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Abstract: Objective Bayesianism says that the strengths of one’s beliefs ought to be
probabilities, calibrated to physical probabilities insofar as one has evidence of them, and
otherwise sufficiently equivocal. These norms of belief are often explicated using the
maximum entropy principle. In this paper we investigate the extent to which one can provide
a unified justification of the objective Bayesian norms in the case in which the background
language is a first-order predicate language, with a view to applying the resulting formalism
to inductive logic. We show that the maximum entropy principle can be motivated largely in
terms of minimising worst-case expected loss.
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1. Introduction

Objective Bayesianism holds that the strengths of one’s beliefs should satisfy three norms [1,2]:

• Probability. The strengths of one’s beliefs should satisfy the axioms of probability: if bel is one’s
belief function, which assigns a degree of belief to each sentence of one’s language, then bel ∈ P,
the set of probability functions defined on the sentences of one’s language.

• Calibration. The strengths of one’s beliefs should fit one’s evidence: bel ∈ E, the set of belief
functions compatible with one’s evidence. In particular, the strengths of one’s beliefs should
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be calibrated with physical probabilities, insofar as one has evidence as to what the physical
probabilities are: if one’s evidence determines just that the physical probability function P ∗ lies in
some non-empty set P∗ of probability functions, then bel ∈ E = 〈P∗〉, where 〈P∗〉 is the convex
hull of P∗ [3].

• Equivocation. The strengths of one’s beliefs should otherwise equivocate sufficiently between the
basic possibilities that one can express: bel is some function in E that is sufficiently equivocal.
Note that entropy is often used as a measure of the extent to which a probability function
equivocates.

These three norms are usually justified in rather different ways. The Probability norm is usually
justified as being required if one is to avoid sure loss—the Dutch book argument. The Calibration norm
needs to hold if one is to avoid loss in the long run when one repeatedly bets on similar events. It has also
been argued that the Equivocation norm should hold if one is to minimise worst-case expected loss. See
Williamson [1] (Chapter 3) for discussion of these justifications. Unfortunately, these justifications do
not cohere particularly well, because the betting set-up and the notion of loss differ in each case—for the
Probability norm, the notion of loss is sure single-case loss, where losses may be positive or negative;
for the Calibration norm it is almost-sure (i.e., probability 1) long-run loss, positive or negative; for
the Equivocation norm, it is worst-case expected loss, where the loss is positive and logarithmic.
Furthermore, a justification for the order in which the norms are applied is missing. In particular, the
justification of the Equivocation norm presumes that belief is probabilistic; for this justification to work,
some argument is needed for the claim that avoiding sure loss should be prioritised over minimising
worst-case expected loss; but there is as yet no such argument. The question thus arises as to whether a
single, unified justification can be given for the three norms, in order to circumvent the above problems.

Landes and Williamson [4] provided a single, unified justification for the situation in which one’s
beliefs are defined over propositions, construed as subsets of a finite set Ω of outcomes. It turns out that
all three norms must hold if one is to minimise worst-case expected loss: one’s belief function should
be a probability function in E = 〈P∗〉 that has sufficiently high entropy. This line of argument will be
described in Section 2. Landes and Williamson [4] went on to extend this unified justification to the
situation in which beliefs are defined over sentences of a propositional language, formed by recursively
applying the usual propositional connectives ¬,∧,∨,→,↔ to a finite set of propositional variables.

In this paper we shall show that a similar justification goes through for the situation in which beliefs
are defined over sentences of a first-order predicate language, with the use of predicate, constant and
variable symbols as well as the quantifiers ∀,∃. In Section 3 we shall formulate the norms of objective
Bayesianism in the context of a predicate language. In Section 4 we shall provide a justification for
maximising entropy when the language in question is a predicate language without quantifier symbols
and when the evidence set is finitely generated. In Section 5, we shall extend this line of argument
to predicate languages that contain quantifier symbols. In Section 6 we shall investigate the case of
evidence which is not finitely generated. Key concepts and notation are collected in Appendix C for ease
of reference.

The key technical results in this paper are Theorem 3, Theorem 6, Theorem 7, and Theorem 8. These
results all suppose that the available evidence is finitely generated (in the sense of Definition 5). The
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first two jointly show that, on a quantifier-free predicate language, the belief function with the best loss
profile is the calibrated probability function which has maximal entropy. Theorem 7 implies that adding
new constant or predicate symbols to the language does not change the inferences one draws which
are expressible in the original language. Theorem 8 extends Theorem 3 and Theorem 6 to predicate
languages with quantifiers. En route to proving Theorem 8, we improve on Gaifman’s Unique Extension
Theorem [5] (Theorem 1) in Proposition 24.

The case of evidence which cannot be finitely generated is more involved. We consider a case in
which no belief function has an optimal loss profile in Proposition 28 and Proposition 30. While there
are no functions with the best loss profile in that case, we show in Proposition 29 and Proposition 31 that
probability functions in a neighbourhood of the calibrated function with maximal entropy have arbitrarily
good loss profiles. We also discuss a case in which the belief function with best loss profile does indeed
turn out to be the calibrated probability function which has maximal entropy, see Theorem 9.

2. Beliefs over Propositions

Here we will recap the relevant results of Landes and Williamson [4], to which the reader is referred
for further details and motivation. In this section we will be concerned solely with a finite set Ω of
possible outcomes. We shall suppose that each member ω of Ω is a state ±A1 ∧ · · · ∧ ±An of a finite
propositional language L = {A1, ..., An}. A proposition F is a subset of Ω. Let Π be the set of all
partitions of Ω. We take {∅,Ω}, {Ω} ∈ Π. In order to limit the proliferation of partitions, we suppose
that the only partition in which ∅ occurs is {∅,Ω}.

Given a belief function bel : PΩ −→ R≥0 that is not zero everywhere, we normalise by dividing each
degree of belief by maxπ∈Π

∑
F∈π bel(F ) to form a belief function, B : PΩ −→ [0, 1], with degrees of

belief in the unit interval. The set of normalised belief functions is

B := {B : PΩ −→ [0, 1] :
∑
F∈π

B(F ) ≤ 1 for all π ∈ Π and
∑
F∈π

B(F ) = 1 for some π}.

On the other hand, the set of probability functions is

P := {B : PΩ −→ [0, 1] :
∑
F∈π

B(F ) = 1 for all π ∈ Π} ⊂ B,

where ⊂ denotes strict subset inclusion. The inclusion is strict since the following normalised belief
function B is not in P, B(∅) = 1 and B(F ) = 0 for all ∅ ⊂ F ⊆ Ω. Since {Ω} is a partition we have
P (Ω) = 1 and since {Ω, ∅} is a partition it holds that P (∅) = 0 for all P ∈ P.

Let L(F,B) be the loss incurred by adopting belief function B when proposition F turns out to be
true. Arguably, in the absence of knowledge of the true loss function, the loss function L should be
taken to be logarithmic, as we shall now see. Consider the following four conditions on a default loss
function L:

L1. L(F,B) = 0 if B(F ) = 1.

L2. L(F,B) strictly increases as B(F ) decreases from 1 towards 0.

L3. L(F,B) depends only on B(F ), not on B(F ′) for F ′ 6= F .
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To express the next condition we need some notation. Suppose L = L1 ∪ L2: say that L =

{A1, ..., An}, L1 = {A1, ..., Am}, L2 = {Am+1, ..., An} for some 1 ≤ m < n. Then ω ∈ Ω takes
the form ω1 ∧ ω2 where ω1 ∈ Ω1 is a state of L1, and ω2 ∈ Ω2 is a state of L2. Given propositions
F1 ⊆ Ω1 and F2 ⊆ Ω2 we can define F1 × F2 := {ω = ω1 ∧ ω2 : ω1 ∈ F1, ω2 ∈ F2}, a proposition of L.
Given a fixed belief function B such that B(Ω) = 1, L1 and L2 are independent sublanguages, written
L1⊥⊥BL2, if B(F1 × F2) = B(F1) · B(F2) for all F1 ⊆ Ω1 and F2 ⊆ Ω2, where B(F1) := B(F1 × Ω2)

and B(F2) := B(Ω1 × F2). The restriction B�L1 of B to L1 is a belief function on L1 defined by
B�L1(F1) = B(F1) = B(F1 × Ω2), and similarly for L2.

L4. Losses are additive when the language is composed of independent sublanguages: if L = L1 ∪ L2

for L1⊥⊥BL2, then L(F1×F2, B) = L1(F1, B�L1) +L2(F2, B�L2), where L1, L2 are loss functions
defined on L1,L2 respectively.

Theorem 1. If a loss function L satisfies L1–4 then L(F,B) = −k logB(F ) for some constant k > 0

that does not depend on L.

When we consider the notion of expected loss, we see that this concept depends on the weight given to
the various partitions under consideration. Let g : Π −→ R≥0 be a function that assigns a weight to each
partition. Then the g-expected loss or g-score of a belief function B ∈ B with respect to a probability
function P ∈ P is defined by

SLg (P,B) :=
∑
π∈Π

g(π)
∑
F∈π

P (F )L(F,B),

for any weighting function g that is inclusive in the sense that for any proposition F , some partition π
containing F is given positive weight. We adopt the usual convention that 0 log 0 = 0. This ensures that
SLg (P,B) is well-defined. Theorem 1 allows us to focus attention on logarithmic g-score,

Sg(P,B) := −
∑
π∈Π

g(π)
∑
F∈π

P (F ) logB(F ). (1)

An important property of a scoring rule is that arg infB∈B S
L
g (P,B) = {P} for all P ∈ P. That is, for

fixed P ∈ P, SLg (P,B) is uniquely minimised by B = P . This property is known as strict propriety.

Proposition 1 (Strict Propriety). Sg is strictly proper.

By analogy with the generalised notion of scoring rule, we get a similar generalisation of entropy,
g-entropy:

Hg(B) := −
∑
π∈Π

g(π)
∑
F∈π

B(F ) logB(F ). (2)

The standard entropy function corresponds to the special case in which g = gΩ, the (non-inclusive)
weighting function that gives weight 1 to the partition {{ω} : ω ∈ Ω} of states and weight 0 to all other
partitions.

It turns out that, if there is such a function, the probability function that minimises worst-case g-score,
where the worst case is taken over physical probability functions in the set E = 〈P∗〉, is the probability
function in E that has maximum g-entropy:
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Theorem 2. As noted above, E is taken to be convex and g inclusive. There is a unique member of
arg supP∈EHg(P ), which we shall denote by P †g . Furthermore,

arg sup
P∈E

Hg(P ) = arg inf
B∈B

sup
P∈E

Sg(P,B) = {P †g }.

Throughout this paper we use arg supP∈E (and arg infP∈E) to refer to the points in the closure [E] of E
that achieve the supremum (respectively infimum) whether or not these points are in E. (This convention
shall also apply mutatis mutandis to suprema and infima over sets of belief functions defined on predicate
languages later in this paper.)

The above theorem concerns the minimisation of worst-case g-score. If one replaces the minimisation
of worst-case g-score by a more fine-grained criterion (which breaks ties between belief functions with
the same worst-case g-score), then an analogue of the above theorem holds: there exists a unique belief
function which is best with respect to this criterion and this function is P †g , which maximises g-score in
[E]. When we move to predicate languages we will consider such a refinement in Definition 21.

3. Beliefs over Sentences of a Predicate Language

3.1. Norms

In this section we introduce the norms of objective Bayesianism as they apply to strength of belief
in sentences formulated in a predicate language. This framework is presented in more detail in
Williamson [1] (Chapter 5). It is this set of norms that we seek to justify in terms of the loss that a
belief function exposes one to.

We shall take L to be a first-order predicate language with finitely many relation symbols U1, . . . , Us,
countably many constant symbols t1, t2, . . ., but no function or equality symbols. We will consider
languages with and without the existential quantifier symbol, using the notation L6∃ and L∃ to
disambiguate where needed. We shall assume, as is usual in this setting, that each individual in the
domain of discourse is picked out by a some constant symbol. The sentences SL of L are formed
by recursively applying the usual connectives and the existential quantifier, if present. In L = L∃,
universally quantified sentences may be defined in terms of existentially quantified sentences as usual
via ∀xθ(x) := ¬∃x¬θ(x). Note that SL 6∃ coincides with the set of quantifier-free sentences of L∃. We
shall also be interested in the finite sublanguages Ln, for n≥1, which are identical to L except that they
have only finitely many constant symbols t1, . . . , tn.

We shall list the atomic sentences of L, i.e., sentences of the form Ut where U is a relation symbol
and t is a tuple of constant symbols of the corresponding arity, as A1, A2, . . ., ordered in such a way
that atomic sentences that can be expressed in Ln+1 but not in Ln occur after the atomic sentences
A1, . . . , Arn of Ln, for each n. Ωn will denote the set of n-states, i.e., sentences of the form ±A1 ∧
· · · ∧ ±Arn . We shall use Greek letters, such as θ, to denote sentences of L, and Roman letters, e.g., F ,
to denote propositions expressed by such sentences. We shall construe propositions as sets of n-states,
F ⊆ Ωn for some n (see Section 2).

The norms of objective Bayesianism can then be explicated thus:
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Probability. The strengths of one’s beliefs should be representable by a probability function, i.e., a
function P : SL −→ R that satisfies the properties:

P1. P (τ) = 1 for all tautologies τ.

P2. If � ¬(ϕ ∧ ψ) then P (ϕ ∨ ψ) = P (ϕ) + P (ψ).

P3. P (∃xθ(x)) = supm P (
∨m
i=1 θ(ti)).

(Clearly P3 is only applicable in the case L = L∃.)

Calibration. One’s degrees of belief should satisfy constraints imposed by one’s evidence. Assuming
all evidence is evidence of physical probabilities, P should lie in the set EL = 〈P∗〉, the convex
hull of the set of epistemically possible physical probability functions.

Equivocation. One’s degrees of belief should otherwise be sufficiently equivocal. Again, one can
explicate this by saying that one’s belief function should have sufficiently high entropy. Here
P has higher entropy than Q if there is some N such that for all n≥N , Hn

Ω(P ) > Hn
Ω(Q), where

Hn
Ω is standard entropy on Ln, Hn

Ω(P ) := −
∑

ω∈Ωn
P (ω) logP (ω).

The key question we attempt to answer here is: can these norms be given a unified justification in
terms of avoiding avoidable loss?

3.2. Belief and Probability

A (non-normalised) belief function bel : SL −→ R≥0 is a function that maps any sentence of the
language to a non-negative real number. For technical convenience we shall focus our attention on
normalised belief functions, which are defined below.

A (countable) set of mutually exclusive sentences π ⊂ SL is called exhaustive if, for all
interpretations I under which the constants exhaust the universe of M, there exists a sentence θ ∈ π

such that I |= θ. This means that it is not possible for all θ ∈ π to be false at the same time. In order to
control the number of partitions, we shall assume that the only partitions in which contradictions κ occur
are the partitions of the form {τ, κ}, for some tautology τ . Let ΠL denote the set of partitions of L.

Example 1 (Infinite partitions). Even though L∃ does not contain a symbol for equality and every
element of a partition is a sentence ofL∃, which is of finite length, infinite partitions such as the following
do exist:

π∞ := {∀x¬U1x} ∪
∞⋃
k=1

{U1tk ∧
k−1∧
l=1

¬U1tl}.

(Here it is presupposed that L∃ contains a unary predicate symbol U1.) On the other hand, it turns out
that there are no infinite partitions in L 6∃ [6] (§2.5).

We take it that it is a matter of convention on which scale beliefs are measured. For convenience, we
want to normalise this scale to the unit interval, [0, 1], so that all belief functions are considered on the
same scale.
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Definition 1 (Normalised belief function). Let M := supπ∈ΠL

∑
ϕ∈π bel(ϕ). Then define the

normalisation of bel as B(ϕ) := bel(ϕ)
M

, if M > 0. For a function f assigning every ϕ ∈ SL the
same value v ∈ R≥0 we write f ≡ v. We shall consider bel ≡ 0 as normalised. The set of normalized
belief functions on SL then is

BL :={B : SL −→ [0, 1] :
∑
ϕ∈π

B(ϕ)≤1 for all π ∈ ΠL and
∑
ϕ∈π

B(ϕ) = 1 for some π ∈ ΠL}

∪ {B ≡ 0}.

For the normalisation of bel, B, it holds that B ≡ 0, if and only if M = +∞ or bel ≡ 0.

We will be particularly interested in the following subset of functions:

PL := {P : SL −→ [0, 1] :
∑
ϕ∈π

P (ϕ)=1 for all π ∈ ΠL}.

These are the probability functions:

Proposition 2. P ∈ PL, if and only if P : SL −→ [0, 1] satisfies the axioms of probability:

P1. P (τ) = 1 for all tautologies τ∈ SL.

P2. If � ¬(ϕ ∧ ψ) then P (ϕ ∨ ψ) = P (ϕ) + P (ψ).

P3. P (∃xθ(x)) = supm P (
∨m
i=1 θ(ti)).

Proof. First we shall see that P ∈ PL satisfies the axioms of probability.
P1. For any tautology τ ∈ SL it holds that P (τ) = 1 because {τ} is a partition in ΠL. P (κ) = 0 for

all contradictions κ because {τ, κ} is a partition in ΠL and P (τ) = 1.
P2. Suppose that ϕ, ψ ∈ SL are such that � ¬(ϕ ∧ ψ). We shall proceed by cases to show that

P (ϕ∨ ψ) = P (ϕ) + P (ψ). In the first three cases one of the sentences is a contradiction, in the last two
cases there are no contradictions.
(i) � ϕ and � ¬ψ, then � ϕ ∨ ψ. Thus by the above P (ϕ) = 1 and P (ψ) = 0 and hence P (ϕ ∨ ψ) =

1 = P (ϕ) + P (ψ).

(ii) � ¬ϕ and � ¬ψ, then � ¬ϕ ∧ ¬ψ. Thus P (ϕ ∨ ψ) = 0 = P (ϕ) + P (ψ).

(iii) 6� ¬ϕ, 6� ϕ, and � ¬ψ, then {ϕ ∨ ψ,¬ϕ ∨ ψ} and {ϕ,¬ϕ ∨ ψ} are both partitions in ΠL. Thus
P (ϕ ∨ ψ) + P (¬ϕ ∨ ψ) = 1 = P (ϕ) + P (¬ϕ ∨ ψ). Putting these observations together we now find
P (ϕ ∨ ψ) = P (ϕ) = P (ϕ) + P (ψ).

(iv) 6� ¬ϕ, 6� ¬ψ and � ϕ ↔ ¬ψ, then {ϕ, ψ} is a partition and ϕ ∨ ψ is a tautology. Hence, P (ϕ) +

P (ψ) = 1 and P (ϕ ∨ ψ) = 1. This now yields P (ϕ) + P (ψ) = P (ϕ ∨ ψ).
(v) 6� ¬ϕ, 6� ¬ψ and 6� ϕ ↔ ¬ψ, then none of the following sentences is a tautology or a contradiction
ϕ, ψ, ϕ∨ψ,¬(ϕ∨ψ). Since {ϕ, ψ,¬(ϕ∨ψ)} and {ϕ∨ψ,¬(ϕ∨ψ)} are both partitions in ΠL we obtain
P (ϕ) + P (ψ) = 1− P (¬(ϕ ∨ ψ)) = P (ϕ ∨ ψ). So P (ϕ) + P (ψ) = P (ϕ ∨ ψ).

P3. For the rest of this proof we only have to consider L = L∃.
If |= ∃xθ(x), then P (∃xθ(x)) = 1.
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Furthermore, the set {θn : n ∈ N} with θn := θ(tn) ∧
∧n−1
j=1 ¬θ(tj) is exhaustive. Note that

|=
∨n
i=1 θ(ti) ↔

∨n
i=1 θi. P1 and P2 are well-known to imply that logically equivalent sentences are

assigned the same probability; see [7] (Proposition 2.1.c). Hence, P (
∨n
i=1 θ(ti)) = P (

∨n
i=1 θi).

The θi are mutually exclusive. We obtain from P2 that P (
∨n
i=1 θi) =

∑n
i=1 P (θi). Next, define a set

Θ := {θn : θn satisfiable} which consists of exhaustive, satisfiable and mutually exclusive sentences.
Hence Θ is a partition in ΠL. We finally obtain

1 =
∑
θ∈Θ

P (θ) ≤ lim
n−→∞

n∑
i=1

P (θn) = lim
n−→∞

P (
n∨
i=1

θi) = lim
n−→∞

P (
n∨
i=1

θ(ti)) ≤ 1.

P1 and P2 are also well-known to imply that if |= χ −→ ψ then P (χ) ≤ P (ψ),
see [7] (Proposition 2.1.c). Since |=

∨n
i=1 θ(ti) −→

∨n+1
i=1 θ(ti) we obtain P (

∨n
i=1 θ(ti)) ≤

P (
∨n+1
i=1 θ(ti)). (P (

∨n
i=1 θi))n∈N is a (not necessarily strictly) increasing sequence. Then

1 = lim
n−→∞

P (
n∨
i=1

θ(ti)) = sup
n∈N

P (
n∨
i=1

θ(ti)). (3)

The second equality holds also when 1 > limn−→∞ P (
∨n
i=1 θ(ti)).

If neither |= ∃xθ(x) nor |= ¬∃xθ(x), then {∀x¬θ(x), ∃xθ(x)} is a partition. We consider two cases.
In the first case the set {∀x¬θ(x), θ(t1), θ(t2)∧¬θ(t1), ..., θ(tk)∧¬

∨k−1
j=1 θ(tj), . . .} is not a partition.

For example, this set fails to be a partition for θ(x) = ¬Ut2 ∧ Ux: the sentence θ(t2) ∧ ¬θ(t1) =

¬Ut2∧Ut2∧¬(¬Ut2∧Ut1) is a contradiction and hence it cannot be contained in a partition π consisting
of infinitely many sentences.
¬
∨m
i=1 θ(ti) cannot be a contradiction since ¬∃θ(x) is satisfiable and |= ¬∃θ(x) → ¬

∨m
i=1 θ(ti).

If ¬
∨m
i=1 θ(ti) is a tautology, then all θn with n ≤ m are contradictions. Hence, for all m ∈ N the

set {¬
∨m
i=1 θ(ti)} ∪ {θn : n ≤ m and θn is satisfiable} is a partition, as is {¬

∨m
i=1 θ(ti),

∨m
i=1 θ(ti)}.

