we obtain:

d±Q(Xµ, τ)

dτ
= ∂τQ+ νµ±∂µQ±

1

2
λµ±λ

ν
±(dτ)(2/DF )−1∂µ∂νQ (16)
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These relations also allow us to define the operators:

d±
dτ

= ∂τ + νµ±∂µ ±
1

2
λµ±λ

ν
±(dτ)(2/DF )−1∂µ∂ν (17)

Under these circumstances, let us calculate d̂/dτ . Taking into account (5), (6) and (17), we obtain:

d̂Q

dτ
=

1

2

[(
d+Q+ d−Q

dτ

)
− i
(
d+Q− d−Q

dτ

)]
=

=
1

2

{[
∂τQ+ νµ+∂µQ+

1

2
λµ+λ

ν
+(dτ)(2/DF )−1∂µ∂νQ

]
+

+

[
∂τQ+ νµ−∂µQ−

1

2
λµ−λ

ν
−(dτ)(2/DF )−1∂µ∂νQ

]}
−

− i
2

{[
∂τQ+ νµ+∂µQ+

1

2
λµ+λ

ν
+(dτ)(2/DF )−1∂µ∂νQ

]
−

−
[
∂τQ+ νµ−∂µQ−

1

2
λµ−λ

ν
−(dτ)(2/DF )−1∂µ∂νQ

]}
=

= ∂τQ+

(
νµ+ + νµ−

2
− iν

µ
+ − ν

µ
−

2

)
∂µQ+

+
1

4
(dτ)(2/DF )−1[(λµ+λ

ν
+ − λ

µ
−λ

ν
−)− i(λµ+λν+ + λµ−λ

ν
−)]∂µ∂νQ =

= ∂τQ+ V̂ µ∂µQ+
1

4
(dτ)(2/DF )−1Dµν∂µ∂νQ

(18)

where:
Dµν = dµν − idµν

dµν = λµ+λ
ν
+ − λ

µ
−λ

ν
−, d

µν
= λµ+λ

ν
+ + λµ−λ

ν
−

(19)

The relation also allows us to define the non-differentiable operator:

d̂

dτ
= ∂τ + V̂ µ∂µ +

1

4
(dτ)(2/DF )−1Dµν∂µ∂ν (20)

If the non-differentiability of the motion curve is realized through a Markov-type stochastic process
[1,2,4]:

λµ+λ
ν
+ = λµ−λ

ν
− = −ληµν (21)

where ηµν is the Minkowski metric, then the non-differentiable operator takes the form:

d̂

dτ
= ∂τ + V̂ µ∂µ + i

λ

2
(dτ)(2/DF )−1∂µ∂

µ (22)

4. Non-Differentiable Geodesics on a Space-Time Manifold: Non-Differentiable
Klein–Gordon-Type Equation

We now apply the principle of scale covariance [1,2] (physics laws are simultaneously invariant,
both with respect to the four-coordinate transformations and with respect to scale transformations)
and postulate that the passage from differentiable mechanics to the non-differentiable mechanics,
which is considered here, can be implemented by replacing the standard time derivative d/dτ by the
non-differentiable operator d̂/dτ . This operator plays the role of a “covariant derivative operator”,
namely it is used to write the fundamental equations of dynamics under the same form as in the classical
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and differentiable case. Thus, applying the operator (20) to the complex velocity (6), the geodesics
equation is obtained:

d̂V̂ µ

dτ
= ∂τ V̂

µ + V̂ ν∂νV̂
µ +

1

4
(dτ)(2/DF )−1Dαβ∂α∂βV̂

µ ≡ 0 (23)

or, using (6), through separation of motions on scales resolutions (separation of the real part from the
imaginary one):

d̂V µ

dτ
= ∂τV

µ + V ν∂νV
µ − Uν∂νU

µ +
1

4
(dτ)(2/DF )−1dαβ∂α∂βV

µ−

−1

4
(dτ)(2/DF )−1d

αβ
∂α∂βU

µ = 0

d̂Uµ

dτ
= ∂τU

µ + V ν∂νU
µ + Uν∂νV

µ +
1

4
(dτ)(2/DF )−1dαβ∂α∂βU

µ+

+
1

4
(dτ)(2/DF )−1d

αβ
∂α∂βV

µ = 0

(24)