Furthermore, {∀x¬θ(x)} ∪ {θn : θn is satisfiable} is a partition.
Recalling that P (κ) = 0 for all contradictions κ we obtain

∑m
k=1 P (θk) = P (

∨m
i=1 θ(ti)) and

P (∃xθ(x)) = lim
m−→∞

P (
m∨
i=1

θ(ti)).

It remains to show that

lim
m−→∞

P (
m∨
i=1

θ(ti)) = sup
m
P (

m∨
i=1

θ(ti)).

This follows as we saw above in (3).
In the second case the set {∀x¬θ(x), θ(t1), θ(t2)∧¬θ(t1), ..., θ(tk)∧¬

∨k−1
j=1 θ(tj), . . .} is a partition.

Recall that {∀x¬θ(x),∃xθ(x)} is also a partition. We obtain as in the first case that

P (∃xθ(x)) =
∞∑
k=1

P (θ(tk) ∧ ¬
k−1∨
j=1

θ(tj)) = lim
m−→∞

m∑
k=1

P (θk) = sup
m
P (

m∨
i=1

θ(ti)).

For the converse, note that P1–3 imply that P is a probability measure on SL, and so additive over
countable partitions (§2 in [8]; §2.5 in [6]). Hence P ∈ PL .
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Another key feature of probability functions is that they respect logical equivalence:

Definition 2 (Respecting logical equivalence). For a sublanguage L′ of L we say that a function f :

SL −→ [0, 1] respects logical equivalence on L′, if and only if for all ϕ, ψ ∈ SL′ with � ϕ↔ ψ it holds
that f(ϕ) = f(ψ). For L′ = L we simply say that f respects logical equivalence.

Proposition 3. The probability functions P ∈ PL respect logical equivalence.

Proof. Suppose P ∈ PL and assume that ϕ, ψ ∈ SL are logically equivalent. Observe that {ϕ,¬ϕ} and
{ψ,¬ϕ} are partitions in ΠL. Hence,

P (ϕ) + P (¬ϕ) = 1 = P (ψ) + P (¬ϕ).

But then P (ϕ) = P (ψ).

Thus, the P ∈ PL assign logically equivalent sentences the same probability.

If a belief function B : SL −→ [0, 1] respects logical equivalence, it gives sentences which express
the same proposition the same degree of belief. Hence, for any n ∈ N, B induces a function ◦B defined
over the propositions F ⊆ Ωn (c.f., Section 2). ◦B is defined by:

◦B(F ) := B(
∨
F ) = B(

∨
ω∈Ωn
ω∈F

ω).

We will use the notation ◦nB to avoid ambiguity in cases where n varies.
The notion of a dominated belief function will prove useful in what follows:

Definition 3 (Dominated belief function). B ∈ BL\PL is dominated by a probability function P ∈ PL,
if and only if for all ϕ ∈ SL it holds that B(ϕ) ≤ P (ϕ).

Note that if B is dominated by P , then B 6= P , and thus B(ϕ) < P (ϕ) has to hold at least for one
sentence ϕ.

Proposition 4. There exist B ∈ BL \ PL which are not dominated.

Proof. Let U be a relation symbol in L of arity a ≥ 1, say. Let Ut1t be a well-formed formula of L2,
i.e., t is a a− 1 tuple with consisting only of t1 and t2. Let O4 := {Ut1t ∧ Ut2t, Ut1t ∧ ¬Ut2t,¬Ut1t ∧
Ut2t,¬Ut1t ∧ ¬Ut2t}.

Let B : SL −→ [0, 1] be such that

B(ϕ) :=



1
100

iff � ϕ↔ ω for some ω ∈ O4

50
100

iff � ϕ↔ ω ∨ ν for different ω, ν ∈ O4

99
100

iff � ϕ↔ ¬ω for some ω ∈ O4

1 iff ϕ is a tautology

0 otherwise

Clearly, B ∈ BL. We now show that there does not exist a P ∈ PL such that B(ϕ) ≤ P (ϕ) for all
ϕ ∈ SL.
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Note that ∑
ω∈O4

B(¬ω) = 3 +
96

100

and that for all P ∈ PL it holds that∑
ω∈O4

P (¬ω) =
∑
ω∈O4

(
P (¬ω) + P (ω)

)
−
∑
ω∈O4

P (ω) = 4− 1 = 3. (4)

Note for later reference that for all n ≥ 3 and ω ∈ O4, {¬ω} ∪ {ν ∈ Ωn : ν � ω} is a partition. So,∑
ν∈Ωn
ν�ω

B(ν) ≤ 1
100

has to hold. Hence,
∑

ν∈Ωn
B(ν) ≤ 4

100
.

Thus far we have considered partitions of sentences. We shall also need to consider partitions of
propositions:

Definition 4 (Partitions of propositions). Let Πn be the set of partitions on Ωn. As in Section 2, we
take {Ωn} and {Ωn, ∅} to be partitions and we suppose that there is no further partition containing ∅.
We then define the set of partitions: Π :=

⋃∞
n=1 Πn.

We use πn to denote the partition of n-states {{ω} : ω ∈ Ωn}.

Note that F1 := {ω ∈ Ω1 : ω � U1t1} and F2 := {ω ∈ Ω2 : ω � U1t1} are different propositions,
where U1 is a unary predicate symbol. F1 is a member of {F1, F̄1} ∈ Π1 and F2 is a member of
{F2, F̄2} ∈ Π2, but not vice versa. So {F1, F̄1} and {F2, F̄2} are different partitions, even if these
partitions are intuitively equivalent.

3.3. Application to Inductive Logic

We shall be particularly interested in the use of objective Bayesianism over predicate languages to
provide semantics for inductive logic.

Inductive logic typically seeks to answer questions of following form [9] (§1.1):

ϕX1
1 , . . . , ϕXkk |≈ ψ?

This asks, if premiss sentences ϕ1, . . . , ϕk of L have probabilities in sets X1, . . . , Xk ⊆ [0, 1]

respectively, which probability or set of probabilities should attach to the conclusion sentence ψ?
The answer to this question will depend on the semantics given to the inductive entailment relation |≈

[9] (Part I). One natural option is to give the entailment relation objective Bayesian semantics, denoted by
|≈◦. Here the premisses are construed as statements about chance, i.e., P ∗(ϕ1) ∈ X1, . . . , P

∗(ϕk) ∈ Xk,
and the question concerns rational belief: if one’s total evidence is captured by the premisses, to what
extent should one believe the conclusion sentence ψ? Applying the norms of objective Bayesianism,

ϕX1
1 , . . . , ϕXkk |≈◦ ψ

Y

holds just in case P (ψ) ∈ Y for every P ∈ EL that has maximal entropy, where
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EL = 〈ϕX1
1 , . . . , ϕXkk 〉 := 〈{P ∗∈ PL : P ∗(ϕ1) ∈ X1, . . . , P

∗(ϕk) ∈ Xk}〉.

This application of objective Bayesian epistemology to inductive logic is an example in which EL is
generated by constraints involving only sentences of some finite sublanguage Ln. We will be particularly
interested in the case where ϕ1, . . . , ϕk are quantifier-free sentences, i.e., sentences of L 6∃n for some n.

Let PL 6∃n be the set of probability functions on L 6∃n, and let

En := {Pn ∈ PL6∃n : Pn = P�n, P ∈ EL}

where P�n is the restriction of P to SL6∃n. Note that,

P�n(θ) :=
∑
ω∈Ωn
ω|=θ

P (ω)

for all θ ∈ SL 6∃n.
To ease the reading we also let Pn := {Pn ∈ PL 6∃n}.

Definition 5 (Finitely generated evidence set). EL is finitely generated if it takes the form EL = {P ∈
PL : P�n ∈ En} for some n ∈ N, where En ⊆ PL6∃n . Thus, EL is generated by constraints involving only
some ϕ1, ϕ2, . . . ∈ SL 6∃n and no other sentences.

From now on, for finitely generated EL, the letter K is used to denote the smallest number n such that
EL is generated by constraints on L 6∃n.

Note that an evidence set EL which is not finitely generated may not be recapturable from
{E1,E2, . . . }. For instance, for

EL = {P ∈ PL : lim
n−→∞

P (
n∧
i=1

Uti) = 0}

the following two facts hold simultaneously:

1. EL ⊂ PL

2. En = Pn for all n ∈ N.

4. Quantifier-Free Languages

We would like to develop an analogue of Theorem 2 for beliefs defined over the sentences of a
predicate language: we would like to show that belief functions which minimise worst-case expected
loss are probability functions in E that maximise entropy. The main difficulty in moving from the finite
domain of propositions to countably many sentences of a predicate language is to ensure that worst-case
expected loss is finite where possible, so that these losses can be compared and a belief function can
be chosen that minimises worst-case expected loss. For this reason we proceed in two steps. First, in
this section, we shall consider the case in which the predicate language has no quantifier symbol, i.e.,
L = L6∃; comparing worst-case expected loss is more straightforward in this case. Then, in Section 5,
we shall examine how far our approach can be extended to handle predicate languages with quantifiers.
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First, in Section 4.1 we define the notion of a weighting function. This allows us to define and analyse
the concept of entropy of a probability function on L = L 6∃ in Section 4.2. In Section 4.3 we introduce
the idea of the loss profile of a belief function. Finally in Section 4.4 we show that, in various natural
scenarios, the belief function that has the best loss profile is the probability function, from all those
calibrated with evidence, that has maximal standard entropy.

4.1. Weighting Functions

Definition 6 (Weighting function). A weighting function on Ln, gn : Πn −→ R≥0, maps partitions
π ∈ Πn to non-negative real numbers. A weighting function on L, gL : Π −→ R≥0, is defined over
partitions of propositions of all finite sublanguages. A weighting function on L can be thought of as
a family of weighting functions gn on Ln, where n ranges over the natural numbers. Given a fixed
weighting function gL on L, we shall take gLn := g�Πn for each n ∈ N. A (general) weighting function
g is taken to be defined over each predicate language L = L 6∃. Different languages L = L 6∃, L′ = L′ 6∃

have different sets of relation symbols.

A weighting function g is atomic if for each L and each n, gn depends only on the number of atomic
propositions in Ln, not on the structure of those atomic propositions. Thus if L and L′ are such that Ln
and L′m have the same number of atomic propositions, then gLm = gL

′
m . In this paper we shall suppose

that all weighting functions are atomic; hence there will be no need to superscript a weighting function
on L or Ln by the particular language L.

We call g inclusive, if and only if it attaches positive weight to each proposition, i.e., if and only if for
all n and all F ⊆ Ωn it holds that ∑

π∈Πn
F∈π

g(π) > 0.

As in Section 2, g is symmetric if for each n it is invariant under permutations of the states of Ln. It is
refined if for each n it gives no less weight to a refinement π′ ∈ Πn of a partition π ∈ Πn than to π itself.

For example, the partition weighting gΠ gives weight 1 to each partition, gΠ(π) = 1 for all π ∈ Π. The
proposition weighting gPΩ gives weight 1 to each partition of size 2 and weight 0 to all other partitions;
this amounts to giving weight 1 to each proposition. The standard weighting gΩ gives weight 1 to the
partition πn of n-states, for each n, and weight 0 to all other partitions. These weighting functions are
all symmetric. The partition and proposition weightings are inclusive, but the standard weighting is not.
The partition and standard weightings are refined, but the proposition weighting is not.

Definition 7 (Strongly refined weighting function). g is strongly refined if and only if it satisfies the
following properties:

1. g is refined: in each finite sublanguage, if partition π′ is a refinement of partition π, then g(π′) ≥
g(π).

2. Each finite sublanguage receives the same total weight: for all n,
∑

π∈Πn
g(π) is constant.
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3. A state partition on a richer language should not receive less weight than one one a less rich
language: if m < n then g(πm) ≤ g(πn)

4. Non-state-partitions receive finite total weight: the following limit exists (i.e., is finite),

lim
k−→0

k∑
n=1

∑
π∈Πn\{πn}

g(π).

Throughout this paper we will be particularly interested in the following weighting functions:

Definition 8 (Regular weighting function). g is regular if it is atomic, inclusive, symmetric and strongly
refined.

4.2. Entropy

Definition 9 (n-entropy). Given a weighting function g and n ∈ N, we define the n-entropy Hn
g :

PL −→ [0,∞] by:

Hn
g (P ) := −

∑
π∈Πn

g(π)
∑
F∈π

◦P (F ) log ◦P (F ). (5)

Recall that, for a probability function P (or indeed any belief function that respects logical
equivalence) defined on sentences, ◦P is the function induced by P over the domain of propositions.
Note that by our convention, −0 log 0 = 0 = −1 log 1. Thus, for all n ∈ N,

g({Ωn})P (Ωn) logP (Ωn) = 0 = g({Ωn, ∅})(P (∅) logP (∅) + P (Ωn) logP (Ωn)).

In calculating n-entropy we may thus ignore all partitions which contain Ωn.

Definition 10 (Standard entropy). For the standard weighting gΩ we denote the corresponding
n-entropy by Hn

Ω. We refer to Hn
Ω as standard entropy (on Ln). Hn

Ω(P ) is the well-known Shannon
Entropy of the n-states of P :

Hn
Ω(P ) = −

∑
ω∈Ωn

P (ω) logP (ω).

For a fixed weighting function g, we say that P ∈ PL has greater entropy than Q ∈ PL, written
P � Q, if the n-entropy of P eventually dominates that of Q, i.e., if there is some N ∈ N such that for
all n ≥ N , Hn

g (P ) > Hn
g (Q).

This relation � for comparing entropy is preferable to an alternative notion posed in terms of the
limiting behaviour of the n-entropy of P and Q, which says that P has greater entropy than Q just when
limn−→∞H

n
g (P ) > limn−→∞H

n
g (Q). This is because the limiting behaviour is not fine-grained enough

to distinguish greater from lesser entropy: n-entropy will often tend to infinity for both P and Q, and,
even where the limiting n-entropy of P and Q are both finite, these limits may be equal even though the
entropy of P is intuitively greater than that of Q, insofar as the n-entropy of P eventually dominates that
of Q. See Williamson [1] (§5.5) for further discussion of these comparative notions of entropy.
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We will be particularly interested in the probability functions in [EL] with maximal entropy:

maxentEL := {P ∈ [EL] : there is no Q ∈ [EL] such that Q� P}.

We shall also consider entropy maximisers on finite sublanguages. We shall use the notation:

P†n := arg sup
P∈En

Hn
g (P ).

(The members of this set are defined only on the sentences of Ln, not on the sentences of the language
L as a whole.) Note that for convex EL, En is convex for all n ∈ N and that Hn

g is a strictly concave
function on En for inclusive g. If g is inclusive, then Hn

g is strictly concave on Pn. Hence P†n contains a
unique element, which we will denote by P †n.

Let us consider the set of limit points of the entropy maximisers on finite sublanguages:

Definition 11 (Entropy limit). A probability function is a limit point of the entropy maximisers on finite
sublanguages if it is arbitrarily close to infinitely many such maximisers. We denote the set of such limit
points by:

P† := {P ∈ PL : ∀ε > 0,∃ infinite I ⊆ N,∀n ∈ I,∀ϕ ∈ SLn, |P (ϕ)− P †n(ϕ)| < ε}.

Whenever P† consists only of a single function we shall denote that function by P † and refer to P † as the
entropy limit.

One important desideratum for a procedure for choosing a rational belief function, particularly in the
context of inductive logic, is language invariance. We shall consider two notions of language invariance:
the following notion defined in terms of finite sublanguages, and a second form of language invariance,
introduced in Definition 23, which we term infinite-language invariance.

Definition 12 (Finite-language invariant weighting function). A weighting function g : Π −→ R≥0 is
finite-language invariant, if and only if the following holds: for all EL finitely generated by constraints
on LK , if Ln and Lm are such that LK ⊆ Ln ⊆ Lm, then for all Q ∈ arg supP∈EL H

n
g (P ) there exists

some R ∈ arg supP∈EL H
m
g (P ) such that Q�n = R�n.

4.2.1. The Standard Entropy Limit

Standard entropy, i.e., entropy with respect to the standard weighting gΩ, is the subject of a substantial
literature. We here collect the features of standard entropy most relevant for our purposes.

Firstly, gΩ is finite-language invariant; see, e.g., [7]. If EL is finitely generated and g = gΩ, then P†n
contains a unique element. Furthermore, there exists a unique function P ∈ [EL] such that for all n ≥ K

P�n ∈ P†n holds. This function P is the entropy limit with respect to the standard weighting gΩ; it will
be called the standard entropy limit and denoted by P †Ω. Henceforth we use P †Ω to denote the standard
entropy limit on L, rather than on Ω as in Section 2.

Definition 13 (Open-minded belief function). We say that a belief function B ∈ BL is open-minded on
L′ ⊆ L, if and only if for all ϕ ∈ SL′ for which there exists some P ∈ [EL] such that P (ϕ) > 0 it holds
that B(ϕ) > 0. For L′ = L we say that the belief function B ∈ BL is open-minded.
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The following proposition lists further important properties of P †Ω which we shall make frequent use
of in the following two properties—see [7] (p. 95) for a proof of the first property.

Proposition 5. P †Ω satisfies the following properties:

• P †Ω is open-minded.

• For a finitely generated EL, for all n ≥ K and all ν ∈ Ωn, ω ∈ ΩK with ν � ω it holds that
P †Ω(ν) = P †Ω(ω) |ΩK ||Ωn| .

The second property will follow from Proposition 9 and from the fact that gΩ is language invariant.
Let ν be a consistent conjunction of pairwise different literals such that ν � ω for some n-state ω

with n ≥ K. Denoting by |ν|, |ω| the number of literals in ν, respectively, ω, it follows from the second
property in Proposition 5 that P †Ω(ν) = P †Ω(ω)2|ω|

2|ν|
.

4.2.2. General Entropies

The question remains as to how the functions on L with maximal entropy, i.e., the members of
maxentEL, relate to the entropy maximisers P †n ∈ P†n on the finite sublanguages Ln. We shall explore
this question here.

Proposition 6. P† ⊆ [EL].

Proof. Let P † ∈ P†. Thus, for all sentences ϕ ∈ SL, P †(ϕ) is the limit of a sequence (P †n)n∈I such that
P †n ∈ [En] and I ⊆ N is infinite. Since [EL] and all the [En] are closed, P † ∈ [EL].

Of particular interest is the most equivocal probability function of PL, which is called the equivocator
and denoted by P=. P= is uniquely defined by the requirement that for all n ∈ N it assigns all n-states
ω ∈ Ωn the same probability, P=(ω) = 1

|Ωn| . The restriction of P= to Pn is denoted by P=�n.
In certain cases P† will only contain a single limit point P †.

Definition 14. [4] (Definition 16, p. 3573.) A weighting function gn on Ln is called
equivocator-preserving, if and only if

P†n = {Q�n : Q ∈ arg sup
P∈PL

Hn
g (P )} = {P=�n}.

g is called equivocator-preserving, if and only if gn is equivocator-preserving for all n ∈ N.

Proposition 7. If P= ∈ [EL] and if g is symmetric and inclusive, then P† = {P=}.

Proof. By Landes and Williamson [4] (Corollary 6, p. 3574) we have

arg sup
P∈EL

Hn
g (P ) = {P ∈ PL : P�n = P=�n}.

It follows that

lim
n−→∞

arg sup
P∈EL

Hn
g (P ) = {P=}

and hence P† = {P=}.
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So, if g is symmetric and inclusive, then g is equivocator-preserving. In Appendix B we shall show
that there exist non-symmetric g which are equivocator-preserving.

Definition 15 (State-inclusive weighting function). Given L, we call a weighting function g : Π −→
[0, 1] state-inclusive on Ln, if and only if for each state ω ∈ Ωn there exists a π ∈ Πn such that {ω} ∈ π
and g(π) > 0. A weighting function g : Π −→ [0, 1] is state-inclusive, if and only if it is state-inclusive
on each Ln. It is eventually state-inclusive, if and only if there exists a J ∈ N such that for all n ≥ J , g
is state-inclusive on Ln.

For example, if g(πn) > 0 for all n ∈ N, then g is state-inclusive. Moreover, inclusive implies
state-inclusive.

Lemma 1. If g is state-inclusive on Ln, then Hn
g is strictly concave on Pn.

Proof. Let P,Q ∈ Pn be different and λ ∈ (0, 1). Since for all π ∈ Πn we have
∑

F∈π
◦P (F ) = 1 =∑

F∈π
◦Q(F ) we find using the strict concavity of −x · log x on [0, 1]

Hn
g (λP + (1− λ)Q) =

∑
π∈Πn

−g(π)
∑
F∈π

(
λ◦P (F ) + (1− λ)◦Q(F )

)
· log(λ◦P (F ) + (1− λ)◦Q(F ))

≥
∑
π∈Πn

−g(π)
∑
F∈π

(
λ◦P (F ) log(λ◦P (F ))

)
+
(

(1− λ)◦Q(F ) log((1− λ)◦Q(F ))
)

=Hn
g (λP ) +Hn

g ((1− λ)Q).

The inequality is strict, if and only if there exists some π ∈ Πn with g(π) > 0 such that there is some
F ∈ π with ◦P (F ) 6= ◦Q(F ). Since P,Q are different probability functions, there exists some ω ∈ Ωn

such that P (ω) 6= Q(ω). Since g is state-inclusive, g(π) > 0 for some π ∈ Πn with {ω} ∈ π. Hence,
the inequality is strict.

Proposition 8. If EL is finitely generated, and g is eventually state-inclusive and language invariant, then
P† consists of a single probability function P † and for all ϕ ∈ SL it holds that limn−→∞ P

†
n(ϕ) = P †(ϕ).

Proof. Recall that EL is expressible by constraints in LK and let J as in Definition 15. Let n ≥
max{J,K}.

By the above Lemma 1, Hn
g is strictly concave on Pn. Since En is convex, arg supP∈En H

n
g (P )

contains a single element. Hence, Q,R ∈ arg supP∈EL H
n
g (P ) agree on SLn.

Since g is language invariant, we have arg supP∈EL H
m
g (P ) ⊆ arg supP∈EL H

l
g(P ) for all n ≤ l ≤ m.

For all ϕ ∈ SL, there exists an s ∈ N such that ϕ ∈ SLs. Hence, for l,m ≥ max{J,K, s} it holds
that for R ∈ arg supP∈EL H

m
g (P ) and Q ∈ arg supP∈EL H

l
g(P ) that R(ϕ) = Q(ϕ).

For instance, standard entropy [4] (Equation 80), the substate weighting and other examples generated
by Landes and Williamson [4] (Lemma 8) are eventually state-inclusive and language invariant. Note
that these weighting functions are not inclusive.