For motions on non-differentiable curves through a Markov-type stochastic process [1,2,4], the
geodesics equation takes the form:

d̂V̂ µ

dτ
= ∂τ V̂

µ + V̂ ν∂νV̂
µ + i

λ

2
(dτ)(2/DF )−1∂ν∂νV̂

µ = 0 (25)

or, through scale resolution separation:

d̂V µ

dτ
= ∂τV

µ + V ν∂νV
µ −

(
Uµ − λ

2
(dτ)(2/DF )−1∂ν

)
∂νU

µ = 0

d̂Uµ

dτ
= ∂τU

µ + V ν∂νU
µ +

(
Uµ − λ

2
(dτ)(2/DF )−1∂ν

)
∂νV

µ = 0

(26)

Let us choose V̂ µ in terms of the wave function Ψ:

V̂α = iλ(dτ)(2/DF )−1∂α ln Ψ (27)

Then, the geodesics Equation (25) becomes:

d̂V̂α
dτ

= iλ(dτ)(2/DF )−1∂τ∂α ln Ψ +

[
iλ(dτ)(2/DF )−1∂µ ln Ψ+

+
iλ

2
(dτ)(2/DF )−1∂µ

]
∂µ∂α

[
iλ(dτ)(2/DF )−1 ln Ψ

]
= 0

(28)

Since:
∂α(∂µ ln Ψ∂µ ln Ψ) = 2∂µ ln Ψ∂α∂µ ln Ψ

∂α∂µ∂
µ ln Ψ = ∂µ∂µ∂α ln Ψ

∂α(∂µ ln Ψ∂µ ln Ψ + ∂µ∂
µ ln Ψ) = ∂α

(
∂µ∂

µΨ

Ψ

) (29)

Equation (28) becomes:

iλ(dτ)(2/DF )−1∂τ∂α ln Ψ + λ2(dτ)(4/DF )−2∂α

(
∂µ∂

µΨ

Ψ

)
= 0 (30)
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By integrating the above relation up to an arbitrary phase factor, which may be set constant by a
suitable choice of the phase of Ψ, we obtain:

λ2(dτ)(4/DF )−2∂µ∂
µΨ + iλ(dτ)(2/DF )−1∂τΨ + ω2Ψ = 0 (31)

with ω an integration constant. This constant is a critical velocity imposed by means of scale
resolution. From here, if the wave function is independent of τ , ∂τΨ = 0, the relation (31) becomes a
non-differentiable Klein–Gordon-type equation:

∂µ∂
µΨ +

1

Λ
2 Ψ = 0 (32)

with:
Λ = Λ0(dτ)(2/DF )−1,Λ0 =

λ

ω
(33)

From (33), a scale resolution dependence of the fundamental length Λ results [1,2,4], where Λ0 is
the fundamental unscaled length. For motions on Peano curves, DF = 2, at scale Λ = λ/ω = ~/m0c,
λ = ~/m0, ω ≡ c [1,2], with ~ the reduced Planck constant, m0 the rest mass of the particle and c the
vacuum velocity light, (33) takes the usual form of Klein–Gordon equation [20]:

∂µ∂
µΨ + (m0c/~)2Ψ = 0.

5. Non-Differentiable Entropy on a Space-Time manifold and Its Implications

Using the explicit form of the wave function, Ψ =
√
ρeiS , where

√
ρ is an amplitude and S is a phase,

the expression of Uα becomes:
Uα = −λ∂α ln

√
ρ (34)

Thus, it results:[
Uµ −

λ

2
(dτ)(2/DF )−1∂µ

]
∂µUα = λ2(dτ)(4/DF )−2

(
∂µ ln

√
ρ∂µ∂α ln

√
ρ+

1

2
∂µ∂µ∂α ln

√
ρ

)
(35)

Since the identities from (29) also work in variable ln
√
ρ, Equation (35) becomes:[

Uµ −
λ

2
(dτ)(2/DF )−1∂µ

]
∂µUα =

λ2

2
(dτ)(4/DF )−2∂α(∂µ ln

√
ρ∂µ ln

√
ρ+ ∂µ∂µ ln

√
ρ) =

=
1

2
λ2(dτ)(4/DF )−2∂α

(
∂µ∂µ

√
ρ

√
ρ

) (36)

which implies through the specific non-differentiable potential:

Q =
λ2

2
(dτ)(4/DF )−2 ∂

µ∂µ
√
ρ

√
ρ

=
λ2

2
(dτ)(4/DF )−2(UµUµ − λ∂µUµ) (37)

the specific non-differentiable force:

Fα =
λ2

2
(dτ)(4/DF )−2∂α

(
∂µ∂µ

√
ρ

√
ρ

)
=

[
Uµ −

λ

2
(dτ)(2/DF−1)∂µ

]
∂µUα. (38)
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Thus, the first Equation (26) takes the form:

d̂Vα
dτ

= ∂τVα + V µ∂µVα =
λ2

2
(dτ)(4/DF )−2∂α

(
∂µ∂µ

√
ρ

√
ρ

)
(39)

Since:
Vα = λ(dτ)(2/DF )−1∂αS (40)

which implies:
V ν∂νVα = V ν∂αVν (41)

Relation (39) becomes:

d̂Vα
dτ

= ∂τVα + V ν∂αVν −
λ2

2
(dτ)(4/DF )−2∂α

(
∂ν∂ν
√
ρ

√
ρ

)
= 0 (42)

and more, for ∂τVα = 0

∂α

[
V νVν − λ2(dτ)(4/DF )−2

(
∂ν∂ν
√
ρ

√
ρ

)]
= 0. (43)

Now, by a suitable choice of the constant integration and knowing that [1,2]:

V µVµ = (E2 − p2c2)/m2
0c

2

we obtain the energy expression in the form:

E = ±
[
m2

0c
4 + p2c2 + (m0cλ)2(dτ)(4/DF )−2�

√
ρ

√
ρ

]1/2

. (44)

In Relation (44), E is the non-differentiable energy of the structural unit, p is the non-differentiable
momentum of the structural unit, p0 = m0c is the non-differentiable rest momentum of the structural unit
and � is the d’Alembert operator. The standard result (relativistic energy) is obtained from Equation (44)

assuming motions on Peano curves of the structural units and constant non-differentiable state density
of the structural units.

Let us define now the logarithmic function:

S(Xµ, Vµ, dτ) = ln ρ(Xµ, Vµ, dτ) (45)

that will be called later non-differentiable entropy on a space-time manifold (relativistic
non-differentiable entropy). This characterizes the disorder degree of a non-differentiable system on
a space-time manifold. In the classical case, Equation (44) takes the standard form:

V2
D

2
+Q = const. (46)

with the specific fractal potential:

Q = −2λ2(dτ)(2/DF )−1 ∆
√
ρ

√
ρ

= −V2
F

2
− λ(dτ)(2/DF )−1∇ ·VF (47)
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From here, we can find all results correlated with non-differentiable entropy on a space-manifold [12].
What is really important is the fact that from Equation (44) written in the form:

λ2(dτ)(4/DF )−2� exp(S/2)

exp(S/2)
=
E2 − p2c2

m2
0c

2
(48)

it results that the relativistic non-differentiable entropy depends on the motion state of complex
system structural unit through the total non-differentiable energy E, the internal energy m0c

2 and the
non-differentiable momentum p.

6. Non-Differentiable Spontaneous Symmetry Breaking: Pattern Generation

Let us admit that between the phase S and the amplitude
√
ρ of the wave function Ψ, there exists the

functional dependence S = S(
√
ρ). Then, from (34) and (40), the first approximation of Equation (48)

(which implies p2 = const.ρ ≡ aρ, (E/c)2 − (m0c)
2 = const. ≡ b) becomes:

λ2(dτ)(4/DF )−2(∆
√
ρ− c−2∂tt

√
ρ) = aρ

√
ρ− b√ρ. (49)

Moreover, with the substitutions:(
k2 − ω2

c2

)−1/2
(2b)1/2

λ
(dτ)1−(2/DF )(kxx+ kyy + kzz − ωt) = ξ

k2 = k2
x + k2

y + k2
z ,

√
ρ =

(
b

a

)1/2

· f

(50)

Equation (49) takes the form:
∂ξξf = f 3 − f (51)

Equation (51) can be also obtained by means of the non-differentiable variational principle δ
∫
Ldτ =

0, with dτ the non-differentiable elementary volume applied to the non-differentiable Lagrangian
density:

L =
1

2
(∂ξf)2 − ℘(f) (52)

with the “potential”:

℘(f) =

(
f 4

4

)
−
(
f 2

2

)
(53)

The equation ∂ξξf = 0 has the solutions f
(1)
F = 0, f

(2,3)
F = ±1. By calculating the second

derivative with respect to ξ of the “potential” (53) and substituting the values f (1,2,3) into the result
of this differentiation, we find ℘ξξ(0) = −1, ℘ξξ(±1) = 2 > 0, i.e., the solution f

(2,3)
F = ±1 is

associated with the minimum “energy”. Hence, the model under consideration has a double-degenerated
non-differentiable vacuum state (for details for the standard case, see [21]).