Definition 16. We say that Hg is strictly concave, if and only if for all n ∈ N, Hn
g is strictly concave

on Pn.
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Proposition 9 (Equivocation beyond Ln). Let EL be finitely generated and let g be symmetric. If Hg is
strictly concave, then for all n ≥ K and all ν, µ ∈ Ωn such that there exists an ω ∈ ΩK with ν � ω and
µ � ω it holds that

P †n(ν) = P †n(µ) = P †n(ω) · |ΩK |
|Ωn|

for all P †n ∈ P†n.

We call such ν, µ ∈ Ωn extensions of ω ∈ ΩK and say that P †n equivocates beyond LK . In particular,
P †n equivocates beyond LK up to Ln.

Proof. Let n > K and let P ∈ [EL] be such that there exist ν, µ ∈ Ωn with P (ν) 6= P (µ) such that there
exists an ω ∈ ΩK with ν � ω and µ � ω. Assume for contradiction that P ∈ arg supR∈EL H

n
g (R).

Now define a probability function Q ∈ PL by first specifying Q on the n-states. Let

Q(ν) := P (µ)

Q(µ) := P (ν)

Q(η) := P (η) for all η ∈ Ωn \ {ν, µ}.

For a λ ∈ Ωr with r ≥ n we let Q(λ) := Q(ξ) |Ωn||Ωr| where ξ ∈ Ωr is the unique r-state such that λ � ξ.
By construction, Q and P agree on SLK . Since EL is finitely generated, it follows that Q ∈ [EL].

Furthermore, Q�n can be obtained from P�n by a renaming of n-states and it holds that Q�n 6= P�n. Since
gn is symmetric it holds that Hn

g (P ) = Hn
g (Q). Since [En] is convex and Hn

g is strictly concave, neither
P�n nor Q�n can maximise Hn

g over [En].
This contradicts P maximising Hn

g over [En].

Corollary 1. Let EL be finitely generated. If Hn
g is strictly concave on Pn for n ≥ K and if g is

symmetric, then for n ≥ K the following maximisation problem

maximise: Hn
g (P )

subject to: P ∈ [EL]

can be understood as an optimisation problem in the variables P (ω) with ω ∈ ΩK . In particular, the
number of variables does not grow as n tends to infinity.

Proof. Follows immediately from the above proposition by noting that P †n ∈ arg supP∈EL H
n
g (P )

equivocates beyond LK up to Ln.

This corollary shows that in order to compute P †n for n ≥ K one needs to solve an optimisation
problem on ΩK . If g is not language invariant, then, in general, the objective function of the optimisation
problem changes as n changes. So, in general, (P †n)�K varies with n.

Corollary 2. Under the assumptions of Proposition 9 it holds that for F ⊆ Ωn and ν, µ ∈ Ωn, ◦P †n(F ) =
◦P †n(Fν,µ), where Fν,µ is the result we obtain by replacing ν by µ and vice versa in F .
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Proof. For an η ∈ Ωn denote by ωη ∈ ΩK the unique K-state such that η � ωη. Now simply note that
by Proposition 9

◦P †n(F ) =
∑
η∈Ωn
η∈F

P †n(η) =
∑
η∈Ωn
η∈F

P †n(ωη)
|ΩK |
|Ωn|

=
∑
η∈Ωn
η∈Fν,µ

P †n(ωη)
|ΩK |
|Ωn|

= ◦P †n(Fν,µ).

Corollary 3. Let EL be finitely generated. For all n ≥ K and all P ∈ PL equivocating beyond LK up
to Ln it holds for all K ≤ k ≤ n− 1 that

Hk+1
Ω (P ) = Hk

Ω(P )− log
|Ωk|
|Ωk+1|

.

If g is symmetric and Hg is strictly concave, then

HK
Ω (P †k )−HK

Ω (P †Ω) = Hk+1
Ω (P †k+1)−Hk+1

Ω (P †Ω).

Proof. For ν ∈ Ωk+1 let ων ∈ Ωk be the unique k state such that ν � ων . For K ≤ k ≤ n − 1 we now
find for a P ∈ PL equivocating beyond LK up to Ln

Hk+1
Ω (P ) = −

∑
ν∈Ωk+1

P (ν) logP (ν)

= −
∑

ν∈Ωk+1

P (ν) log
(
P (ων) ·

|Ωk|
|Ωk+1|

)
= − log

|Ωk|
|Ωk+1|

−
∑

ν∈Ωk+1

P (ν) logP (ων)

= − log
|Ωk|
|Ωk+1|

−
∑
ω∈Ωk

∑
ν∈Ωk+1
ν�ω

P (ν) logP (ων)

= − log
|Ωk|
|Ωk+1|

−
∑
ω∈Ωk

logP (ω) ·
( ∑
ν∈Ωk+1
ν�ω

P (ν)
)

= − log
|Ωk|
|Ωk+1|

−
∑
ω∈Ωk

P (ω) logP (ω)

= − log
|Ωk|
|Ωk+1|

+Hk
Ω(P ).

The second part of the proof follows directly by observing that P †Ω and P †n equivocate beyond LK up to
Ln by Proposition 9.

Corollary 4. Let EL be finitely generated. For all n ≥ K and all P ∈ PL not equivocating beyond LK
up to Ln it holds that Hn

Ω(P ) < HK
Ω (P )− log |ΩK ||Ωn| .
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Proof. There has to exist at least one ξ ∈ ΩK such that there exist ν, λ ∈ Ωn with ν � ξ and λ � ξ such
that P (ν) 6= P (λ). Since P is a probability function it holds that P (ξ) =

∑
ν∈Ωn
ν�ξ

P (ν). We thus find

using the log-sum inequality (see, e.g., Theorem 2.7.1 in [10])

−P (ξ) log(
|ΩK |
|Ωn|

)− P (ξ) logP (ξ) = −P (ξ) log
( |ΩK |
|Ωn|

P (ξ)
)

= −
∑
ν∈Ωn
ν�ξ

( |ΩK |
|Ωn|

P (ξ)
)

log
( |ΩK |
|Ωn|

P (ξ)
)

> −
∑
ν∈Ωn
ν�ξ

P (ν) logP (ν).

If ξ ∈ ΩK is such that for all ν, λ ∈ Ωn with ν � ξ and λ � ξ it holds that P (ν) = P (λ), then the above
calculation holds with the exception that the inequality is in fact an equality.

We hence find by summing over all ω ∈ ΩK

HK
Ω (P )− log(

|ΩK |
|Ωn|

) =
∑
ω∈ΩK

−P (ω)
(

log(
|ΩK |
|Ωn|

) + logP (ω)
)

> −
∑
ω∈ΩK

∑
ν∈Ωn
ν�ω

−P (ν) logP (ν)

=
∑
ν∈Ωn

−P (ν) logP (ν)

= Hn
Ω(P ).

Corollary 5. Let EL be finitely generated. If g is symmetric and if for all n ≥ K Hn
g is strictly concave

on Pn, then

P† 6= ∅.

Proof. By Corollary 1, P †n ∈ [En] is uniquely determined by P †n(ω) for ω ∈ ΩK . That is, we can
understand (P †n)n∈N as sequence taking values in [0, 1]|ΩK | ⊂ R|ΩK | and [0, 1]|ΩK | is compact. Hence, the
sequence ((P †n)�K)n∈N has point of accumulation, Q, with Q ∈ [EK ]. Let I ⊆ N be infinite such that
limi∈I,i−→∞ P

†
ni

(ω) = Q(ω) for all ω ∈ ΩK .
Recall that for n > K that P †n equivocates under LK up to Ln. We now extend Q to a probability

function in [EL] by defining it on the n-states ν ∈ Ωn for n > K as follows: Q(ν) := |ΩK |
|Ωn| · Q(ων) =

|ΩK |
|Ωn| · limi∈I,i−→∞ P

†
ni

(ων). Hence, Q equivocates beyond LK .
Consider some ϕ ∈ SL. It follows that there is some r ≥ K such that ϕ ∈ SLr. For ν ∈ Ωr denote

by ων the unique element of ΩK such that ν � ων .
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We thus find

lim
i−→∞
i∈I

P †ni(ϕ) = lim
i−→∞
i∈I

∑
ν∈Ωr
ν�ϕ

P †ni(ν)

=
∑
ν∈Ωr
ν�ϕ

lim
i−→∞
i∈I

P †ni(ν)

=
∑
ν∈Ωr
ν�ϕ

|ΩK |
|Ωn|

· lim
i−→∞
i∈I

P †ni(ων)

=
∑
ν∈Ωr
ν�ϕ

|ΩK |
|Ωn|

·Q(ων)

=
∑
ν∈Ωr
ν�ϕ

Q(ν)

= Q(ϕ).

We now turn our attention to the calibrated functions with maximal entropy, maxentEL. Our aim is
to show that maxentEL = P† = {P †Ω} holds for regular g.

Lemma 2. If g is regular, then

lim
n−→∞

log(|Ωn|) ·
∑

π∈Πn\{πn}

g(π) = 0.

Proof. Since g is total it is in particular g defined for the language LU which only contains a single
relation symbol which is unary. When needed, we shall add a superscript U express that we consider LU .
Now define a sequence (an)n∈N by

an :=
∑

π∈ΠUn \{πn}

g(π).

By the Cauchy condensation test [11] (p. 61, Theorem 3.27) for (not necessarily strictly) decreasing
sequences we have that

∞∑
n=1

an <∞ ⇐⇒
∞∑
k=0

2ka2k <∞. (6)

Since the series on the left converges by the assumption on finite weights, so does the right, and that
implies that limk−→∞ 2ka2k = 0.

For n ∈ N let k ∈ N be such that 2k ≤ n < 2k+1. Since an is (not necessarily strictly) decreasing
an ≤ a2k . Hence,

0 ≤ nan ≤ 2k+1an ≤ 2k+1a2k = 2(2ka2k).
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The right hand side converges to 0 by Cauchy’s condensation test (6). Thus,

0 = lim
n−→∞

n · an

= lim
n−→∞

n · log2(2) · an

= lim
n−→∞

log2(2n) · an

= lim
n−→∞

log2(|ΩU
n |) · an

= lim
n−→∞

log(|ΩU
n |) · an

= lim
n−→∞

log(|ΩU
n |) ·

∑
π∈ΠUn \{πn}

g(π).

Now if L is some other language in our sense different from LU , then for all n ∈ N there exists an
mn > n such that |Ωn| = |ΩU

n |. This in turn implies the existence of a canonical bijections fn identifying
Πn with ΠU

mn which respect the structure of partitions.
Because g is atomic it follows that for all π ∈ Πn that g(π) = g(fn(π)) holds. Thus,

an =
∑

π∈Πn\{πn}

g(π) =
∑

π∈ΠUmn\{πmn}

g(π).

We then observe that the sequence (log(|Ωn|) ·
∑

π∈Πn\{πn} g(π))n∈N is a subsequence of (log(|ΩU
n |) ·∑

π∈ΠUn \{πn}
g(π))n∈N. Hence,

0 = lim
n−→∞

log(|ΩU
mn|) ·

∑
π∈ΠUmn\{πmn}

g(π)

= lim
n−→∞

log(|Ωn|) ·
∑

π∈Πn\{πn}

g(π).

Lemma 3. If g is strongly refined and state-inclusive, then there exist 0 < a ≤ b < +∞ such that for all
n ∈ N, g(πn) ∈ [a, b].

Proof. For every ω ∈ Ω1 there exists some π ∈ Π1 which contains {ω} with g(π) > 0. π1 refines all
these partitions (or π1 is that partition). Hence, g(π1) > 0.

Since state partitions on richer languages are assigned more weight it follows that g(πn) ≥ g(π1) > 0

for all n ∈ N.
Trivially, g(πn) ≤

∑
π∈Πn

g(π). The latter is constant for all n. Hence, the sequence g(πn) is bounded
from above by

∑
π∈Πn

g(π).
We can thus choose a, b as follows a := g(π1) and b :=

∑
π∈Π1

g(π).

Following [4] (p. 3556) we define:

Definition 17 (Spectrum of π). The spectrum of a partition π is defined as the multi-set of sizes of the
members of π. We write σ(π) to denote the spectrum of π.
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In other words, if π′ can be obtained from π by permuting the states in the members of π, then
σ(π) = σ(π′). If g is symmetric, then g(π) only depends on the spectrum of π.

Lemma 4. If g is symmetric, then for all n and all spectra s

P= ∈ arg sup
P∈PL

∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

◦P (F ) log ◦P (F ).

Proof. First note that
∑

π∈Πn
σ(π)=s

−g(π)
∑

F∈π
◦P (F ) log ◦P (F ) is a concave function, since −x log x is a

concave function for x ∈ [0, 1].
If P, P ′ ∈ PL are such that one can be obtained from the other by a permutation of n-states, then for

all spectra s ∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

◦P (F ) log ◦P (F ) =
∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

◦P ′(F )◦logP ′(F ).

Hence, for all fixed spectra s P=�n lies inside the contour lines of the function∑
π∈Πn
σ(π)=s

−g(π)
∑

F∈π
◦P (F ) log ◦P (F ) in Pn. It follows that

P= ∈ arg sup
P∈PL

∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

◦P (F ) log ◦P (F ).

Corollary 6. If g is symmetric and such that

lim
n−→∞

log |Ωn|
∑
π∈Πn
π 6=πn

g(π) = 0,

then for all P ∈ PL

lim
n−→∞

∑
π∈Πn
π 6=πn

−g(π)
∑
F∈π

◦P (F ) log ◦P (F ) = 0.

Proof. For a fixed spectrum s we have

sup
P∈EL

∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

◦P (F ) log ◦P (F ) =
∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

◦P=(F ) log ◦P=(F )

=
∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

|F |
|Ωn|

· log
|F |
|Ωn|

=
∑
π∈Πn
σ(π)=s

−g(π)

|Ωn|
∑
F∈π

|F | · (log |F | − log |Ωn|).
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Thus,

| sup
P∈EL

∑
π∈Πn
σ(π)=s

−g(π)
∑
F∈π

◦P (F ) log ◦P (F )| ≤
∑
π∈Πn
σ(π)=s

g(π)

|Ωn|
∑
F∈π

|F | · log |Ωn|

=
∑
π∈Πn
σ(π)=s

g(π) · log |Ωn|.

Summing over all spectra now yields for all P ∈ PL∑
π∈Πn
π 6=πn

−g(π)
∑
F∈π

◦P (F ) log ◦P (F ) ≤ log |Ωn|
∑
π∈Πn
π 6=πn

g(π).

The claimed result follows.

In particular, if g is regular then the above Corollary applies, by Lemma 2.
Let us consider the application of objective Bayesianism to inductive logic (Section 3.3). It turns

out that if g is regular and EL is finitely generated then the functions in [EL] with maximal entropy
coincide with the entropy limits (Definition 11), and moreover there is a unique such function, the
standard entropy limit:

Theorem 3. Let g be symmetric, atomic, state-inclusive and strongly refined, and EL be finitely
generated. Then

maxentEL = P† = {P †Ω}. (7)

Note that if g is also inclusive, then g is regular.

Proof. By Lemma 3 there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b] for all n ∈ N and by
Corollary 6 the combined weight given to all other partitions on Πn tends to zero, as n increases, fast
enough that, for all P ∈ PL,

lim
n−→∞

∑
π∈Πn
π 6=πn

−g(π)
∑
F∈π

◦P (F ) log ◦P (F ) = 0.

For Q ∈ [EL] \ {P †Ω} there exists a minimal n ∈ N with n ≥ K such that (P †Ω)�n 6= Q�n. Since
Hn

Ω is strictly convex on En and P †Ω maximises Hn
Ω over [En] it holds that Hn

Ω(P †Ω) > Hn
Ω(Q). Using

Corollary 3 and Corollary 4 we obtain Hr
Ω(P †Ω)−Hr

Ω(Q) ≥ HK
Ω (P †Ω)−HK

Ω (Q) for r ≥ n. Thus,

Hr
g (P †Ω)−Hr

g (Q) =− g(πr)Hr
Ω(P †Ω) +

∑
π∈Πr
π 6=πr

−g(π)
∑
F∈π

◦P †Ω(F ) log ◦P †Ω(F )

+ g(πr)Hr
Ω(Q) +

∑
π∈Πr
π 6=πr

g(π)
∑
F∈π

◦Q(F ) log ◦Q(F )

≥− g(πr)
(
Hn

Ω(P †Ω)−Hn
Ω(Q)

)
+
∑
π∈Πr
π 6=πr

−g(π)
∑
F∈π

◦P †Ω(F ) log ◦P †Ω(F ) +
∑
π∈Πr
π 6=πr

g(π)
∑
F∈π

◦Q(F ) log ◦Q(F ).



Entropy 2015, 17 2482

For large enough r the sums over the π 6= πr become negligible. Since g(πr) is bounded there has to
exist some R ∈ N with R ≥ max{K,n} such that for all r ≥ R it holds that

g(πr)
(
Hn

Ω(P †Ω)−Hn
Ω(Q)

)
>
∑
π∈Πr
π 6=πr

−g(π)
∑
F∈π

◦P †Ω(F ) log ◦P †Ω(F ) + ◦Q(F ) log ◦Q(F ).

Hence, for all large enough r it holds that Hr
g (P †Ω)−Hr

g (Q) > 0.
Thus, maxentEL = {P †Ω}.
For the second part of the proof we show that for all r ∈ N and all F ⊆ Ωr it holds that

lim
n−→∞

◦P †n(F )− ◦P †Ω(F ) = 0. (8)

Observe that for all n ∈ N

|Hn
Ω(P †n)−Hn

Ω(P †Ω)| = |Hn
Ω(P †n)− 1

g(πn)
Hn
g (P †n) +

1

g(πn)
Hn
g (P †n)−Hn

Ω(P †Ω)|

≤
∑
π∈Πn
π 6=πn

− g(π)

g(πn)

∑
F∈π

◦P †n(F ) log ◦P †n(F ) + | 1

g(πn)
Hn
g (P †n)−Hn

Ω(P †Ω)|.

The first sum tends to zero as n goes to infinity by our assumptions on g.
For the second sum observe that for all ε > 0 there exists an N ∈ N such that for all n ≥ max{N,K}

and all P ∈ [EL] it holds that | 1
g(πn)

Hn
g (P ) − Hn

Ω(P )| < ε. Hence, ε > | supP∈EL
1

g(πn)
Hn
g (P ) −

supP∈EL H
n
Ω(P )| = | 1

g(πn)
Hn
g (P †n)−Hn

Ω(P †Ω)|. So,

lim
n−→∞

Hn
Ω(P †n)−Hn

Ω(P †Ω) = 0.

For all n ≥ K, P †n and P †Ω equivocate under LK up to Ln (Proposition 9). Hence, it holds that Hn
Ω(P †n)−

Hn
Ω(P †Ω) = HK

Ω (P †n)−HK
Ω (P †Ω) (Corollary 3). So,

lim
n−→∞

HK
Ω (P †n)−HK

Ω (P †Ω) = lim
n−→∞

Hn
Ω(P †n)−Hn

Ω(P †Ω) = 0.

HK
Ω is a strictly concave and continuous function on PK . Hence, limn−→∞ P

†
n(ω) = P †Ω(ω) for all

ω ∈ ΩK . So, limn−→∞(P †n)�K = (P †Ω)�K .
For an arbitrary n ≥ K and an F ⊆ Ωn we find using that P †Ω equivocates beyond LK

lim
k−→∞

◦P †k (F ) = lim
k−→∞

∑
ν∈Ωn
ν∈F

P †k (ν) = lim
k−→∞

∑
ν∈Ωn
ν∈F

|ΩK |
|Ωn|

· P †k (ων)

=
∑
ν∈Ωn
ν∈F

|ΩK |
|Ωn|

· lim
k−→∞

P †k (ων)

=
∑
ν∈Ωn
ν∈F

|ΩK |
|Ωn|

· P †Ω(ων)

=
∑
ν∈Ωn
ν∈F

P †Ω(ν)

= ◦P †Ω(F ).

The result for F ⊆ Ωr with r < K follows similarly.
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4.3. Loss and Expected Loss

We shall now analyse the notion of the loss incurred by an agent with belief function B ∈ BL.
In Section Section 5 we shall be interested how degrees of beliefs in quantified sentences affect
losses. The following definition, axioms L1–4, Theorem 4 and Proposition 12 apply within our current,
quantifier-free framework, i.e., L = L 6∃ but they also apply to quantified sentences, i.e., L = L∃.

Definition 18 (Independent Sublanguages). LetB ∈ BL be a fixed belief function such thatB(τ) = 1 for
any tautology τ , and L = L1 ∪L2 where L1 and L2 are disjoint: L1 and L2 contain the same constants,
they do not have a relation symbol in common and the union of the relation symbols in L1 and L2 equals
{U1, . . . , Us}, the set of relation symbols in L. We say that L1 and L2 are independent sublanguages,
written L1⊥⊥BL2, if and only if B(φ1 ∧ φ2) = B(φ1) · B(φ2) for all φ1 ∈ SL1 and φ2 ∈ SL2. Let
B�L1(φ1) := B(φ1), B�L2(φ2) := B(φ2).

By analogy with the line of argument of Section 2, we shall suppose that a default loss function
L : SL×BL → (−∞,∞] satisfies the following requirements. Here L(ϕ,B) is to be interpreted as the
loss specific to ϕ turning out to be true, when one adopts belief function B:

L1. L(ϕ,B) = 0, if B(ϕ) = 1.

L2. L(ϕ,B) strictly increases as B(ϕ) decreases from 1 towards 0.

L3. L(ϕ,B) only depends on B(ϕ).

L4. Losses are additive when the language is composed of independent sublanguages: if L = L1 ∪ L2

for L1⊥⊥BL2, then L(φ1 ∧ φ2, B) = L1(φ1, B�L1) + L2(φ2, B�L2), where L1, L2 are loss functions
defined on L1,L2 respectively.

Theorem 4. If a loss function L on SL × BL satisfies L1–4, then L(ϕ,B) = −k logB(ϕ), where the
constant k > 0 does not depend on the language L.

Proof. The proof is exactly analogous to that of Landes and Williamson [4] (Theorem 4), which gives
the result in the case in which L is a finite propositional language.

Since multiplication by a constant is equivalent to change of base, we can take log to be the natural
logarithm. Since we will be interested in the belief functions that minimise loss, rather than in the
absolute value of any particular losses, we can take k = 1 without loss of generality. Theorem 4 thus
allows us to focus on the logarithmic loss function:

Llog(ϕ,B) := − logB(ϕ).

Next we define our notion of expected loss. The expectation is taken with respect to a probability
function P , and we consider the expectation taken over each partition of propositions. Each partition is
weighted by the given weighting function g. Attention is restricted to inclusive weighting functions, so
that each belief is evaluated; if the weighting function were not inclusive then degrees of belief in some
propositions would fail to contribute to the expectation.
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Definition 19 (n-representation). A sentence θ ∈ SLn n-represents a proposition F ⊆ Ωn, if and only
if F = {ω ∈ Ωn : ω |= θ}. Let F ⊆ PΩn be a set of pairwise distinct propositions. We say that
Θ ⊆ SLn is a set of n-representatives of F , if and only if each sentence θ ∈ Θ n-represents a unique
proposition in F and each proposition in F is n-represented by a unique sentence θ ∈ Θ.

A set ρ of n-representatives of PΩn will be called an n-representation. We shall use ρF to denote the
sentence in ρ which n-represents F . We denote by %n the set of all n-representations.

Note that if belief function B respects logical equivalence, then for all n ∈ N, all F ⊆ Ωn and
all l-representations ρ with l ≥ n it holds that B(ρF ) = ◦B(F ). Otherwise there exist an n ∈ N a
proposition F ⊆ Ωn and n-representations ρ, ρ′, such that B(ρF ) 6= B(ρ′F ).

Definition 20 (n-score). Given a loss function L, an inclusive weighting function g : Π −→ R≥0,
n ∈ N, and an n-representation ρ ∈ %n we define the representation-relative n-score SL,ng,ρ : PL×BL −→
[−∞,∞] by:

SL,ng,ρ (P,B) :=
∑
π∈Πn

g(π)
∑
F∈π

P (ρF )L(ρF,B).

Define the (representation-independent) n-score SL,ng : PL × BL −→ [−∞,∞] by

SL,ng (P,B) := sup
ρ∈%n

SL,ng,ρ (P,B).

(As a technical convenience, we shall consider loss functions and n-scores to be defined more generally,
taking arguments P,B : SL −→ [0, 1], although we will primarily be concerned with the case above
where P is a probability function and B is a belief function.)

In the light of Theorem 4, we will focus exclusively on the logarithmic loss function in this paper:

Sng,ρ(P,B) := −
∑
π∈Πn

g(π)
∑
F∈π

P (ρF ) logB(ρF ),

Sng (P,B) := sup
ρ∈%n

Sng,ρ(P,B).

For P ∈ PL we have that P (ρF ) = P (ρ′F ) for all ρ, ρ′ ∈ %n, since P respects logical equivalence.
Hence for P,Q ∈ PL we have

Sng (P,Q) = sup
ρ∈%n

Sng,ρ(P,Q)

= −
∑
π∈Πn

g(π)
∑
F∈π

◦P (F ) log ◦Q(F )

= Sg(
◦P, ◦Q),

where Sg is the propositional scoring rule introduced in Section 2, in the case Ω = Ωn. There are also
connections with g-entropy Hn

g , defined in (5), and the propositional notion of entropy Hg, defined in
Section 2:

Sng (P, P ) = Hn
g (P ) = Hg(

◦P ).
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If g = gΩ, we call the resulting function the standard logarithmic n-score:

SnΩ(P,B) = sup
ρ∈%n
−
∑
ω∈Ωn

P (ρ{ω}) logB(ρ{ω})

= −
∑
ω∈Ωn

P (ω) logB(ω),

where the latter equality applies if B respects logical equivalence.
The question arises as to how Sng , the notion of expected loss defined on a finite sublanguage Ln,

relates to loss on L, the language as a whole. One particularly natural suggestion is that B has a better
overall loss profile than B′ if the latter’s n-scores eventually dominate those of B or if the worst-case
n-score incurred by B′ is eventually greater than that of B:

1. If B has lower worst-case expected loss than B′ for all sufficiently large n, then B has a better loss
profile than B′.

2. If for all P ∈ PL, B has an expected loss which is less than or equal than that of B′, and if for
some P ∈ [EL], B has strictly lower expected loss than B′ for sufficiently large n, then B has a
better loss profile than B′.

We make this precise as follows:

Definition 21 (Better loss profile). B has a better loss profile than B′ if and only if:

1. There exists some N ∈ N such that for all n ≥ N , supP∈EL S
n
g (P,B) < supP∈EL S

n
g (P,B′), or

2. Sng (P,B) ≤ Sng (P,B′) < +∞ for all P ∈ PL and all n ∈ N, and there exist at least one function
Q ∈ [EL] and some NQ ∈ N such that Sng (Q,B) < Sng (Q,B′) for all n ≥ NQ.

We write B ≺ B′ to denote that B has better loss profile than B′. We will be interested in those belief
functions that have the best loss profile, i.e., the minimal elements of ≺, and define:

minlossBL := {B ∈ BL : there is no B′ ∈ BL such that B′ ≺ B}. (9)

Proposition 10 (Properties of ≺). The binary relation ≺ is asymmetric, partial, irreflexive and
transitive.

Proof. Note that if for all P ∈ PL and all n ∈ N it holds that Sng (P,B) ≤ Sng (P,B′), then
supP∈EL S

n
g (P,B) ≤ supP∈EL S

n
g (P,B′) follows trivially. Hence, conditions 1 and 2 of Definition 21

are consistent, in the sense that the induced relation ≺ is asymmetric.
There exist different B,B′ ∈ BL which are not open-minded on L1 and thus have infinite loss on Ln

for all n ≥ 1 (cf., Proposition 13). For example, if B(τ ′) = B′(τ ′) = 0 where τ ′ is a tautology in SL1,
then B and B′ have infinite expected loss for all n ∈ N and all P ∈ PL. Thus, ≺ is only partial.

That ≺ is irreflexive follows directly from the definition.
Now consider B1, B2, B3 ∈ BL such that B1 ≺ B2 ≺ B3. We will consider cases to prove that

B1 ≺ B3.
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If there exist N1,2, N2,3 such that

sup
P∈EL

Sng (P,B1) < sup
P∈EL

Sng (P,B2) for all n ≥ N1,2

sup
P∈EL

Sng (P,B2) < sup
P∈EL

Sng (P,B3) for all n ≥ N2,3,

then

sup
P∈EL

Sng (P,B1) < sup
P∈EL

Sng (P,B3) for all n ≥ max{N1,2, N2,3}.

Thus, B1 ≺ B3.
Now assume that there exists a number N1,2 such that supP∈EL S

n
g (P,B1) < supP∈EL S

n
g (P,B2) for

all n ≥ N1,2 and assume that the pair (B2, B3) satisfies the second condition of Definition 21. Then,
supP∈EL S

n
g (P,B1) < supP∈EL S

n
g (P,B3) for all n ≥ N1,2. Thus, B1 ≺ B3.

The same argument shows that if the pair (B1, B2) satisfies the second condition of Definition 21 and
the pair (B2, B3) satisfies the first condition, then B1 ≺ B3.

Finally, suppose that the pairs (B1, B2) and (B2, B3) both satisfy the second condition of
Definition 21. Then for all P ∈ PL and all n ∈ N it holds that Sng (P,B1) ≤ Sng (P,B3). Furthermore,
there has to exist a Q ∈ [EL] and an NQ ∈ N such that for all n ≥ NQ it holds that Sng (Q,B1) <

Sng (Q,B2). But then Sng (Q,B1) < Sng (Q,B3) for all n ≥ NQ. Thus, B1 ≺ B3.

Since ≺ is irreflexive and transitive it cannot contain a cycle.
One main theme of the rest of this paper will be the search for belief functions with the best loss

profile. Since the loss function L we are interested in is − logB(ϕ), and these values monotonically
decrease as B(ϕ) increases from 0 to 1, it follows that, ceteris paribus, the belief functions with better
loss profiles assign greater degrees of belief to sentences.

It might appear then that the normalisation (see Definition 1) would directly imply that noB ∈ BL\PL
could have the best loss profile. Intuitively, this might be thought to hold since the belief functions B ∈
BL \ PL assign smaller degrees of belief than the probability functions P ∈ PL. However, Equation (4)
shows that some B ∈ BL \ PL assign greater degrees of belief than a probability function P ∈ PL to
certain sentences in the following sense: there exists a set of sentences Φ ⊂ SL such that for all P ∈ PL
it holds that

∑
ϕ∈ΦB(ϕ) >

∑
ϕ∈Φ P (ϕ).

While Condition 1 of Definition 21 deals with worst-case expected loss, Condition 2 deals with
dominance of expected loss. Now, dominance is often used on its own to justify the Probability norm;
see, e.g., de Finetti [12] (Chapter 3) and more recently by Joyce [13,14]. So, one might think that
Condition 2 is strong enough on its own to imply the probability norm. However this is not the case:

Proposition 11. For EL = PL there exist a weighting function g and a non-probabilistic belief function
B ∈ BL \PL such that no probability function P ∈ PL has a loss which dominates that of B in the sense
of Condition 2.

Proof. It suffices to show that there exist a weighting g and a B ∈ BL \ PL such that for all Q ∈ PL
there exist a P ∈ PL and infinitely many n ∈ N such that Sng (P,B) < Sng (P,Q).
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Consider a B ∈ BL \ PL from Proposition 4 and consider an arbitrary Q ∈ PL. Then there has to
exist an ν ∈ O4 such that Q(ν) 6= B(ν). Next note that Q(¬ν) 6= B(¬ν) follows. Then, − 1

100
log 1

100
−

99
100

log 99
100

< − 1
100

logQ(ν)− 99
100

logQ(ν) since the logarithmic scoring rule is strictly proper.
So, for P ∈ PL with P (ν) = 1

100
and g({ν,¬ν}) > 0 it holds that

g({ν,¬ν})
(
−P (ν) log(B(ν))− P (¬ν) log(B(¬ν))

)
< g({ν,¬ν})

(
−P (ν) log(Q(ν))− P (¬ν) log(Q(¬ν))

)
.

Next let ν1 := ¬Ut1t ∧ ¬Ut2t, ν2 := Ut1t ∧ ¬Ut2t, ν3 := ¬Ut1t ∧ Ut2t, and ν4 := Ut1t ∧ Ut2t. For
n ≥ 4 let F i

n ⊂ Ωn be the unique proposition which is equivalent to νi, F i
n = {ω ∈ Ωn : ω |= νi}.

Now define gn for n ≥ 4 as follows:

gn({F i
n, F̄

i
n}) := 1, if n ≡ i mod 4

gn(π) := 0, else.

So, for this B and this g we have found that for all Q ∈ PL there exist a P ∈ PL and infinitely many
n ∈ N (every fourth n) such that

Sng (P,B) = − 1

100
log

1

100
− 99

100
log

99

100

< − 1

100
logQ(ν)− 99

100
logQ(ν)

= Sng (P,Q).

In general, determining the functions comprising minlossBL is a challenging problem, which we
shall tackle in due course. However, there is one general property we can prove directly: assigning zero
degree of belief to an epistemically possible sentence is irrational, in the sense that it exposes one to
avoidable losses. To see this, first note that:

Proposition 12. For any EL, there exists a probability function P ∈ EL which is open-minded.

Proof. The set of consistent sentences in L is countable. The set

Φ := {ϕ ∈ SL : there exists a P ∈ EL with P (ψ) > 0}

is a subset of the set of consistent sentences and is thus countable, too. We can hence enumerate Φ by
some countable index set, I , say. Note that |I| ≥ 2 since P (τ) = 1 for all P ∈ PL and all tautologies τ .

For all ϕ ∈ Φ choose some Pϕ ∈ EL such that Pϕ(ϕ) > 0. Next, for all i ∈ I pick an αi ∈ (0, 1) ⊂ R
such that

∑
i∈I αi = 1. Since |I| ≥ 2 such αi exist.

We shall now define an open-minded function P ∈ EL by putting

P =
∑
i∈I

αiPϕi .

Note that P is in EL since it is a convex combination of probability functions in the convex set EL.
We next show that P is indeed open-minded. Let ϕ ∈ Φ be at the j-th position in the enumeration I

of Φ. We now obtain P (ϕ) ≥ αjPϕ(ϕ) > 0. So, P (ϕ) > 0 for all ϕ ∈ Φ.
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Proposition 13. B ∈ minlossBL implies that B is open-minded.

Proof. If B is not open-minded, then there exists a k ∈ N and a ϕ ∈ SLk such that B(ϕ) = 0 and
there exists a P ∈ [EL] such that P (ϕ) > 0. Since ϕ ∈ SLr for all r ≥ k, it holds for all r ≥ k that
supP∈EL S

r
g(P,B) = +∞.

By Proposition 12 there exists an open-mindedQ ∈ [EL]. Thus, supP∈EL S
r
g(P,Q) <∞ for all r.

Note that the above proposition does not imply that minlossBL is non-empty.

4.4. Minimax Theorems

In this section we shall relate the belief functions that have best loss profile to the probability functions
that have maximal g-entropy.

It turns out that an improvement in loss profile is not necessarily accompanied by an increase in
entropy (Appendix A). Nevertheless, we shall see that given appropriate conditions on g, there is a close
relationship between the belief function that has the best loss profile and the probability function which
has maximum entropy. On a finite sublanguage, the unique belief function with minimum worst-case
expected loss is the probability function with maximum entropy (Section 4.4.1). Moreover, on the
language L as whole, if the evidence set EL is finitely generated then the unique belief function with
the best lost profile (i.e., the belief function that is minimal with respect to ≺) is the probability function
in EL with maximal entropy (Section 4.4.2). However, this is not necessarily so when EL is not finitely
generated (Section 6.1).

4.4.1. Minimax on Finite Sublanguages

Lemma 5. For all n ∈ N, all P ∈ PL and all B ∈ BL respecting logical equivalence on Ln it holds that
Sng (P,B) = Sng,ρ(P,B) for all ρ ∈ %n.

Proof. Simply note that Sng,ρ(P,B) = −
∑

π∈Πn
g(π)

∑
F∈π

◦P (F ) logB(ρF ) does not depend on ρ ∈
%n.

Lemma 6. For all inclusive g, for all n ∈ N and each belief function

B† ∈ arg inf
B∈BL

sup
P∈EL

sup
ρ∈%n

Sng,ρ(P,B),

B† respects logical equivalence on Ln. Furthermore, for all such B† there exists a partition π ∈ Πn

such that
∑

F∈π B
†(ρF ) = 1 for all ρ ∈ %n.

Proof. Firstly, B† cannot assign all ϕ ∈ SLn degree of belief 0, since this would an incur an infinite
worst-case expected loss; and as we saw in Proposition 13, there are functions which have finite
worst-case expected loss.

Assume for contradiction that a B† ∈ BL does not respect logical equivalence on Ln. Then define a
function Binf : SL −→ [0, 1] which respects logical equivalence on Ln by

Binf(ϕ) :=

infψ∈SLn
�ϕ↔ψ

B†(ψ), if ϕ ∈ SLn

B(ϕ) otherwise.
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The next step in this proof is to show that

sup
P∈EL

Sng (P,Binf) = sup
P∈EL

Sng (P,B†).

In the second part of the proof we shall see that there is a belief function which has a strictly better worst
case expected loss than Binf . This then contradicts the assumption that the belief function B† has best
worst case expected loss, i.e., B† ∈ arg infB∈BL supP∈EL supρ∈%n S

n
g,ρ(P,B).

Since B† does not respect logical equivalence on Ln, there are logical equivalent ϕ, ψ ∈ SLn
such that B†(ϕ) 6= B†(ψ). Thus, Binf(ϕ) < max{B†(ϕ), B†(ψ)} and hence Binf(ϕ) + Binf(¬ϕ) <

max{B†(ϕ), B†(ψ)}+B†(¬ϕ) ≤ 1. The last inequality holds since B† ∈ BL. So, Binf
�n /∈ Pn.

Recall that we extended the definition of scoring rules allowing the belief function to be any function
defined on SL taking values in [0, 1]. We shall be careful not to appeal to results that assume a normalised
belief function in this situation.

We now find for P ∈ PL

Sng (P,B†) = sup
ρ∈%n

Sng,ρn(P,B†)

= sup
ρ∈%n
−
∑
π∈Πn

g(π)
∑
F∈π

P (ρF ) logB†(ρF )

= −
∑
π∈Πn

g(π)
∑
F∈π

◦P (F ) inf
ρ∈%n

logB†(ρF )

= −
∑
π∈Πn

g(π)
∑
F∈π

P (ρF ) logBinf(ρF ) for all ρ ∈ %n

= Sng,ρ(P,B
inf) for all ρ ∈ %n

= sup
ρ∈%n

Sng,ρ(P,B
inf)

= Sng (P,Binf).

Hence supP∈EL S
n
g (P,B†) = supP∈EL S

n
g (P,Binf), as claimed above.

Let us now consider cases to derive a contradiciton.
Case i There exists a π ∈ Πn such that

∑
F∈π B

inf(ρF ) = 1.
Since Binf respects logical equivalence this fact is independent of the particular ρ ∈ %n. Recall that

we use the notation ◦Binf = ◦nBinf to denote the function that Binf induces over propositions in Ωn,
defined by ◦Binf(F ) = Binf(

∨
F ).

With this convention we then note that ◦Binf ∈ B \ P. Let E be the set of probability functions
on Ωn which are in the canonical one-to-one correspondence with the probability functions on En, i.e.,
E := {◦P : P ∈ EL}. We thus find, using Theorem 2 to obtain the strict inequality, that:
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sup
P∈EL

Sng (P,B†) = sup
P∈EL

Sng (P,Binf)

= sup
P∈E

Sg(
◦P, ◦Binf)

= sup
P∈E
−
∑
π∈Πn

g(π)
∑
F∈π

◦P (F ) log ◦Binf(F )

> sup
P∈E
−
∑
π∈Πn

g(π)
∑
F∈π

◦P (F ) log ◦P †n(F )

= sup
P∈E

Sg(
◦P, ◦P †n)

= sup
P∈EL

Sng (P, P †n).

Case ii For all π ∈ Πn and all ρ ∈ %n it holds that
∑

F∈π B
inf(ρF ) < 1.

SinceBinf respects logical equivalence onLn we may consider the induced function ◦Binf defined over
propositions of Ωn. Since Πn is finite, so is the set {

∑
F∈π

◦Binf(F )}. Thus, supπ∈Πn

∑
F∈π

◦Binf(F ) =

1− ε for some ε ∈ (0, 1].
Let us now define a function B′ : SL −→ [0, 1]. Denote by µ ∈ (0, 1] the unique number such that

for all π ∈ Πn and all ρ ∈ %n it holds that
∑

F∈π µ + Binf(ρF ) =
∑

F∈π µ + ◦Binf(F ) ≤ 1 and for at
least one π ∈ Πn and one ρ ∈ %n we have

∑
F∈π µ+Binf(ρF ) =

∑
F∈π µ+ ◦Binf(F ) = 1.

Put B′(ϕ) := µ + Binf(ϕ) > Binf(ϕ) for all ϕ ∈ SLn and B′(ϕ) := 0 otherwise. Observe that
B′ ∈ BL and thatB′(¬τ) ≥ µ > 0 for the tautologies τ of Ln. But then ◦B′ ∈ B\P. Then for all π ∈ Πn

and all P ∈ [En] we have −
∑

F∈π P (ρF ) logB′(ρF ) < −
∑

F∈π P (ρF ) logBinf(ρF ). We now apply
Theorem 2 to find the strict inequality below

sup
P∈EL

Sng (P,B†) = sup
P∈EL

Sng (P,Binf)

≥ sup
P∈EL

Sng (P,B′)

= sup
P∈E

Sg(
◦P, ◦B′)

> Sg(
◦P, ◦P †n)

= sup
P∈E

Sg(
◦P, ◦P †n)

= sup
P∈EL

Sng (P, P †n).

So, in Case i and in Case ii we have found that P †n has strictly better worst-case expected loss than B†

contradicting B† ∈ arg infB∈BL supP∈EL supρ∈%n S
n
g,ρ(P,B).

Finally, we need to show that for all such belief functions B† there exists a π ∈ Πn such that∑
F∈π

◦B†(F ) = 1. Suppose for contradiction that is not the case. Note that B† respects logical
equivalence on Ln. Hence, we can define a belief function B′ ∈ BL by adding a strictly positive number
µ as in Case ii. B′ has a worst-case expected loss that is less or equal to the worst-case expected loss
of B†. Again, we find that ◦B′ ∈ B \ P and hence B′ does not have minimal worst-case expected loss.
Clearly then, B† cannot have minimal worst-case expected loss. Contradiction.
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Theorem 5 (Finite sublanguage minimax). For all inclusive g, all n ∈ N, all C ∈
arg infB∈BL supP∈EL S

n
g (P,B) and all Q ∈ arg supP∈EL H

n
g (P ) it holds that

C�n = Q�n = P †n.

Proof. From Lemma 6 we know that for every C ∈ arg infB∈BL supP∈EL S
n
g (P,B) it holds that C�n

respects logical equivalence on Ln and that ◦C := ◦nC ∈ B (since C is normalised). Every probability
function in P ∈ PL respects logical equivalence (Proposition 3).

Thus, Sng (P,C) and Sng (P, P ) collapse to Sg(◦P, ◦C), respectively Sg(◦P, ◦P ), the logarithmic scoring
rule for propositions (1).

However, for the propositional case we know from Theorem 2 that the unique g-entropy
maximiser on P is the unique worst-case expected loss minimiser on B, P †g = ◦P †n. That is,
arg infB∈B supP∈E Sg(P,B) = arg supP∈EHg(P ) = {P †g }.

Thus, for all F ⊆ Ωn it holds that C(ρF ) = P †g (F ) for all ρ ∈ %n. Hence, C�n = Q�n = P †n.

4.4.2. Minimax for Inductive Logic

We shall now consider the language L as a whole. We shall assume in this section that EL is finitely
generated by constraints on LK . As noted in Section 3.3, this is the scenario that is of key relevance
to inductive logic. Our goal is to justify the norms of objective Bayesianism by showing that the belief
functions with the best loss profile are the probability functions in EL with maximum entropy.

First we shall see that this is the case if g is language invariant:

Proposition 14 (Language invariance minimax). If g is inclusive and language invariant and if EL is
finitely generated, then

minlossBL = maxentEL = P† = {P †}.

Proof. Note that we have P† = {P †} from Proposition 8, in particular P †n = P †�n for all n ≥ K.
Since g is inclusive, Hn

g is strictly concave on Pn (Lemma 1). Hence, P †n is uniquely determined. By
language invariance we obtain P † ∈ arg supP∈EL S

n
g (P, P ) for all n ≥ K. Thus, P † ∈ maxentEL.