From (52) results both the “energy”,

ε(f) =

+∞∫
−∞

dξ

[
1

2
(∂ξf)2 + ℘(f)

]
(54)



Entropy 2015, 17 2193

and the “energy” relative to the non-differentiable vacuum:

ε(f)− ε(fF ) =

+∞∫
−∞

dξ

[
1

2
(∂ξf)2 +

1

4
(f 2 − 1)2

]
(55)

Since all terms in (55) are positive and in view of the infinite limits of integration, the finiteness of
the “energy” implies that at ξ → ±∞:

∂ξf = 0,
1

4
(f 2 − 1)2 = 0 (56)

From this, it follows that at ξ → ±∞, the function f(ξ) tends to its non-differentiable vacuum
value f (2,3)

F → ±1. In order to find the explicit form of the solution of (52), we multiply it by ∂ξf and
subsequently over ξ. This yields:

1

2
(∂ξf)2 = −f

2

2
+
f 4

4
+

1

2
f0 (57)

where f0 is a non-differentiable integration constant. From this, we have:

ξ − ξ0 =

f∫
0

df√
f4

4
− f2

2
+ 1

2
f0

(58)

where ξ0 is the other non-differentiable integration constant. To this solution, it corresponds, for an
arbitrary f0, an infinite value of the “energy” ε(f). To obtain the solution with finite “energy”, we make
use of the boundary conditions f (2,3)

F = ±1. From (57) it results that f0 = 1/2. Replacing this value of
f0 into (58), the solution fk(ξ) of Equation (57) with a finite “energy” is:

fk(ξ) = f(ξ − ξ0) = tanh

[
1√
2

(ξ − ξ0)

]
(59)

This is called the non-differentiable kink solution (the reader can refer to [22,23] for details
concerning kink-type standard solutions).

Combining (55) with the expression f (2)
F = 1 and the expression for fk, we obtain the “energy” of the

non-differentiable kink relative to the non-differentiable vacuum:

ε(fk)− ε(fF ) =
2
√

3

3
(60)

The non-differentiable kink solution is obtained by a non-differentiable spontaneous symmetry
breaking (the non-differentiable vacuum state is not invariant with respect to the non-differentiable
group of transformations, which makes invariant Equation (51), while the non-differentiable Lagrangian
density is invariant with respect to the same group). This corresponds to a non-differentiable pattern in
the form of the Cooper-type non-differentiable pair (particularly, the superconducting pair (Cooper pair)
from superconductivity of Type I) [24].
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7. Non-Differentiable Topology and Logic

A non-differentiable topological method can be applied because the admissible number of
non-differentiable kinks is determined by the non-differentiable topological properties of the
non-differentiable symmetry group of Equation (51). In this context, the following problems must be
solved:

(i) The number of admissible non-differentiable kink solutions determined by the non-differentiable
topological properties of the Equation (51);

(ii) The non-differentiable topological charge.
The non-differentiable kink solution can be obtained as a mapping of a non-differentiable zero-sphere

SF0, taken at infinity onto the non-differentiable vacuum manifold of the model induced by means of
Equation (51). The non-differentiable homotopy group for this model is ΠF0(ZF0) = ZF2, i.e., the
model gives rise to two solutions: a constant solution and the non-differentiable kink solution. Details
on an usual homotopic mapping are given in [24].

The non-differentiable topological charge is:

qF =
1

2

+∞∫
−∞

j(ξ)dξ =
1

2

+∞∫
−∞

df

dξ
dξ =

1

2
[f(+∞)− f(−∞)] (61)

The non-differentiable vacuum solution (absence of spatial gradients) and the non-differentiable kink
solution can be characterized by attributing the qF = 0 and qF = 1, respectively (the result is obtained
by an adequate normalization of f ). Since (51) is a non-differentiable Ginzburg–Landau equation type
[23], it follows that qF = 0, and the non-differentiable vacuum solution describes the behavior of the
non-differentiable system in the absence of self-structuring, i.e., its non-differentiable ground states,
while qF = 1 and the non-differentiable kink solution describes the behavior of the non-differentiable
system in the presence of self-structuring, i.e., of the Cooper-type non-differentiable pair generation.