For Q ∈ [EL] \ {P †} there has to exist some N ∈ N such than Q�n 6= P †�n for all n ≥ N . Since
Hn
g is a strictly concave function on Pn and since P † maximises Hn

g for all n ≥ K it follows that
Hn
g (P †) > Hn

g (Q) for all n ≥ max{K,N}. Thus, Q /∈ maxentEL.
From Theorem 5 we have that P †n ∈ arg infB∈BL supP∈EL S

n
g (P,B) for all n ≥ K. Since EL is

finitely generated and g is language invariant we have that P † ∈ arg infB∈BL supP∈EL S
n
g (P,B) for all

n ≥ K. Thus, P † ∈ minlossBL.
For every C ∈ BL\{P †} there has to exist anN ∈ N such that for all n ≥ N it holds that C�n 6= P †�n.

For all n ≥ max{K,N} we now apply Theorem 5 to obtain supP∈EL S
n
g (P,C) > supP∈EL S

n
g (P, P †).

Hence, C /∈ minlossBL.

This result is not entirely satisfactory, because we cannot say anything yet about whether such
weighting functions exist. Indeed, it was conjectured in Landes and Williamson [4] (p. 3564) that
no inclusive, symmetric and refined weighting function g is language invariant. This conjecture
remains open.
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Our next result says that, for the standard weighting gΩ, the probability function with the best loss
profile is the standard entropy maximiser:

Proposition 15 (Standard entropy minimax). If EL is finitely generated and g = gΩ, then

minlossPL = maxentEL = {P †Ω}.

Proof. {P †Ω} = maxentEL follows directly, since gΩ is language-invariant and state-inclusive,
Proposition 8.

It is well-known that

arg inf
Q∈Pn

sup
P∈En

SgΩ
(P,Q) = arg sup

P∈En
SgΩ

(P, P ) = {P †gΩ
},

see for instance [15]. Hence,

minlossPL = maxentEL = {P †Ω}.

Because it only identifies probability functions with the best loss profile, rather than normalised belief
functions with the best loss profile, Proposition 15 provides a justification for only two norms of objective
Bayesianism, the Calibration Norm and the Equivocation Norm, under the supposition that g = gΩ. This
is a useful result if there is some independent reason—such as the Dutch book argument—for taking
belief functions to be probability functions. But our goal in this paper is to investigate the extent to
which the notion of loss profile developed above can be used to justify all three norms at once.

We know that there are weighting functions that are regular, i.e., which are atomic, inclusive,
symmetric and strongly refined. The plan of the rest this section is to prove the following analogous
minimax theorem for regular weighting functions. This says that, for any regular weighting function, the
belief function with the best loss profile is the probability function in EL which has maximal standard
entropy. This theorem thus justifies all three norms at once.

Theorem 6 (Regularity minimax). If g is regular and EL is finitely generated, then

minlossBL = maxentEL = P† = {P †Ω}.

In order to prove this theorem we give a number of lemmata. We shall state these lemmata under
more minimal conditions on g. The reader not interested in the details might always replace the stated
conditions on g by: “g is regular”.

To begin with, we shall consider only belief functions B which respect logical equivalence. (Later
we shall relax this restriction.) Hence, Sng,ρ(P,B) does not depend on ρ and we can ignore the particular
representation ρ. This will allow us to focus on propositions.

Lemma 7. If n ≥ K, Q ∈ PL and if supP∈EL S
n
Ω(P,Q) is finite, then it holds that

sup
P∈EL

Sn+1
Ω (P,Q) ≥ sup

P∈EL
SnΩ(P,Q) + log

|Ωn+1|
|Ωn|

.



Entropy 2015, 17 2493

Proof. Let P ′ ∈ arg supP∈EL S
n
Ω(P,Q). Then define P ′′ on Ωn+1 by P ′′(ν) := P ′(ων)

|Ωn|
|Ωn+1| for all

ν ∈ Ωn+1 and ων ∈ Ωn with ν � ων . Now extend P ′′ arbitrarily to a function in [EL]. Note that
P ′′�n+1 ∈ [En+1] since EL is finitely generated and n ≥ K.

Since − log(x) is a strictly convex function on (0, 1] and since Q(ω) =
∑

ν∈Ωn+1
ν�ω

Q(ν) for all ω ∈ Ωn

it holds for all fixed ω ∈ Ωn that
∑

ν∈Ωn+1
ν�ω

− logQ(ν) ≥ − |Ωn+1|
|Ωn| log( |Ωn||Ωn+1|Q(ω)). We now find

sup
P∈EL

Sn+1
Ω (P,Q) ≥ Sn+1

Ω (P ′′, Q)

= −
∑

ν∈Ωn+1

P ′′(ν) logQ(ν)

= −
∑

ν∈Ωn+1

P ′(ων)
|Ωn|
|Ωn+1|

logQ(ν)

≥ −
∑
ω∈Ωn

P ′(ω) · log
|Ωn| ·Q(ω)

|Ωn+1|

= − log
|Ωn|
|Ωn+1|

−
∑
ω∈Ωn

P ′(ω) · logQ(ω)

= log
|Ωn+1|
|Ωn|

+ sup
P∈EL

SnΩ(P,Q).

Definition 22 (γ-weighting). To simplify notation we define for n ∈ N and F ⊆ Ωn

γn(F ) :=
∑
π∈Πn
F∈π

gn(π).

If g is symmetric, then γn(F ) only depends on |F | := |{ω ∈ Ωn : ω ∈ F}| and we write γn(|F |).

In particular, since the belief function B is assumed to respect logical equivalence, we can write

Sng (P,B) = sup
ρ∈%n

∑
F⊆Ωn

−γn(F )P (ρF ) logB(ρF )

=
∑
F⊆Ωn

−γn(F )◦P (F ) log ◦B(F ).

Furthermore, we can easily characterise the set of inclusive g. g is inclusive, if and only if for all n ∈ N
and all F ⊆ Ωn γn(F ) > 0.

Lemma 8. Let g be inclusive and such that there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b] for all
n ∈ N and such that

lim
n−→∞

log |Ωn|
∑

π∈Πn\{πn}

g(π) = 0.

Then

Restn := sup
P∈EL

Sng (P, P †Ω)− g(πn)SnΩ(P †Ω, P
†
Ω) −→ 0 as n −→∞.
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Proof. Let us thus first note that

Sng (P, P †Ω)− g(πn)SnΩ(P, P †Ω) =
∑

π∈Πn\{πn}

−g(π)
∑
F∈π

◦P (F ) log ◦P †Ω(F ). (10)

Recall that P †Ω is open-minded (Proposition 5). Thus, P ∈ [EL], F ⊆ Ωn and ◦P (F ) > 0 imply
◦P †Ω(F ) > 0. Let

m := min{P †Ω(ω) : ω ∈ ΩK &P †Ω(ω) > 0} ∈ (0, 1].

Then, for F ⊆ Ωn such that ◦P †Ω(F ) > 0 it holds that

◦P †Ω(F ) ≥min{P †Ω(ν) : ν ∈ Ωn &P †Ω(ν) > 0}

=m · |ΩK |
|Ωn|

≥ m

|Ωn|
,

since P †Ω equivocates beyond LK .
Hence, P ∈ [EL], F ⊆ Ωn and ◦P (F ) > 0 imply that ◦P †Ω(F ) ≥ m

|Ωn| . Since
∑

F∈π
◦P (F ) = 1 we

now find

0 ≤ sup
P∈EL

Sng (P, P †Ω)− g(πn)SnΩ(P †Ω, P
†
Ω)

≤ sup
P∈EL

g(πn)SnΩ(P, P †Ω)

+ sup
P∈EL

∑
π∈Πn\{πn}

−g(π)
∑
F∈π

◦P (F ) log ◦P †Ω(F )− sup
P∈EL

g(πn)SnΩ(P, P †Ω)

= sup
P∈EL

∑
π∈Πn\{πn}

−g(π)
∑
F∈π

◦P (F ) log ◦P †Ω(F )

≤ sup
P∈EL

∑
π∈Πn\{πn}

−g(π)
∑
F∈π

◦P (F ) log
m

|Ωn|

= sup
P∈EL

∑
π∈Πn\{πn}

−g(π) log
m

|Ωn|
∑
F∈π

◦P (F )

= log
m

|Ωn|
∑

π∈Πn\{πn}

−g(π)

=
(

log(|Ωn|)− log(m)
)
·

∑
π∈Πn\{πn}

g(π)

To complete the proof, it suffices to note that this sums is eventually positive and converges in n ∈ N to
zero by our assumption on g and the fact that m is constant.

Proposition 16. Let g be inclusive and such that there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b]

for all n ∈ N and such that

lim
n−→∞

log |Ωn|
∑

π∈Πn\{πn}

g(π) = 0.

Then for all B ∈ BL \ {P †Ω} that respect logical equivalence, P †Ω ≺ B.
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Proof. We shall proceed by considering cases.
Case 1 B ∈ PL \ {P †Ω}.
There exists an N ≥ K such that for all n ≥ N it holds that B�n 6= (P †Ω)�n. It is well-known that for

all P ∈ P

arg inf
Q∈P
−
∑
ω∈Ω

P (ω) logQ(ω) = {P}. (11)

That is, the usual logarithmic scoring rule, when applied to probability functions P ∈ P and Q ∈ P,
is strictly proper. Savage [16] showed that this scoring rule is not only strictly proper but also unique
under the further assumption of locality, which is requirement L3 in our framework. Thus, SnΩ(P †Ω, B)−
SnΩ(P †Ω, P

†
Ω) > 0.

We then find by the first part of Corollary 3 and Lemma 7 for all n ≥ N that

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω)

= sup
P∈EL

Sng (P,B)− g(πn)SnΩ(P †Ω, P
†
Ω)−Restn

≥ g(πn) sup
P∈EL

SnΩ(P,B)− g(πn)SnΩ(P †Ω, P
†
Ω)−Restn

= g(πn) sup
P∈EL

SnΩ(P,B)− g(πn)(SNΩ (P †Ω, P
†
Ω) + log

|Ωn|
|ΩN |

)−Restn

≥ g(πn)
(

sup
P∈EL

SNΩ (P,B) + log
|Ωn|
|ΩN |

)
− g(πn)(SNΩ (P †Ω, P

†
Ω) + log

|Ωn|
|ΩN |

)−Restn

≥ g(πn)
(
SNΩ (P †Ω, B)− SNΩ (P †Ω, P

†
Ω)
)
−Restn

Recall from Lemma 8 that Restn converges to zero. Furthermore, the sequence (g(πn))n∈N is
bounded in [a, b] with a > 0. Thus, for all large enough n ∈ N it holds that

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω) ≥ g(πn)
(
SNΩ (P †Ω, B)− SNΩ (P †Ω, P

†
Ω)
)
−Restn

> 0.

Case 2 B ∈ BL \ PL.
Case 2A There exists a PB ∈ PL such that for all n ∈ N and all F ⊆ Ωn it holds that ◦B(F ) ≤ ◦PB(F ),

i.e., PB dominates B.
Case 2Ai PB = P †Ω and no other P ∈ PL is such that ◦B(F ) ≤ ◦P (F ) for all n and all F ⊆ Ωn.
Then for all P ∈ PL and all propositions F it holds that

γn(F )◦P (F )(− log ◦B(F ) + log ◦P †Ω(F )) ≥ 0.

Thus, for all P ∈ PL and n ∈ N it holds that Sng (P,B) ≥ Sng (P, P †Ω).
Since B 6= P †Ω there exists some N ∈ N and a ∅ ⊂ F ⊆ ΩN such that ◦B(F ) < ◦P †Ω(F ). For

n > N let ∅ ⊂ Fn ⊆ Ωn be such that Fn = {ω ∈ Ωn : ω ∈ F}. Hence, for all n > N it holds that
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− log ◦B(Fn) + log ◦P †Ω(Fn) > 0. Thus, ◦P †Ω(Fn)γn(Fn)(− log ◦B(Fn) + log ◦P †Ω(Fn)) > 0. Since g is
inclusive (γn(F ) > 0 for all n ∈ N and all F ⊆ Ωn) it holds that Sng (P †Ω, B) > Sng (P †Ω, P

†
Ω) for all

n ≥ N .
Applying the second condition of Definition 21 yields P †Ω ≺ B.
Case 2Aii There exists a PB ∈ PL dominating B such that PB 6= P †Ω.
Then for all n ≥ K and all P ∈ EL it holds that Sng (P,B) − Sng (P, PB) ≥ 0. For all large enough

n ∈ N it holds by Case 1 that supP∈EL S
n
g (P, PB)− supP∈EL S

n
g (P, P †Ω) > 0. Thus, we find for all large

enough n

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω) ≥ sup
P∈EL

Sng (P, PB)− sup
P∈EL

Sng (P, P †Ω)

> 0.

Cas 2B There does not exist a PB ∈ PL such that for all n ∈ N and all F ⊆ Ωn it holds that
◦B(F ) ≤ ◦PB(F ).

For example, the belief functions constructed in Proposition 4 are of this form, i.e., not dominated by
a probability function.

Let us assume for contradiction that there exists an infinite set J := {j1, j2, . . . } ⊆ N such that
limi−→∞

∑
ω∈Ωji

B(ω) = 1. Now define a function Q on SL by requiring that Q respects logical
equivalence and that

◦Q(F ) := lim
i−→∞

∑
ω∈Ωji
ω∈F

B(ω).

Next we show Q ∈ PL and ◦B(F ) ≤ ◦Q(F ) for all F which will allow us to derive the required
contradiction.

First note that for all n ∈ N it holds that∑
ν∈Ωn

Q(ν) = lim
i−→∞

∑
ν∈Ωn

∑
ω∈Ωji
ω�ν

B(ω)

= lim
i−→∞

∑
ω∈Ωji

B(ω)

= 1.

Furthermore, we have for all n ∈ N and all F ⊆ Ωn

◦Q(F ) = lim
i−→∞

∑
ω∈Ωji
ω∈F

B(ω)

= lim
i−→∞

∑
ν∈Ωn
ν∈F

∑
ω∈Ωji
ω�ν

B(ω)

=
∑
ν∈Ωn
ν∈F

lim
i−→∞

∑
ω∈Ωji
ω�ν

B(ω)

=
∑
ν∈Ωn
ν∈F

Q(ν).
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So, Q ∈ PL.
Now assume that there exists a proposition F ⊆ Ωn such that ◦B(F ) > ◦Q(F ). Since Q ∈ PL it holds

that ◦Q(F ) + ◦Q(F̄ ) = 1. Note that

{ω ∈ Ωji : ω ∈ F} ∪
⋃
ω∈Ωji
ω∈F̄

{ω}

is a partition in Πji . Since we assumed that B respects logical equivalence it holds that ◦B(F ) =

B(
∨
ω∈Ωji :ω∈F

ω). Thus,

◦B(F ) +
∑
ω∈Ωji
ω∈F̄

B(ω) ≤ 1

has to hold for all large i. We now obtain the required contradiction as follows:

1 ≥ lim
i−→∞

(
◦B(F ) +

∑
ω∈Ωji
ω∈F̄

B(ω)
)

= ◦B(F ) + ◦Q(F̄ )

> ◦Q(F ) + ◦Q(F̄ )

= 1.

Thus, there has to exist an α > 0 and an N ∈ N with N ≥ K such that for all n ≥ N it holds that∑
ω∈Ωn

B(ω) ≤ 1− α. We have for n ≥ N that

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω) = sup
P∈EL

Sng (P,B)− g(πn)SnΩ(P †Ω, P
†
Ω)−Restn

≥ g(πn)
(

sup
P∈EL

SnΩ(P,B)− SnΩ(P †Ω, P
†
Ω)
)
−Restn

≥ g(πn)
(
SnΩ(P †Ω, B)− SnΩ(P †Ω, P

†
Ω)
)
−Restn.

To complete the proof we will now show that there exists some β > 0, which depends on EL and g
but does not depend on the particular n ≥ N , such that SnΩ(P †Ω, B) − SnΩ(P †Ω, P

†
Ω) > β. Since g(πn) is

bounded, we then obtain that supP∈EL S
n
g (P,B)− supP∈EL S

n
g (P, P †Ω) > 0 for all large enough n.

We need to show that for all large enough n,

−
∑
ω∈Ωn

P †Ω(ω) log f(ω)− SnΩ(P †Ω, P
†
Ω) ≥ β > 0

for all functions f : Ωn −→ [0, 1] such that
∑

ω∈Ωn
f(ω) ≤ 1− α.

Suppose f ′ ∈ arg minf
∑

ω∈Ωn
−P †Ω(ω) log f(ω). If P †Ω(ω) > 0 and f ′(ω) = 0, then∑

ω∈Ωn
−P †Ω(ω) log f ′(ω) = ∞. Hence, the minimum cannot obtain for such an f ′. On the other

hand, if f ′(ω) > 0 and P †Ω(ω) = 0, then there has to exist a µ ∈ Ωn \ {ω} such that P †Ω(µ) > 0. Then
define a function f ′′ such that f ′′(ω) := 0, f ′′(µ) := f ′(µ) + f ′(ω) > f ′(µ) and f ′′(λ) := f ′(λ) for
all λ ∈ Ωn \ {ω, µ}. Then

∑
ν∈Ωn

−P †Ω(ν) log f ′(ν) >
∑

ν∈Ωn
−P †Ω(ν) log f ′′(ν). Again, the minimum

cannot obtain for such an f ′.
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We may thus assume in the following that any f ′ minimising the above sum satisfies: P †Ω(ω) > 0, if
and only if f ′(ω) > 0. In particular, the function f ′(ω) = 0 for all ω ∈ Ωn cannot be optimal.

Let af :=
∑

ω∈Ωn
f(ω) ∈ (0, 1− α]. Then

−
∑
ω∈Ωn

P †Ω(ω) log f(ω) = −
∑
ω∈Ωn

P †Ω(ω)
(

log
f(ω)

af
+ log af

)
= − log(af )−

∑
ω∈Ωn

P †Ω(ω) log
f(ω)

af
.

By definition,
∑

ω∈Ωn

f(ω)
af

= 1. The sum in the above equation is thus standard logarithmic scoring rule

on Bn, SnΩ(P, f
af

). For fixed P ∈ PL the minimum under this scoring rule obtains for a function which
agrees with P on the states ω ∈ Ωn.

Thus, for fixed af the function f minimising −
∑

ω∈Ωn
P †Ω(ω) log f(ω) is the af multiple of P †Ω. In

order to minimise −
∑

ω∈Ωn
P †Ω(ω) log f(ω), − log af has to be minimal. This minimum obtains for

af = 1− α. We hence find the value of the minimum as

inf
f :Ωn−→[0,1]∑
ω∈Ωn

f(ν)≤1−α

−
∑
ω∈Ωn

P †Ω(ω) log f(ω) = − log(1− α)− SnΩ(P †Ω, P
†
Ω).

β may thus be chosen as β = − log(1− α) > 0.

We now drop the assumption that belief functions respect logical equivalence.

Proposition 17. If g is inclusive and such that there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b] for
all n ∈ N and such that

lim
n−→∞

log |Ωn|
∑

π∈Πn\{πn}

g(π) = 0,

then

minlossBL = {P †Ω}. (12)

Proof. We shall consider cases for B ∈ BL \{P †Ω}. We will show that P †Ω ≺ B holds for all cases. Then
minlossBL = {P †Ω} follows.

Case 1 B respects logical equivalence.
By Proposition 16 we obtain P †Ω ≺ B.
Case 2 B does not respect logical equivalence.
Since B does not respect logical equivalence, there exists a minimal N ∈ N such that two different

logically equivalent sentences ϕ, ψ ∈ SLN are assigned different degrees of belief, i.e., B(ϕ) 6= B(ψ).
We now inductively define functions Bn : SL −→ [0, 1] for n ≥ N . First, let

BN(χ) :=

inf{B(θ) : θ ∈ SLN & � χ↔ θ} if χ ∈ SLN
B(χ) if χ ∈ SL \ SLN

.
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Now assume n > N . For all χ ∈ SLn such that no θ ∈ SLn−1 is logically equivalent to χ let

Bn(χ) := inf{B(θ) : θ ∈ SLn & � χ↔ θ}

and otherwise let

Bn(χ) :=

Bn−1(θ) if χ ∈ SLn and there exists a θ ∈ SLn−1 with � χ↔ θ

B(χ) if χ ∈ SL \ SLn
.

Note that Bn is well-defined, Bn−1 respects logical equivalence on Ln−1 and thus Bn−1(θ) does not
depend on the particular sentence θ ∈ SLn−1 which is logically equivalent to χ.

By construction, Bn+1 agrees with Bn on SLn.
Finally, let BI(χ) := limn−→∞Bn(χ). Trivially, BI

�N = BN �N .
Since for all n ≥ N the Bn respect logical equivalence on Ln, BI respects logical equivalence on L.

Furthermore, BI agrees with Bn on the sentences of Ln.
Now consider a χ ∈ SL and let k ∈ N be minimal such that χ ∈ SLk and consider the corresponding

proposition F ⊆ Ωk. For all n ≥ max{N, k} we shall show that

inf
ρ∈%n

B(ρF ) ≤ BI(χ).

If k ≤ N , then for all n ≥ N it holds that Bn(χ) = inf{B(θ) : θ ∈ SLN & � χ ↔ θ} = BN(χ).
Hence, BI(χ) = BN(χ). For n ≥ N there exist ρ ∈ %n such that ρF = χ. Thus, infρ∈%n B(ρF ) ≤
BN(χ) = BI(χ).

If k > N , then there are two cases. If no θ ∈ SLk−1 is logically equivalent to χ, then Bk(χ) =

inf{B(θ) : θ ∈ SLk \ SLk−1 & � χ↔ θ}. In which case, we find for all n ≥ k > N

inf
ρ∈%n

B(ρF ) ≤ inf
ρ∈%k

B(ρF )

= inf{B(θ) : θ ∈ SLk \ SLk−1 & � χ↔ θ}
= BI(χ).

In the other case there does exist some θ ∈ SLk−1 which is logically equivalent to χ. Then Bn(χ) =

Bk−1(θ) for all n ≥ k. So BI(χ) = Bk−1(θ). Thus, for all n ≥ max{N, k} ≥ k − 1 it is true that

inf
ρ∈%n

B(ρF ) ≤ inf
ρ∈%k

B(ρF )

≤ inf
ρ∈%max{N,k}

B(ρF )

= inf{B(θ) : θ ∈ SLk−1 & � χ↔ θ}
= BI(χ).

It thus follows for all P ∈ PL and all n ≥ N that

Sng (P,B) = sup
ρ∈%n

Sng,ρ(P,B)

= −
∑
F⊆Ωn

γn(F )◦P (F ) inf
ρ∈%n

logB(ρF )

≥ −
∑
F⊆Ωn

γn(F )◦P (F ) logBI(ρF ) for all ρ ∈ %n

= Sng (P,BI). (13)
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Let us now note that BI(ϕ) < max{B(ϕ), B(ψ)}. Thus, BI(ϕ) + BI(¬ϕ) < max{B(ϕ), B(ψ)} +

BI(¬ϕ). Also observe that BI(χ) ≤ B(χ) for all χ ∈ SLN . Thus, BI(¬ϕ) ≤ B(¬ϕ). Hence,

BI(ϕ) +BI(¬ϕ) < max{B(ϕ), B(ψ)}+BI(¬ϕ)

≤ max{B(ϕ), B(ψ)}+B(¬ϕ)

≤ 1.

We infer BI(ϕ) +BI(¬ϕ) < 1 and thus BI /∈ PL.
Case 2A BI ∈ BL \ PL.
Since BI respects logical equivalence, we obtain by Proposition 16 that P †Ω ≺ BI . Applying (13) we

obtain P †Ω ≺ B.
Case 2B BI /∈ BL.
We shall now define a function BJ assigning every proposition a value in [0, 1] as follows. Let

τ ∈ SL be some tautology. {τ} is a partition. Since BI /∈ BL it follows that BI(τ) < 1. Now put
BJ(κ) := 1 − BI(τ) for all contradictions κ ∈ SL. Clearly, BJ(κ) > 0. For all satisfiable χ ∈ SL let
BJ(χ) := BI(χ).

Note that BJ ∈ BL and since BJ(¬τ) > 0 it follows that BJ ∈ BL \ PL. Also note that for all n ∈ N
and all P ∈ PL it holds that Sng (P,BI) = Sng (P,BJ) and so

Sng (P,B) ≥ Sng (P,BI) = Sng (P,BJ).

Since BJ respects logical equivalence we can apply Case 2A to obtain P †Ω ≺ BJ . But then P †Ω ≺ B.

Our main minimax theorem (already stated above on Page 2492) then follows immediately from
Proposition 17 by applying Lemma 2 and Theorem 3:

Theorem 6 (Regularity minimax). If g is regular and EL is finitely generated, then

minlossBL = maxentEL = P† = {P †Ω}.

If EL = PL, then the unique function with greatest entropy is the equivocator (Proposition 7). Thus
by Theorem 6,

minlossBL = maxentPL = {P †Ω} = {P=}.

Recall that P= assigns all n-states ω ∈ Ωn the same probability, P=(ω) = 1
|Ωn| . So, if the agent does not

possess any evidence then all n-states ω ∈ Ωn are all believed to the same degree. Absence of evidence
entails symmetric degrees of belief. In other words, the three norms of objective Bayesianism entail an
instance of the Principle of Indifference.

Surprisingly, perhaps, symmetry of the weighting function is not necessary to guarantee this instance
of the Principle of Indifference on finite sublanguages—see Appendix B.
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4.5. Infinite-Language Invariance

So far, we have been working over a fixed predicate language L (without quantifiers). One might
wonder what would have happened if one had started out with a different such language.

We will investigate this question by considering predicate languages which contain finitely many
further relation symbols and/or finitely many further constant symbols than does L.

For all languages we consider here, we shall suppose that the ways the constant symbols are
ordered are consistent. Furthermore, we suppose that the order types of the constant symbols are ω,
the first infinite ordinal. That is, for L ⊂ L1 let t1, t2, . . . be the constant symbols in L and let
T new := {tnew1 , . . . , tnewm } be the set of constant symbols in L1 which are not in L. Then we require
that the constant symbols of L1 are ordered such that

• for all n ∈ N, tn appears before tn+1 (consistency),

• for all t ∈ T new there exists some n ∈ N such that t appears before tn (order type ω).

The way the constant symbols of L1 are ordered can be thought of as inserting the t ∈ T new into the
ordering of the constant symbols of L.

From now on, superscripts are used to refer to such predicate languages, while subscripts continue
to refer to their respective finite sublanguages. For example, L1

n is the finite sublanguage of L1 which
contains only the first n constants of L1. For L ⊂ L1, in general, the set of the first n constants of Lmay
be different from the set of the first n constants of L1.

Definition 23 (Infinite-Language Invariance). A weighting function g is infinite-language invariant, if
and only if the following holds: for all L and for all EL finitely generated by constraints on the finite
sublanguage LK of L, if L1 and L2 are such that L ⊆ L1 ⊆ L2, then for all B ∈ minlossBL1 there
exists a C ∈ minlossBL2 such that C�L1 = B.

Infinite-language invariance is motivated by the thought that simply adding new constant or predicate
symbols to the language L should not change the inferences which are expressible in the original
language L. Note the following qualification: since each element of the domain is picked out by some
member of L, one can infer that in L′ formed by adding constants to L, there must be some constants
which name the same individual.

We shall now proceed to show that the weighting functions which we focus on in this paper—the
regular weighting functions—are infinite-language invariant.

Lemma 9. If E , E ′ are non-empty and convex sets of the following form

E ⊆ {(x1, . . . xn) ∈ Rn :
n∑
i=1

xi = 1 & xi ≥ 0}

E ′ ⊆ {(y1, z1, y2, z2, . . . , yn, zn) ∈ R2n : yi, zi ≥ 0 & (y1 + z1, . . . , yn + zn) ∈ E},
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then for

{(x†1, . . . , x†n)} = arg sup
(x1,...,xn)∈E

−
n∑
i=1

xi log xi

{(y†1, z
†
1, . . . , y

†
n, z
†
n)} = arg sup

(y1,z1,...,yn,zn)∈E ′
−

n∑
i=1

yi log yi + zi log zi

it holds that y†i = z†i =
x†i
2

for all 1 ≤ i ≤ n.

Proof. That the suprema are unique follows from the convexity of the sets E , E ′ and the fact thatHn
Ω, H

2n
Ω

are strictly concave functions on Pn, respectively, P2n.
Recall that LU is the language introduced in Lemma 2. y† = z†i =

x†i
2

is a direct consequence of P †Ω
equivocating beyond LUk (Proposition 9).

Theorem 7. If g is regular, then g is infinite-language invariant.

Proof. Let EL be finitely generated by constraints expressible in LK . Let L ⊆ L1 ⊆ L2. By Theorem 6
we obtain minlossBL1 = maxentEL1 = {P †Ω

1} and minlossBL2 = maxentEL2 = {P †Ω
2}, where P †Ω

1

and P †Ω
2

are the standard entropy limits on L1, respectively, L2.
Let K2 ∈ N be minimal such that LK ⊆ L2

K2
, i.e., the set of the first K2 constant symbols of L2

contains the constant symbols {t1, . . . , tK} of L. It suffices to show that for all n ≥ K2 and all ν ∈ Ω1
n it

holds that P †Ω
1
(ν) = P †Ω

2
(ν), where Ω1

n is the set of n-states of L1. Note that the constants in t1, . . . , tK
are in L1

K2
.

Since the standard entropy limits is finite-language invariant (Section 4.2.1) it follows for n ≥ K2

that P †Ω
1
(ν) = P †Ω

1

n(ν), where {P †Ω
1

n} = arg supP∈E1
n
SnΩ(P ), and P †Ω

2
(ν) = P †Ω

2

n(ν), where {P †Ω
2

n} =

arg supP∈E2
n
SnΩ(P ).

We now obtain from Lemma 9 and Proposition 5 that

P †Ω
i

n(ν) = P †Ω(ων)
1

2|ν|−|ων |

where ων is the unique maximal state of L such that ν � ων . Thus, P †Ω
1
(ν) = P †Ω

2
(ν).

So, neither adding new redundant names for individuals in the domain to L nor adding relation
symbols which are not constrained by the agent’s evidence on L changes one’s rational beliefs in the
sentences ϕ ∈ SL.

Language invariance is an important desideratum for reasoning under uncertainty. We have seen
that focussing on regular weighting functions ensures language invariance. We conjecture that, if one
imposes the desiderata that g be atomic, inclusive, symmetric, refined and infinite-language invariant,
then the standard entropy maximiser will be the belief function with the best loss profile. If this is the
case then our results for regular weighting functions, which are strongly refined, are symptomatic of a
more general phenomenon.
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5. Handling Quantifiers

Thus far, we have shown that, on a language L6∃ without quantifiers, if the evidence is finitely
generated and the weighting function is regular, then the belief function that has the best lost profile
is the probability function in [EL] that maximises standard entropy. This provides a justification for all
the norms of objective Bayesianism on a language without quantifiers.

As we shall see in Section 5.1, that the language is quantifier free was key here: on a language L∃

with quantifiers, the n-scores become infinite, which makes the comparison of loss profiles impossible.
That the evidence is finitely generated is also key: we shall see in Section 6.1 that the minimax result
need not hold true if the evidence is not finitely generated.

While the use of scoring rules cannot be readily adapted to a quantified language L∃, we shall see in
Section 5.2 that we can nevertheless justify the norms of objective Bayesianism on L∃ if we extend
our notion of loss profile and add two further desiderata motivated by the application of objective
Bayesianism to inductive logic: that inferences should be language invariant, and that, ceteris paribus,
universal hypotheses should be afforded substantial credence.

5.1. Limits to the Minimax Approach

Here we explain why the minimax analysis adopted in Section 4 cannot be applied to the case of a
language with quantifier symbols. The problem is that n-score becomes infinite, making it impossible to
compare the scores of different belief functions.

There are two ways in which n-score becomes infinite. The first is through a failure of
super-regularity. A probability function is super-regular, if it gives every contingent sentence positive
probability. Now, many probability functions that seem eminently rational are not super-regular. For
example, if one has no evidence, EL = PL, then it is plausible that one is rationally entitled (even
if not rationally compelled) to adopt the equivocator function P=, which gives each n-state the same
probability, as one’s belief function. However, this probability function will give zero probability to a
universally quantified sentence such as ∀xUx. More generally, if evidence is finitely generated then no
inclusive, symmetric entropy maximiser will be super-regular:

Proposition 18. Let EL be finitely generated and let g be symmetric and inclusive. If the sequence
(P †n)n∈N has a point of accumulation Q ∈ PL, then Q is not super-regular.

Proof. Let U be a relation symbol in L of arity r, say. For all n ∈ N let

ϕn :=
∨
ω∈Ωn

ω|=
∧n
i=1 Uti

ω,

where ti denotes the tuple of r repetitions of ti.
If P †K(ϕK) = 0, then by the open-mindedness of entropy maximisers P †n(ϕK) = 0 for all n ≥ K.

Thus, for all points of accumulation Q ∈ PL it holds that Q(ϕK) = 0. Hence, Q is not super-regular.
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If P †K(ϕK) > 0, then we apply Proposition 9 to find that for all l ≥ n

P †l (ϕn) = P †l (ϕK)
|ΩU

K |
|ΩU

n |
≤ P †l (ϕK)2K−n

≤ 2K−n,

Let Q be a point of accumulation of (P †n)n∈N and let (P †n)nj be a subsequence which converges to Q.
Since K is fixed we now find

0 ≤ Q(∀xUx)

P3
= lim

j−→∞
Q(

nj∧
i=1

Uti)

= lim
j−→∞

lim
m−→∞

P †nm(

nj∧
i=1

Uti)

= lim
j−→∞

lim
m−→∞

P †nm(ϕnj)

≤ lim
j−→∞

2K−j

= 0.

Q is not super-regular.

Now, a failure of super-regularity is not normally problematic—it is simply a well accepted fact
that probability theory forces probability 0 (respectively 1) on many sentences which might be true
(respectively false). For example, the strong law of large numbers and the various zero-one laws force
extreme probabilities. Moreover, the issue of super-regularity did not arise on L 6∃, where no contingent
sentences are given probability 0 by the entropy maximisers considered above. However, a problem does
emerge if we try to apply the scoring rule approach to L∃, where super-regularity becomes pertinent. If θ
is possible yet is given zero belief by belief functionB then the logarithmic loss,− logB(θ), is infinite if
θ turns out to be true. Hence, as long as some epistemically possible physical probability function gives
positive probability to θ, belief function B will have infinite score. When scores become infinite, they
cannot be readily used to compare belief functions. It is clear, for example, that some non-super-regular
belief functions will have better loss profiles than others, but this will not be apparent if we define loss
profiles in terms of scores. This problem appears to limit the scope of scoring rules to languages without
quantifiers.

One might suggest here that the fact that non-super-regular functions lead to infinite scores merely
serves to show that one should adopt a super-regular function as one’s belief function. However, there
are good grounds for questioning such a conclusion. In particular, consider again the case of a total
absence of evidence. As mentioned above, imposing super-regularity rules out the equivocation function
P= as a viable belief function. This means that any super-regular function must, in the total absence of
evidence, force a skewed distribution on the n-states, for some n. Thus, one is forced to believe some
states to a greater degree than others, despite the fact that one has no evidence to distinguish any such
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state from any other. So super-regularity leads to very counter-intuitive consequences and the infinite
score problem suggests that the scoring rule approach breaks down on languages with quantifiers.

There is a second way in which the scores become infinite when quantifiers are admitted into the
language. When one admits quantifiers into the language, one introduces the possibility of infinite
partitions (Example 1) and it is natural, when defining a scoring rule on such a language, to consider
scores on these infinite partitions. If a weighting function is inclusive then for any sentence θ ∈ SL 6∃,
some partition containing θ will be given positive weight. If it is refined, then any partition that refines
this partition will be given positive weight, including any infinite partition which refines this partition.
The problem is that, even in the total absence of evidence, every belief function has infinite worst-case
expected loss over such a partition:

Proposition 19. If there exists a partition π∞ ∈ ΠL consisting of infinitely many sentences such that
g(π∞) > 0, then for all B ∈ BL it holds that

sup
P∈PL

−
∑
ϕ∈π

g(π∞)P (ϕ) logB(ϕ) = +∞.

Proof. Let π∞ = {ϕ1, ϕ2, . . . }. Let B ∈ BL be arbitrary but fixed.
If there exists a ϕ ∈ π∞ such that B(ϕ) = 0, then any P ∈ PL with P (ϕ) > 0 satisfies∑
ϕ∈π−g(π∞)P (ϕ) logB(ϕ) = +∞.
Now assume that B(ϕn) > 0 for all n ∈ N.
Since B ∈ BL it holds that

∑
ϕ∈π∞ B(ϕ) ≤ 1. Thus, there has to exists an infinite set NB ⊆ N \ {1}

such that n ∈ NB implies 0 < B(ϕn) < 1
n
≤ 1

2
. Let {nB1 , nB2 , . . . } be an enumeration of NB. Let

{mB
2 ,m

B
3 , . . . } be an enumeration of an infinite subset of NB such that 0 < B(ϕmBk ) ≤ 1

e(k
2)
< 1 and

mB
k < mB

k+1 for all k ∈ N \ {1}. Since the nBk tend to infinity, such a sequence (mB
k )k∈N\{1} has to exist.

Recall that
∑

n∈N
1
n2 = π2

6
. Let P ∈ PL be such that for k ≥ 2 it holds that

P (ϕmBk ) : =
6

π2
· 1

k2

P (ϕ1) : = 1−
∞∑
k=2

P (ϕmBk ) =
6

π2

P (ϕn) : = 0 for all n ∈ N \ {1,mB
2 ,m

B
3 , . . . }.

We now explain why such a probability function P ∈ PL exists.
The idea is to define a measure which assigns the set of term structures which are a model of ϕBmk

the value 6
π2

1
k2 and assigns value zero to all other term structures which do not model any of the ϕBmk .

The probability of an arbitrary sentence χ ∈ SL is then measure assigned to all term structures in which
χ holds. One has to be careful of how to set up this measure. Fortunately, the recipe for doing so is
well-known.

We follow [7] (pp. 164) and define a term structureM of L as a structure with domain {tn : n ∈ N}
and each constant symbol tn of L is interpreted in M as itself. We use TL to denote the set of term
structures of L.
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Now let P(TL) denote the power set of TL and put

T (θ) := {M ∈ TL : M |= θ}
R := {T (θ) : θ ∈ SL 6∃} ⊆ P(TL).

For a quantified sentence θ = ∃xθ(x) let T (θ) :=
⋃
i∈N T (θ(ti)), similarly for the universal quantifier ∀.

Now let µ∗ be any (finitely additive and normalised to one) outer measure on P(TL) such that
µ∗(ϕBmk) = 6

π2
1
k2 . Particularly simple such outer measures µ∗ are measures which for all mk assign

a single particular term structureM in which ϕBmk holds the value 6
π2

1
k2 .

Next, define R∞ to be the smallest subset of P(TL) which contains R and is closed under
complements and countable unions. We now define a countably additive measure µ∞ on R∞ as follows:
µ∞ : R∞ → [0, 1] such that µ∞(A) = µ∗(A) for all A ∈ R∞.

Letting P (θ) := µ∞(T (θ)) defines a probability function as shown in [7] (pp. 168–171). Furthermore,
by construction µ∗(ϕi) = 6

i2π2 = P (ϕi).
Having demonstrated the existence of the required probability function P , we now show that, for this

function P , B incurs an infinite loss. Intuitively, P (ϕn) can be obtained from the sequence ( 1
k2 )k∈N by

inserting zeros and normalising by multiplying with 6
π2 . The idea behind this definition is to ensure that

for all k ∈ N there exists a unique n ∈ NB such that P (ϕn) = 6
π2 · 1

k2 . Furthermore, for these n ∈ NB it
holds that B(ϕn) ≤ 1

e(k
2)

. For all other n > 1 we ensure that P (ϕn) vanishes; P (ϕ1) is defined in such
that

∑
ϕ∈π P (ϕ) = 1 holds.

So, when P (ϕn) > 0 and n ∈ {mB
2 ,m

B
3 , . . . , } we have

−P (ϕn) logB(ϕn) ≥ 6

π2

1

k2
log e(k2)

=
6

π2

1

k2
k2 log e

=
6

π2
.

Finally, we obtain

−
∑
ϕ∈π

g(π∞)P (ϕ) logB(ϕ) ≥ g(π∞)
∑

mB2 ,m
B
3 ,...

6

π2

= +∞.

In particular, even the super-regular belief functions have infinite score on any such partition, so
one cannot say that any super-regular function has lower overall score than a non-super-regular function.
This result, then, casts further doubt on the suggestion that it might be preferable to adopt a super-regular
function as one’s belief function. Moreover, it clearly suggests that an attempt to extend the minimax
approach, which is based on scoring rules, to languages with quantifiers will be fraught with difficulty.
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5.2. The Probability Norm

We have argued that there is little scope for straightforwardly extending the minimax analysis to
languages with quantifiers because of the problem that scores will quickly become infinite and thus
incomparable. So we need another approach, if we are to show that the Probability axioms P1-P3, as
well as the Calibration and Equivocation norms, are to apply to languages with quantifiers.

Our plan of attack is as follows. First, as noted in Section 4.5, language invariance is an
important desideratum. In particular, one would not want one’s degrees of belief on the sentences of
a quantifier-free language L 6∃ to change if one were to introduce quantifiers into the language. That is,
if evidence determines that one should adopt B1 as one’s belief function on L 6∃ and B2 as one’s belief
function on L∃, where both languages contain the same individuals and relation symbols, then one would
want B1 and B2 to agree on quantifier-free sentences of L, i.e., one would want that B1(θ) = B2(θ) for
each θ ∈ SL 6∃.

Thus far, we have argued that a belief function on L6∃, given finitely generated E, ought to satisfy the
axioms of probability P1 and P2 on L6∃, as well as the Calibration and Equivocation norms. Given the
language invariance desideratum, this implies that the appropriate belief function on L∃, should, when
restricted to quantifier-free sentences, satisfy P1, P2 and the Calibration and Equivocation norms. If
we can show that the probability axioms P1-3 should also be satisfied on the language L∃ as a whole,
then degrees of belief in the quantified sentences are uniquely determined by those on the quantifier-free
sentences [7] (Theorem 11.2): there is no further role that Calibration or Equivocation can play on the
quantified sentences. Thus it suffices to argue for the probability axioms on L∃. As usual, we restrict
attention to evidence sets that are finitely generated in the sense of Definition 5, i.e., EL generated by
constraints involving sentences of some L 6∃K and regular weighting functions g.

In Theorem 4 we showed that the default loss incurred by adopting belief functionB when ϕ is true is
such that L(ϕ,B) = − logB(ϕ), modulo some multiplicative constant. This penalises smaller degrees
of belief more than larger degrees of belief. As discussed above, there is little scope for using this to
measure the overall expected loss incurred by B on L∃, and so we cannot directly extend the notion
of loss profile developed in Definition 21 to L∃. However, this default loss function does suggest the
following constraint:

(*) Suppose that for all θ ∈ SL∃, B(θ) ≥ B′(θ), and there is some ϕ ∈ SL∃ such that B(ϕ) > B′(ϕ).
Then B has a better loss profile than B′.

In other words, if the default loss incurred by B′ dominates that incurred by B then B has a better loss
profile than B′. We can use (*) to extend our notion of loss profile: the two conditions in Definition 21
apply to quantifier-free sentences in L∃, and we add the further condition (*) to constrain the quantified
sentences. We shall show that the addition of (*) goes some way towards demonstrating P1-3 on L∃,
although we shall have to add a further desideratum in order to complete the derivation.

Definition 24 (Better loss profile on L∃). B has a better loss profile on L∃ than B′ if and only if:

1. B ≺ B′ (as defined in Definition 21), or

2. B dominates B′ on L∃ and there exists some ϕ ∈ SL∃ such that B(ϕ) > B′(ϕ).
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We write B ≺∗ B′ to denote that B has a better loss profile on L∃ than B′. Clearly, ≺∗ is asymmetric.
We will be interested in those belief functions on L∃ that have the best loss profile on L∃, i.e., the minimal
elements of ≺∗, and define:

minloss∗ BL := {B ∈ BL : there is no B′ ∈ BL such that B′ ≺∗ B}. (14)

Note that if B dominates B′ on L∃, then B ≺ B′ cannot hold. ≺ and ≺∗ are thus consistent.

Proposition 20. All B ∈ minloss∗ BL agree with P †Ω on L 6∃.