Now, for these values of the non-differentiable topological charge, one can associate the fractal bit,
that is a physical system that can exist in two distinct states (an unstructured state or non-differentiable
vacuum and a structured one or of the Cooper-type non-differentiable pair). These states are used in
order to represent 0(dτ) and 1(dτ), that is a single binary fractal digit. The only possible operations
(non-differentiable (fractal) gates) that are compatible with such systems are the non-differentiable
(fractal) IDENTITY

0(dτ)→ 0(dτ), 1(dτ)→ 1(dτ)

and the non-differentiable (fractal) NOT(FNOT):

0(dτ)→ 1(dτ), 1(dτ)→ 0(dτ)

All of these constitute the fundaments of a non-differentiable (fractal) logic.

8. Concluding Remarks

The main conclusions of the present paper are the following:
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(i) Assuming that in a Minkowski-type space-time the motions of structural units take place on
continuous, but non-differentiable curves, a scale relativity theory with an arbitrary constant fractal
dimension is built.

(ii) Non-differentiable geodesics on a space-time manifold and its diverse variants (the hydrodynamics
one and in the wave function) are obtained. Particularly, if the wave function is independent of the motion
curve affine parameter and if we consider a scale resolution dependence on a fundamental length, then
the non-differentiable geodesics imply a non-differentiable Klein–Gordon-type equation. In this last
situation, the standard result (Klein–Gordon equation) is obtained for motions on Peano curves at the
Compton scale.

(iii) The concept of non-differentiable entropy on a space-time manifold (relativistic
non-differentiable entropy) is introduced. It is proven that its three-dimensional projection is
dependent (through total energy, internal energy and impulse) on the structural unit motion state. In such
a context, the Klein–Gordon equation corresponds to a particular case of geodesics that is independent
of its proper time, precisely those for which the motion takes place on Peano curves at the Compton
scale and constant non-differentiable entropy.

(iv) Admitting that there exists a functional dependence between the phase and the amplitude
of the wave function, in accordance with Consequence (vi) of Section 2, the non-differentiable
fluid is self-structuring through a spontaneous symmetry breaking-type mechanism. Cooper-type
non-differentiable pairs result, which confer superconductibility-type properties to the non-differentiable
fluid. Moreover, the motions on such geodesics imply maximum entropy.

(v) Since the admissible number of non-differentiable kinks is determined by the non-differentiable
topological properties of the symmetry group induced by Equation (11), a non-differentiable topological
method can be applied. Then, some elements of a fractal logic, such as fractal bits, fractal gates (fractal
IDENTITY, fractal NOT), etc., are obtained.

(vi) Such a formalism can be applied to complex systems in biology, precisely in problems related
to fertility: the coupling between ovule and spermatozoon. The efficient interaction between one sperm
and one oocyte leading to fertilization relies on specific informational energy exchange events. As a
consequence, shortly after fertilization, before the first mitotic cell division, a developmental transition
process commences, in order to trigger cell modeling from each gamete to a complex, multipotent
zygote [25]. Genetically-encrypted data allow for various pathways to be upregulated, among which
autophagy is one of the main players. During this cellular process, paternal mitochondria are selectively
destructed in fertilized eggs [26]. The rationale for this event relies on evolutionary conservation
strategies to prevent both the transmission of paternal mitochondrial DNA to the offspring and the
establishment of heteroplasmy [27]. This is necessary, as, during fertilization, sperms compete with
each other to reach and fertilize the oocyte and, in doing so, consume a great amount of energy
produced by mitochondria via oxidative phosphorylation, generating reactive oxygen species (ROS),
which could irreparably damage the integrity of mitochondrial DNA. This may be the main explanation
why mitochondrial DNA mutates at a faster rate than nuclear DNA [26]. There are studies sustaining the
avoidance of ROS-dependent mutation as an evolutionary pressure underlying maternal mitochondrial
inheritance and the developmental origin of the female germ line [28]. Most interestingly, it has been
postulated that the maintenance of any gene within a bioenergetic organelle may be the result of natural
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selection with a selective advantage for the individual organelle in its ability to respond to changes in the
redox state of its bioenergetic membrane and to regulate the synthesis of proteins in the electron transport
chain by means of gene expression [28]. Therefore, in complex systems, complex bioinformatic systems
are required to ensure long-term species conservation.
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