Proof. Since we assume that g is regular and that EL is finitely generated we can apply Theorem 6 to
obtain that all all B ∈ minlossBL agree with P †Ω on L 6∃.

The claim now follows, since B ≺ B′ implies B ≺∗ B′.

Proposition 21. If minlossBL = ∅, then minloss∗ BL = ∅.

Proof. ≺ is asymmetric, irreflexive and transitive, Proposition 10; and thus free of cycles. Hence, for
all fixed B′ ∈ BL there exists some B ∈ BL such that B ≺ B′. This implies B ≺∗ B′.

Hence, for allB′ ∈ BL there exists someB ∈ BL such thatB ≺∗ B′. We obtain minloss∗ BL = ∅.

We shall use B† ∈ BL to denote an arbitrary but fixed belief function in minloss∗ BL. A priori, it is
not clear that such a function B† exists.

The rest of this section does not depend on EL, the weighting function g nor the particular probability
function the B ∈ minlossBL agree with on L 6∃. All that matters is that there exists some probability
function P ∈ PL the B ∈ minlossBL agree with on L 6∃. As we know, this is the case if EL is finitely
generated and g is regular.

Definition 25. A sentence ϕ ∈ SL∃ is called contingent, if and only if ϕ and ¬ϕ are satisfiable.

Lemma 10. For all θ, ϕ ∈ SL∃ such that θ |= ϕ it holds that B†(ϕ) ≥ B†(θ). In particular, B†(ψ) = 0

for all contradictions ψ ∈ SL∃ and B†(χ) = 1 for all tautologies χ ∈ SL∃.

For θ, ϕ ∈ SL 6∃ we have already seen that B†(ϕ) ≥ B†(θ), this followed from B† satisfying P1 and
P2 on L6∃.

Proof. Case 1. θ is a contradiction.
For a tautology τ ∈ SL6∃, {τ, θ} is a partition. Since B†(τ) = 1 and B†(τ) + B†(θ) ≤ 1 it follows

that B†(θ) = 0. Hence, B†(ϕ) ≥ 0 = B†(θ).
Case 2. θ is a tautology.
Let χ ∈ SL∃ be a contradiction. We just proved that B†(χ) = 0. The only constraints applying to

B†(θ) are of the form B†(θ) + B†(χ) ≤ 1 where χ is a contradiction and of the form B†(θ) ≤ 1. Thus,
the only meaningful constraint on B†(θ) is B†(θ) ≤ 1. By (*) we have B†(θ) = 1.

Since θ implies ϕ, ϕ has to be a tautology, too. Hence, B†(ϕ) = 1 = B†(θ).
Case 3. θ is contingent.
If ϕ is a tautology, then B†(ϕ) = 1 by the above and we are done.
Note that ϕ cannot be a contradiction since θ is satisfiable.
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Assume from now on that ϕ is contingent.
Case 3A |= θ ↔ ϕ.
For all index sets I and all sentences ϕi ∈ SL∃ the following are equivalent

• {ϕ} ∪
⋃
i∈I{ϕi} ∈ ΠL,

• {θ} ∪
⋃
i∈I{ϕi} ∈ ΠL.

(*) implies that B†(ϕ) = B†(θ).
Case 3B θ, ϕ and ϕ ∧ ¬θ are contingent.
Let I be any countable index set and let ϕi ∈ SL∃ for i ∈ I be contingent such that

{ϕ} ∪
⋃
i∈I

{ϕi} ∈ ΠL.

Then by the consistency of θ and ϕ ∧ ¬θ

{θ ∧ ϕ} ∪ {ϕ ∧ ¬θ} ∪
⋃
i∈I

{ϕi} ∈ ΠL.

And since θ |= ϕ

{θ} ∪ {ϕ ∧ ¬θ} ∪
⋃
i∈I

{ϕi} ∈ ΠL.

From normalisation (Definition 1) we now obtain

B†(ϕ) +
∑
i∈I

B†(ϕi) ≤ 1 (15)

B†(θ) +B†(ϕ ∧ ¬θ) +
∑
i∈I

B(ϕi) ≤ 1. (16)

Note that the equations in (15) are the only constraints which constrain B†(ϕ). In particular, B†(ϕ) =

B†(θ) will not violate any constraint in (15).
The question arises whether B†(ϕ) = B†(θ) imposes any further constraints?
B†(ϕ) only imposes constraints on the B†(ϕi) for i ∈ I . Let i ∈ I be fixed and let J be an index set

and (ψj)j∈J ∈ SL∃ be such that {ϕi}∪{ϕ}∪
⋃
j∈J{ψj} ∈ ΠL. Then {ϕi}∪{θ}∪{ϕ∧¬θ}∪

⋃
j∈J{ψj} ∈

ΠL. Thus,B†(ϕ) = B†(θ) does not impose any further constraint onB†(ϕi) which is not already imposed
by B†(θ).

By (*) we now find B†(θ) ≤ B†(ϕ).

Corollary 7. B† respects logical equivalence on L∃.

Proof. If ϕ, θ ∈ SL∃ are logically equivalent, then B†(ϕ) ≤ B†(θ) ≤ B†(ϕ) and thus B†(ϕ) =

B†(θ).

Corollary 8. For all ∃xθ(x) ∈ SL∃ it holds that

lim
n−→∞

B†

( n∨
i=1

θ(ti)
)
≤ B†(∃xθ(x)).
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Proof. First note that
∨n
i=1(θ(ti)) implies

∨n+1
i=1 (θ(ti)). Thus, B†(

∨n
i=1(θ(ti))) is a (not necessarily

strictly) increasing sequence in [0, 1] which has a limit. Finally, note that for all n ∈ N
∨n
i=1(θ(ti))

implies ∃xθ(x). Hence, B†(∃xθ(x)) has to be greater or equal than the limit.

Corollary 9 (Superadditivity of B† on L∃). If |= ¬(θ ∧ ϕ), then B†(θ) +B†(ϕ) ≤ B†(θ ∨ ϕ).

Proof. If either θ or ϕ is a contradiction or a tautology, then the Corollary follows trivially.
If θ ∨ ϕ is a tautology, then the corollary follows trivially, too.
It remains to consider the case of contingent θ ∨ ϕ. By the above we may assume that θ and ϕ are

contingent. Let I be any countable index set and let ϕi ∈ SL∃ for i ∈ I be satisfiable such that

{θ} ∪ {ϕ} ∪
⋃
i∈I

{ϕi} ∈ ΠL.

Then,

{θ ∨ ϕ} ∪
⋃
i∈I

{ϕi} ∈ ΠL.

From normalisation (Definition 1) we now obtain

B†(θ) +B†(ϕ) +
∑
i∈I

B†(ϕi) ≤ 1

B†(θ ∨ ϕ) +
∑
i∈I

B†(ϕi) ≤ 1.

The same reasoning a in Lemma 10 about constraints now yields: B†(θ) +B†(ϕ) ≤ B†(θ ∨ ϕ).

Lemma 11. For all θ ∈ SL∃ it holds that B†(θ) +B†(¬θ) = 1.

In particular, this means that B†(∃xθ(x)) +B†(∀x¬θ(x)) = 1 for all ∃xθ(x) ∈ SL∃.

Proof. If θ is not contingent, then the lemma holds trivially.
Now assume that θ is contingent and B†(θ) +B†(¬θ) < 1.
Case 1 There exist contingent (ϕ)i∈I , (ψ)j∈J ∈ SL∃ such that

{θ} ∪
⋃
i∈I

{ϕi} ∈ ΠL

{¬θ} ∪
⋃
j∈J

{ψj} ∈ ΠL

with

B†(θ) +
∑
i∈I

B†(ϕi) = 1

B†(¬θ) +
∑
j∈J

B†(ψj) = 1.
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Note that
⋃
i∈I{ϕi} ∪

⋃
j∈J{ψj} ∈ ΠL and thus

∑
i∈I B†(ϕi) +

∑
j∈ J B†(ψj) ≤ 1. Adding the above

equations we now obtain

2 = B†(θ) +
∑
i∈I

B†(ϕi) +B†(¬θ) +
∑
j∈J

B†(ψj)

≤ B†(θ) +B†(¬θ) + 1.

B†(θ) +B†(¬θ) ≥ 1 follows. Contradiction.
Case 2 For all π ∈ ΠL with θ ∈ π and all π′ ∈ ΠL with ¬θ ∈ π′L it holds that

∑
ϕ∈π B†(ϕ) < 1 and∑

ψ∈π′ B†(ψ) < 1.
Applying (*) we obtain a contradiction sinceB†(θ) orB†(¬θ) could have been set to a greater number.
Case 3 For all π ∈ ΠL with θ ∈ π it holds that

∑
ψ∈π B†(ψ) < 1 and there exists a partition π′ ∈ ΠL

with ¬θ ∈ π′L such that
∑

ϕ∈π′ B†(ϕ) = 1.
Let π′ comprise of contingent (ϕi)i∈I and ¬θ. For π ∈ ΠL with θ ∈ π we have for all finite J ⊆ I

that ⋃
j∈J

{ϕj} ∪ {θ ∧ ¬
∨
j∈J

ϕj} ∪ {ψ ∈ π : ψ 6= θ} ∈ ΠL.

In the same manner as in the proof of Lemma 10 it follows that B†(θ) ≥
∑

j∈J B†(ϕj). Since this holds
for all finite J ⊆ I and I can be at most countable, it follows that B†(θ) ≥

∑
i∈I B†(ϕi).

From B†(¬θ) +
∑

i∈I B†(ϕi) =
∑

ϕ∈π′ B†(ϕ) = 1 the required contradiction follows:

B†(θ) +B†(¬θ) ≥
∑
i∈I

B†(ϕi) +B†(¬θ)

= 1.

(*) is not strong enough to uniquely determine constrain B† on L∃. We invoke the following further
desideratum to pin down B†: ceteris paribus, prefer belief function B to belief function B′ if B gives
greater degree of belief to some universally quantified sentence than does B′. One has to be a bit careful
about how one formulates such a principle, in order to specify it in such a way that it can be applied
consistently. One can appeal to the concept of prenex normal form in order to formulate this desideratum:

(∀*) Suppose that neither of B,B′ have a better loss profile on L∃ than the other. Furthermore, suppose
there exists a minimal quantifier rank q such that the following hold: For all ϕ ∈ SL∃ in prenex
normal form with a quantifier rank of q−1 or less it holds thatB(ϕ) = B(ϕ′) and for all universally
quantified θ ∈ SL∃ in prenex normal form of quantifier rank q it holds that B(θ) ≥ B′(θ) and the
inequality is strict at least once. Then B is to be preferred to B′.

The motivation behind (∀*) is not in terms of loss. Rather, the motivation stems from the application
to inductive logic (see Section 3.3). The use of probability in inductive logic has been roundly criticised
for tending to give non-tautological universal laws probability zero, when such laws are widely—and
seemingly rationally—believed in science and beyond; see, e.g., Popper [17] (Appendix *vii). Thus there
seems good reason to prefer, ceteris paribus, those probability functions which give more credence to
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universal hypotheses. (There is a flip-side to (∀*). The more credence one gives to a universal statement
∀xθ(x), the less credence one must give to ∃x¬θ(x). One might motivate the latter policy by appeal to
Okham’s Razor, which demands scepticism with respect to the existence of entities—particularly new
kinds of entity.)

This leaves us with some desiderata that stem from considerations to do with loss, namely the criteria
that make up Definition 21—appealing to dominance of loss, dominance of expected loss, and worst-case
expected loss—and some desiderata that stem from the application to inductive logic, namely language
invariance and (∀*). These desiderata taken together are enough to justify the norms of objective
Bayesianism on L∃, as we shall proceed to show in the remainder of this section.

We shall see first that (∀*) is responsible for ensuring that the degree of belief B(∀xθ(x)), which
is already constrained to [0, infn∈N

∧n
i=1B(θ(ti))], is equal to the upper bound. On the other hand,

B(∃xθ(x)) comes out to be supn∈N
∨n
i=1B(θ(ti)). An arbitrary belief function B† ∈ minloss∗ BL which

is also optimal according to (∀*) will be denoted by B∀† .

Proposition 22. For all universally quantified sentences ∀xθ(x) ∈ L∃ it holds that B∀† (∀xθ(x)) =

limn−→∞B
∀
† (
∧n
i=1 θ(ti)).

Proof. First note that ∀xθ(x) |=
∧n
i=1 θ(ti) for all n ∈ N and we thus obtain from Lemma 10 that

B∀† (∀xθ(x)) ≤ limn−→∞B
∀
† (
∧n
i=1 θ(ti)).

We now prove by an argument on quantifier ranks that

B∀† (∀xθ(x)) = lim
n−→∞

B∀† (
n∧
i=1

θ(ti)).

Assume for contradiction that there exists a minimal quantifier rank q ≥ 1 and a sentence ∀xψ(x) in
prenex normal form of quantifier rank q such that B∀† (∀xψ(x)) < limn−→∞B

∀
† (
∧n
i=1 ψ(ti)).

We now define a functionB′ which will be preferred toB∀† which contradicts our standing assumption
that no function is preferred to B∀† . Let B′(χ) := B∀† (χ) for all sentences χ ∈ SL∃ which are in prenex
normal form and have a quantifier rank of q − 1 or less. In particular, B∀† and B′ agree on L6∃.

For all ϕ(x) ∈ L∃ in prenex normal form of quantifier rank q − 1 we let

B′(∀xϕ(x)) := lim
n−→∞

B∀† (
n∧
i=1

ϕ(ti))

and

B′(∃x¬ϕ(x)) := lim
n−→∞

B∀† (
n∨
i=1

¬ϕ(ti)).

Now arbitrarily extend B′ to a function in BL.
Note that B′(∀xψ(x)) > B∀† (∀xψ(x)) and B′(∃x¬ψ(x)) < B∀† (∃x¬ψ(x)). So, (*) does not

discriminate between B∀† and B′. Hence, B∀† and B′ are equally preferable according to ≺∗.
B∀† andB′ agree on all sentences in prenex normal form of quantifier rank q−1. SinceB∀† (∀xϕ(x)) ≤

limn−→∞B
∀
† (
∧n
i=1 ϕ(ti)) has to hold for all ϕ(x) ∈ L∃ it follows that for ϕ(x) in prenex normal form of

quantifier rank q − 1 that B∀† (∀xϕ(x)) ≤ B′(∀xϕ(x)) and for ∀xϕ(x) = ψ the inequality is sharp. (∀*)
now implies that B′ is preferred to B∀† .
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Finally, every sentence of the form ∀xθ(x) is logically equivalent to a universally quantified sentence
ϕ = ∀xϕ(x) in prenex normal. Note that θ(t) is logically equivalent to ϕ(t) for all constants t. Hence,

B∀† (∀xθ(x)) =B∀† (∀xϕ(x))

= lim
n−→∞

B∀† (
n∧
i=1

ϕ(ti))

= lim
n−→∞

B∀† (
n∧
i=1

θ(ti)).

Proposition 23. B∀† satisfies the axiom P3.

Proof. Applying Lemma 11, Proposition 22 and applying Lemma 11 a second time we find

B∀† (∃xθ(x)) = 1−B∀† (∀x¬θ(x))

= 1− lim
n−→∞

B∀† (
n∧
i=1

¬θ(ti))

= 1− lim
n−→∞

(
1−B∀† (

n∨
i=1

θ(ti))
)

= lim
n−→∞

B∀† (
n∨
i=1

θ(ti)).

The following might be of interest outside the context of this paper since it generalises Gaifman’s
Theorem, [5] (Theorem 1).

Proposition 24. If f : SL∃ −→ [0, 1] satisfies

• f(θ) = 1 for all tautologies θ ∈ SL 6∃ –[P1 on L 6∃],

• for all mutually exclusive θ, ϕ ∈ SL 6∃ it holds that f(θ ∨ ϕ) = f(θ) + f(ϕ) – [P2 on L 6∃],

• f(∃xθ(x)) = supm P (
∨m
i=1 θ(ti)) for all ∃xθ(x) ∈ SL∃ and – [P3]

• f respects logical equivalence on L∃ – [P4],

then f is a probability function, i.e., f ∈ PL.

Clearly, P1 on L 6∃ and P4 jointly imply P1.

Proof. First note that f agrees with some probability function on the quantifier free sentences of L. By
Gaifman’s Theorem, this probability function is unique on L∃; it shall be denoted by Pf .

We now show that f = Pf . We need to show that for all ϕ ∈ SL∃ that f(ϕ) = Pf (ϕ).
First, write ϕ in prenex normal form, ϕpre. Note that f(ϕ) = f(ϕpre).
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Next, we do a proof by induction on the quantifier-block rank of ϕpre to show that f(ϕpre) = Pf (ϕpre).
The quantifier-block rank of ϕpre is the number of alternating quantifier blocks in ϕpre.

Base case ϕpre is of quantifier block rank zero, i.e., ϕpre does not contain quantifiers. Then

f(ϕ) = f(ϕpre)

= Pf (ϕpre)

= Pf (ϕ),

where the second equation holds since f and Pf agree on all sentences of L 6∃. The first and the last
equation hold since f and Pf respect logical equivalence on L∃. This fact will be used without further
mention.

Inductive step ϕpre is of quantifier block rank q ≥ 1.
Let us first suppose that ϕpre = ∃x̄χ(x̄). For q ≥ 2 the first symbol of χ is a universal quantifier, ∀,

for q = 1, the first symbol of χ is a relation symbol, a negation symbol or an opening bracket. We find
for q = 1

f(ϕ) = f(ϕpre)

= f(∃x̄χ(x̄))

P3
= lim

n1−→∞
. . . lim

nk−→∞
f
( n1∨
i1=1

. . .

nk∨
ik=1

χ(ti1 , . . . , tik)
)

= lim
n1−→∞

. . . lim
nk−→∞

Pf

( n1∨
i1=1

. . .

nk∨
ik=1

χ(ti1 , . . . , tik)
)

P3
= Pf (∃x̄χ(x̄))

= Pf (ϕpre)

= Pf (ϕ),

where we may substitute Pf for f since χ is quantifier-free and we can thus apply the induction
hypothesis.

For q ≥ 2 ϕpre = ∃x̄1∀x̄2 . . . Qx̄qχ(x̄1, x̄2, . . . ), where Q = ∃ for odd q and Q = ∀ for even q.
First, here is an example of two logically equivalent sentences:

|=
( 2∨
i=1

∀x1∃x2Ux1x2ti

)
↔
(
∀y1

1∀y1
2∃y2

1∃y2
2

2∨
i=1

Uy1
i y

2
i ti

)
.

Note that the quantifier block rank on of the sentence on the right of “↔” is two. The quantifier block
rank has been kept low at the price of larger blocks of quantifiers. Since we are giving a proof by
induction on the quantifier block rank, we do not have to worry about paying this price. To denote the
larger blocks we will use ȳ. In general, the greater the number of variables and on the left of an x̄i, the
greater the number of variables in ȳi.
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Now let us compute

f(ϕ) = f(ϕpre)

= f(∃x̄1∀x̄2 . . . Qx̄qχ(x̄1, x̄2, . . . x̄q))

P3
= lim

n1−→∞
. . . lim

nk−→∞
f
( n1∨
i1=1

. . .

nk∨
ik=1

∀x̄2 . . . Qx̄qχ(ti1 , . . . , tik , x̄2, . . . x̄q)
)

= lim
n1−→∞

. . . lim
nk−→∞

f
(
∀ȳ2 . . . Qȳq

n1∨
i1=1

. . .

nk∨
ik=1

χ(ti1 , . . . , tik , ȳ2, . . . , ȳq)
)

I H
= lim

n1−→∞
. . . lim

nk−→∞
Pf

(
∀ȳ2 . . . Qȳq

n1∨
i1=1

. . .

nk∨
ik=1

χ(ti1 , . . . , tik , ȳ2, . . . , ȳq)
)

= lim
n1−→∞

. . . lim
nk−→∞

Pf

( n1∨
i1=1

. . .

nk∨
ik=1

∀x̄2 . . . Qx̄qχ(ti1 , . . . , tik , x̄2, . . . x̄q)
)

P3
= Pf (∃x̄1∀x̄2 . . . Qx̄qχ(x̄1, x̄2, . . . x̄q))

= Pf (ϕpre)

= Pf (ϕ).

“I H” indicates that we used the induction hypothesis on a sentence of quantifier rank q − 1.
The case of ϕpre = ∀xχ(x) is analogous, simply replace the disjunctions by conjunctions.

Theorem 8. If EL is finitely generated and g is regular, then

{B∀† } = maxentEL = {P †Ω}.

Proof. By Proposition 24 we only need to convince ourselves that B∀† satisfies P1 on L 6∃, P2 on L6∃, P3
and P4 in order to conclude that B∀† ∈ PL. Note that we have done so in Theorem 6, Proposition 23 and
Corollary 7. So all B∀† are probability functions.

All B∀† agree on L 6∃ with P †Ω. Two different probability functions have to disagree on a quantifier-free
sentence (Gaifman’s theorem). Hence, B∀† is a unique and equal to P †Ω.

We should point out that (∀*) was only used in Proposition 23. We showed that (*) alone is enough
to force that B† satisfies P1, P2 on L 6∃, B†(∃xθ(x)) ≥ limn−→∞B†(

∨n
i=1 θ(ti)) and P4.

In sum, then, by adding invoking two new considerations, (*) and (∀*), one can show that the
Probability norm must hold on a predicate language with quantifiers. Since the Calibration and
Equivocation norms are already forced on the quantifier-free sentences, and probabilities on these
quantifier-free sentences determine those of the quantified sentences, all the norms of objective
Bayesianism hold on L∃, assuming that the weighting function is regular and the evidence is finitely
generated.

6. More Complex Evidence

The question arises as to which functions have an optimal loss profile when EL is not finitely
generated. In Section 6.2 we shall present a tractable case and show that in that example the function
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with maximal standard entropy has the best loss profile. First, in Section 6.1, we shall see that not all
examples admit of such an analysis. In particular, we shall analyse an example in some depth in which
{P †} = maxentEL but P † 6∈ minlossBL. Thus, when evidence is not finitely generated, the optimal
loss profile may not be achievable by maximising entropy.

6.1. When Losses Cannot Be Minimised

We shall now develop an example in which the minimax theorem fails: P †Ω /∈ minlossBL, as
we shall see in Proposition 27. However, the entropy identity, P† = {P †Ω} = maxentEL, does
hold (Proposition 25 and Proposition 26). The connection with optimal loss fails to obtain since
minlossBL = ∅ (Proposition 30). Thus, there is no belief function with an optimal loss profile in this sort
of example. Nevertheless, certain equivocal functions P̄ †N derived from the maximal entropy function
come arbitrarily close to having the best loss profile (Proposition 29 and Proposition 31). So, while there
is no unique function with the best loss profile, the functions P̄ †N have a very good loss profile.

In the following discussion we shall focus on the most simple possible language, L = LU , which
contains only one relation symbol, U , which is unary. We focus on this simple language since the
minimax results already fail here and considering more expressive languages does not lead to new
insights while creating more notational issues. As a technical convenience, we extend the notion of
a loss profile to arbitrary functions f : SL −→ [0, 1], not merely normalised belief functions.

The example that we shall consider is generated by the following evidence:

E = {¬U1ti → ¬U1t1 : i = 1, 2, . . .}.

Let ωnk ∈ Ωn be the k-th n-state of L = LU , i.e., ωn1 :=
∧n
l=1 ¬Utl, ωn2 :=

∧n−1
l=1 ¬Utl ∧

Utn, . . . , ωn2n :=
∧n
l=1 Utl. The set of calibrated probability functions can be characterised in

various ways:

EL = {P ∈ PL : P (¬U1ti → ¬U1t1) = 1, i = 1, 2, . . .}
= {P ∈ PL : P (ωn+1

1 ) = P (ωn1 ) for all n ≥ 1}
= {P ∈ PL : P (ωni ) = 0 for 2 ≤ i ≤ 2n−1, n = 1, 2, . . . }
= {P ∈ PL : P (ωn2 ) = 0 for all n ≥ 2}
= {P ∈ PL : P (¬Ut1 ∧ Utn) = 0 for all n ≥ 2}
= {P ∈ PL : P (ωn+1

1 |ωn1 ) = 1 for all n ∈ N}
= {P ∈ PL : P (ωn+1

2 |ωn1 ) = 0 for all n ∈ N}
= {P ∈ PL : P (∀x(Ut1 ∨ ¬Ux)) = 1}
= {P ∈ PL : P (∃x(¬Ut1 ∧ Ux)) = 0}

The last two characterisations employ quantifiers; adding quantifiers to the language enables a finite
representation of what is essentially an infinitely generated evidence set. Hence in Definition 5, we
specified that an evidence set is finitely generated just if it generated by quantifier-free sentences of
some finite sublanguage.

We now begin our analysis of this example:
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Proposition 25. If g = gΩ or if g is symmetric and inclusive, then P† = {P †Ω} and P †Ω is not open-minded.

Proof. For all n ∈ N

En = {P ∈ PL 6∃n : P (ωni ) = 0 for all 2 ≤ i ≤ 2n−1}.

Then, by Landes and Williamson [4] (Corollary 6, p. 3574) for symmetric and inclusive g

P †n(ωn1 ) = P †n(ωni ) =
1

2n−1 + 1
for all 2n−1 + 1 ≤ i ≤ 2n

and so for all n ∈ N and all 1 ≤ i ≤ 2n−1

lim
n−→∞

P †n(ωn1 ) = lim
n−→∞

P †n(ω1
1)

= lim
n−→∞

1

2n−1 + 1

= 0.

For all n ∈ N and i ∈ {1, 2n−1 + 1, . . . , 2n}

P †(ωni ) =
1

2n−1
.

The result for g = gΩ follows in the same way as above.

We shall note for later reference that for all n ≥ 2

Hn
Ω(P †n) =− log

1

2n−1 + 1
> − log

1

2n−1
= Hn

Ω(P †Ω).

Proposition 26. If g = gΩ or if g is regular, then

maxentEL = {P †Ω}.

Proof. First note that [EL] = EL.
We shall show that for all Q ∈ EL \ {P †Ω} there exists an N ∈ N such that for all n ≥ N we have

Hn
Ω(P †Ω) > Hn

Ω(Q) and Hn
g (P †Ω) > Hn

g (Q).
Since Q 6= P †Ω there exists a minimal k ∈ N and a k-state ν ∈ Ωk such that Q(ν) > P †Ω(ν) ≥ 0.
Case 1 ν = ωk1 .
To simplify notation let α := P †k (ν) = P †k (ωn1 ) > 0 for all n ≥ 1. Let us now define a function

Q′ ∈ EL \ {P †Ω}. Note that since we want Q′ to be a member of EL we need to let Q′(ωn1 ) := Q′(ω1
1) for

all n ∈ N. Now let for all n ∈ N

Q′(ωn1 ) := α > 0

Q′(ωni ) := 0 for 2 ≤ i ≤ 2n−1

Q′(ωni ) :=
1− α
2n−1

for all 2n−1 + 1 ≤ i ≤ 2n.

The restriction operator �n applied to some belief function B continuous to refer to the restriction of
B to L 6∃n, rather than to the restriction to Ln.
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Note that for all n ≥ 1

{Q′�n} = arg sup
P∈En

P (ωn1 )=α

Hn
g (P )

since entropy maximisers assign n-states the same degree of belief whenever possible [4] (Corollary 7,
p. 3577). Thus, Hn

g (Q′) ≥ Hn
g (Q) for all n ∈ N. Also, Hn

Ω(Q′) ≥ Hn
Ω(Q) for all n ∈ N.

Let us compute for n ≥ k

Hn
Ω(P †Ω)−Hn

Ω(Q′) =− log(
1

2n−1
)− [−α log(α)− (1− α) log(

1− α
2n−1

)]

= log(2n−1) + α log(α) + (1− α)(log(1− α)− log(2n−1))

= log(2n−1)− (1− α) log(2n−1) + α log(α) + (1− α) log(1− α)

=α(n− 1) log(2) + α log(α) + (1− α) log(1− α).

It follows that for all large enough n ∈ N that Hn
Ω(P †Ω) > Hn

Ω(Q′) ≥ Hn
Ω(Q).

For regular g we now find

Hn
g (P †Ω)−Hn

g (Q′) = g(πn) · [α(n− 1) log(2) + α log(α) + (1− α) log(1− α)]

−
∑

π∈Πn\{πn}

g(π)
∑
F∈π

◦P †Ω(F ) log(◦P †Ω(F ))− ◦Q′(F ) log(◦Q′(F )).

So, as long as
∑

π∈Πn\{πn} g(π) goes to zero quickly enough it follows thatHn
g (P †Ω) > Hn

g (Q′) ≥ Hn
g (Q)

for large enough n. Corollary 6 shows that this is indeed the case for regular g.
Case 2 ν ∈ {ωk2 , . . . , ωk2k−1}. Since Q is assumed to be calibrated, Q ∈ EL, this case cannot occur.
Case 3 ν ∈ {ωk

2k−1+1
, . . . , ωk

2k
}.

Case 3A Q(ωk1) = 0.
Then Q(ω1

1) = 0. But for all n ∈ N

arg sup
P∈En
P (ω1

1)=0

Hn
Ω(P ) = {P †Ω�n} = arg sup

P∈En
P (ω1

1)=0

Hn
g (P ).

Since Q 6= P †Ω it follows that there exists some N ∈ N such that Q�n 6= P †Ω�n for all n ≥ N . But then
Hn
g (P †Ω) > Hn

g (Q) and Hn
Ω(P †Ω) > Hn

Ω(Q) for all n ≥ N .
Case B Q(ωk1) > 0.
Then Q(ωk1) > 0 = P †Ω(ωk1). Proceed as in Case 1.

Proposition 27. If g = gΩ or if g is regular, then P †Ω /∈ minlossBL.

Proof. We here show that there exists an R ∈ EL such that for all n ∈ N it holds that Sng (R,P †) =

SnΩ(R,P †) = ∞ and that there exists an open-minded Q ∈ EL such that for all n ∈ N we have
supP∈EL S

n
Ω(P,Q) ≤ supP∈EL S

n
g (P,Q) <∞.

Note that the probability function R ∈ PL with R(ωn1 ) := 1. Then Sng (R,P †Ω) = SnΩ(R,P †Ω) =∞ for
all n ∈ N.
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We shall now construct an open-minded Q ∈ EL as advertised. For all n ∈ N let

Q(ωn1 ) : =
1

2

Q(ωni ) : = 0 for all 2 ≤ i ≤ 2n−1

Q(ωni ) : =
1

2n
for all 2n−1 + 1 ≤ i ≤ 2n.

Thus, Q is open-minded and hence supP∈EL S
n
Ω(P,Q) ≤ supP∈EL S

n
g (P,Q) < +∞ for all n ∈ N.

Note that Condition 1 of Definition 21 is solely responsible for the fact that P †Ω /∈ minlossBL.
Condition 2 has played no role here.

So far, we have established that P † = P †Ω does not have the best loss profile. The question arises
whether there exists a belief function B ∈ BL which is a minimal element of ≺, i.e., B ∈ minlossBL.

Proposition 28. If g = gΩ, then

minlossBL = ∅ = minlossPL = minlossEL.

Initially, one might suspect that minlossBL = ∅ would be somehow due to the fact that the SnΩ do
not take beliefs in all sentences into account. This is not the case. As we will see, minlossPL = ∅ =

minlossEL holds. That is, even when restricting attention to probability functions, whose values on the
n-states completely determine degrees of beliefs in all other sentences, we cannot find a function with
an optimal loss profile.

Proof. Suppose for contradiction that Q ∈ minlossPL \ {P †Ω}.
IfQ is not open-minded, then there exists anN ∈ N, an F ⊆ ΩN and an P ∈ EL such that ◦P (F ) > 0

and ◦Q(F ) = 0. But then there has to exists some ω ∈ ΩN with ω ∈ F such that P (ω) > 0 = Q(ω)

since Q and P are probability functions. Thus, for all n ≥ N there exists some ν ∈ Ωn such that ν � ω

with P (ν) > 0 = Q(ν). But then SnΩ(P,Q) = +∞ for all n ≥ N .
In the proof of Proposition 27 we constructed an open-minded function Q+ ∈ EL. For Q+ we have

for all n that supP∈EL S
n
Ω(P,Q+) < +∞. So, any Q ∈ minlossPL has to be open-minded.

Case 1 Q ∈ minlossPL and Q /∈ EL.
Since Q ∈ PL \ EL there has to exist a minimal k ≥ 2 such that Q(ωk2) > 0.
We next define a probability function Q′ ∈ EL with the following construction for all n ≥ 2

Q′(ωli) := Q(ωli) for all 1 ≤ l ≤ k − 1 and all i

Q′(ωn1 ) := Q(ωk1) for all n ∈ N

Q′(ωni ) := 0 for all n ≥ k and all 2 ≤ i ≤ 2n−1

Q′(ωni ) := Q(ωni ) for all 2n−1 + 1 ≤ i ≤ 2n.

It follows that for all n ≥ k and all ω ∈ Ωn \ {ωn2 , . . . , ωn2n−1} and all P ∈ En such that P (ω) > 0 it
holds that Q(ω) ≤ Q′(ω). For all large enough n ∈ N we then find

sup
P∈EL

SnΩ(P,Q) ≥ − log min
2n−1+1≤i≤2n

{Q(ω)}

= − log min
2n−1+1≤i≤2n

{Q′(ω)}

= sup
P∈EL

SnΩ(P,Q′).
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Hence, there has to exists a Q′ ∈ EL ∩minlossPL with Q′ 6= P †Ω.
Case 2 Q ∈ minlossPL and Q ∈ EL \ {P †Ω}.
Thus, 0 < Q(ω1

1) = Q(ωn1 ) for all n ≥ 2. Let N ≥ 3 be such that Q(ωN1 ) >

min{Q(ωN2N−1+1), . . . , Q(ωN2N )}. For n ≥ N let

Ω−n := arg min{Q(ωn2n−1+1), . . . , Q(ωn2n)} ⊂ Ωn.

We now find for all fixed n ≥ N that

sup
P∈EL

SnΩ(P,Q) = − logQ(ωn−) for all ωn− ∈ Ω−n .

We shall now define a function R ∈ EL \ {P †Ω} by letting for all n ≥ 2:

R(ωn1 ) :=
Q(ωn1 )

2
=
Q(ω1

1)

2

R(ωni ) := 0 for all 2 ≤ i ≤ 2n−1

R(ωni ) := Q(ωni ) +
Q(ω1

1)

2

2

|Ωn|
> Q(ωni ) for all 2n−1 + 1 ≤ i ≤ 2n.

That is, R =
Q+P †Ω

2
.

For large enough M ∈ N it holds for all n ≥M that

R(ωn1 ) > min{R(ωn2n−1+1), . . . , R(ωn2n)}.

Furthermore, for all n ≥ max{M,N} it holds that

arg min{Q(ωn2n−1+1), . . . , Q(ωn2n)} = arg min{R(ωn2n−1+1), . . . , R(ωn2n)}

and hence for all large enough fixed n ∈ N and all ωn− ∈ Ω−n

sup
P∈EL

SnΩ(P,R) = − logR(ωn−) < − logQ(ωn−) = sup
P∈EL

SnΩ(P,Q).

Thus, R has a better loss profile than Q. Hence, Q /∈ minlossPL and Q /∈ minlossEL.
Finally, let us consider loss profiles for B ∈ BL \ PL.
Case 3 B ∈ minlossBL and B /∈ PL.
For all P ∈ PL, the expression SnΩ(P,B) only depends on the degrees of beliefB assigns to sentences

which represent an n-state. So, the degree of belief in a sentence ϕ ∈ SL which does not n-represent
an n-state are ignored by SnΩ(P,B) for all n and all P ∈ PL. If B agrees with some probability function
P ∈ PL on all sentences of SL 6∃ which n-represent an n-state, then B and P are equally preferable
according to ≺. As we saw above, for all P ∈ PL there exists some Q ∈ PL with Q ≺ P . Thus, B
cannot be a minimal element of ≺.

We can hence assume that for all P ∈ PL there exists some sentence ϕ ∈ SL 6∃n which n-represents an
n-state such that B(ϕ) 6= P (ϕ). Since no P ∈ PL is dominated, it follows that B(ϕ) < P (ϕ).

First define a function B0 as follows:

B0(ϕ) := inf
ρ∈%n
ρω=ϕ

B(ρω), if such an n ∈ N and such a ρ ∈ %n exist,

B0(ϕ) := 0 otherwise.
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B0, which does not agree with any probability function on L 6∃ has been constructed in such a way that B
and B0 are equally preferred according to ≺.

Next define a function B+ by first letting for all fixed N ∈ N

B+(ϕ) := sup
n≥N

∑
ν∈Ωn
ν�ω

B0(ν)

for all sentences ϕ ∈ SL∃N which are logically equivalent to an N -state. Put B+(ψ) := 0 for all other
ψ ∈ SL∃.

Since B+ dominates B0 the loss profile of B+ cannot be worse than that of B0. Furthermore, note
that for all N ∈ N, all ω ∈ ΩN and all n > N it holds that

B+(ω) ≥
∑
ν∈Ωn
ν�ω

B+(ν).

Let α := limn−→∞
∑

ω∈Ωn
B+(ω). For α = 0 it follows by the usual reasoning that B+ cannot have an

ideal loss profile. This leads to a contradiction in the usual way.
For 1 ≥ α > 0 define a function B∞ by first letting for all sentences ϕ ∈ SL∃ which are logically

equivalent to some n-state ω

B∞(ϕ) :=
1

α
lim
n−→∞

∑
ν∈Ωn
ν|=ϕ

B+(ν).

For all other sentences ϕ ∈ SL∃ let B∞(ϕ) := 0.
Observe that for all k ∈ N and all ω ∈ Ωk

B∞(ω) =
1

α
lim
n−→∞

∑
ν∈Ωn
ν|=ω

B+(ν)

=
1

α
lim
n−→∞

∑
λ∈Ωk+1

λ|=ω

∑
ν∈Ωn
ν|=λ

B+(ν)

=
∑

λ∈Ωk+1

λ|=ω

B∞(λ).

Finally, we note that B∞ agrees with some P ∈ PL on all sentences in SL∃ which represent a state.
Then B cannot have a better loss profile than P . As we saw in Case1 and Case2, for all P ∈ PL there
exists a Q ∈ PL which has a strictly better loss profile than P . This contradicts B ∈ minlossBL.

Denote by P̄ †N the unique probability function in EL satisfying for all n ∈ N

P̄ †N(ωn1 ) = P †N(ωn1 ) = P †N(ω1
1) =

1

2N−1 + 1

P̄ †N(ωni ) = 0 for all 2 ≤ i ≤ 2n−1

P̄ †N(ωni ) =
(

1− 1

2N−1 + 1

)
· 2

|Ωn|
=

1
|ΩN |

2
+ 1

|ΩN |
|Ωn|

for all 2n−1 + 1 ≤ i ≤ 2n.

That is, P̄ †N agrees with P̄ †N on LN and equivocates beyond LN as much as possible while satisfying
P̄ †N ∈ EL.
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Proposition 29. For all ε > 0 there exists an N ∈ N such that for all n ≥ N

sup
P∈EL

SnΩ(P, P̄ †N)− sup
P∈EL

SnΩ(P, P †n) ≤ ε.

Proof. For all large enough N ∈ N and even larger n ∈ N we find

0 ≤ sup
P∈EL

SnΩ(P, P̄ †N)− sup
P∈EL

SnΩ(P, P †n)

= − log
( |ΩN |

2
|ΩN |

2
+ 1

2

|Ωn|

)
+ log

( 1
2n

2
+ 1

)
= − log

( 2N−1

2N−1 + 1

)
+ log

(2n

2

)
+ log(

1

2n−1 + 1
)

= − log
( 2N−1

2N−1 + 1

)
+ log

( 2n−1

2n−1 + 1

)
.

For ε > 0 let N > 2 be such that 0 < − log 2N−1

2N−1+1
< ε. Then for all n ≥ N it holds that 0 >

log 2n−1

2n−1+1
> log 2N−1

2N−1+1
. For n ≥ N large enough we now obtain

0 ≤ sup
P∈EL

SnΩ(P, P̄ †N)− sup
P∈EL

SnΩ(P, P †n)

= − log
( 2N−1

2N−1 + 1

)
+ log

( 2n−1

2n−1 + 1

)
< ε.

Having considered loss for g = gΩ we now investigate loss for regular g.

Proposition 30. If g is regular, then minlossBL = ∅.

Proof. We will show that ≺ has no minimal element. Suppose for contradiction that B ∈ BL is such a
minimal element.

Define a function B′ : SL −→ [0, 1] by

B′(ϕ) := 0 for all ϕ ∈ SL for which there exists an n ∈ N with
2n−1∨
i=2

ωni � ϕ

B′(ψ) := B(ψ) else.

B′ and B are equally preferable according to ≺ since P (ϕ) = 0 for all P ∈ EL and all such ϕ.
For all ϕ ∈ SL 6∃ let nϕ be the minimal n such that ϕ ∈ SL 6∃nϕ . Now define a function Binf by first

letting

Binf(ϕ) = inf
ψ∈SL 6∃nϕ
|=ϕ↔ψ

B′(ψ).

PutBinf(ϕ) := B′(ϕ) for all other ϕ ∈ SL∃. For all ϕ ∈ SL it holds thatBinf(ϕ) ≤ B(ϕ). Furthermore,
Binf is equally preferable to B′ according to ≺. We now consider cases to show that there is a function
with a strictly better loss profile than Binf , which contradicts our assumption that B ∈ minlossBL.



Entropy 2015, 17 2523

Case A There exists some N ∈ N such that for all n ≥ N , Binf and P †Ω agree on all n-states.

Since B 6= P †Ω it holds that Binf 6= P †Ω and hence B 1
2

:=
Binf+P †Ω

2
6= P †Ω. Thus, for all n ≥ N B 1

2

and P †Ω agree on all n-states. But then for all n ≥ N all F ⊆ Ωn and all ρ ∈ %n Binf(ρF ) ≤ B 1
2
(ρF ).

Hence, for all P ∈ PL it holds that Sng (P,B 1
2
) ≤ Sng (P,Binf).

From the above we have that for all n ≥ N there exists an F ⊆ Ωn such that F \{ωN2 , . . . , ωN2N−1} 6= ∅
and such that Binf(ρF ) < B 1

2
(ρF ) for some ρ. Thus, there exists some P ∈ EL with ◦P (F ) > 0. Then

Sng (P,B 1
2
) < Sng (P,Binf) for this P ∈ PL and all n ≥ N .

Thus, B 1
2
≺ Binf by Condition 2 of Definition 21.

Case B There exist infinitely many n ∈ N where Binf and P †Ω agree on all n-states and infinitely many
n ∈ N many where they do not agree on all n-states.

Since P †Ω is a probability function it follows that for all n ∈ N, all F ⊆ Ωn and all ρ ∈ %n Binf(ρF ) ≤
P †Ω(ρF ) has to hold. Now proceed as in Case A.

Case C The number of n ∈ N for which Binf and P †Ω agree on all n-states is finite (possibly zero).
Case C1 There exists an infinite set J ⊆ N, J = {j1, j2, . . . }, such that limi−→∞

∑
ω∈Ωji

Binf(ω) = 1.

If P †Ω dominates Binf , we are done.
If P †Ω does not dominate Binf , then define a function B1 ∈ PL by letting for all n ∈ N and all F ⊆ Ωn

◦B1(F ) := lim
i−→∞

∑
ω∈Ωji
ω∈F

Binf(ω)

and requiring thatB1 satisfies logical equivalence on L 6∃. For all ϕ ∈ SL∃\SL 6∃ use Gaifman’s condition
to ensure that B1 is a probability function.

Since we assumed that P †Ω does not dominate Binf B1 6= P †Ω holds. Furthermore, B1 dominates Binf .
So, the loss profile of B1 ∈ PL is at least equally good as that of B.

We complete this proof by showing that PL ∩minlossBL = ∅.
Now suppose for contradiction that there exists a function Q ∈ PL∩minlossBL such that Q(ωn2 ) > 0

for some n ≥ 2, i.e., Q /∈ EL. It needs to hold that Q(ωn1 ) > 0 for all n ∈ N (open-mindedness).
Let k ≥ 2 be minimal such that Q(ωk2) > 0. Now define a function R ∈ PL by letting for all n > k

R(ωki ) : =
Q(ωki ) + P †Ω(ωki )

2
for all 1 ≤ i ≤ 2k

R(ωn1 ) : = R(ωk1) =
Q(ωk1)

2
=
Q(ωk1) + P †Ω(ωk1)

2
for all n > k

R(ωn2n−k+1) : =
Q(ωk2) + P †Ω(ωk2)

2
=
Q(ωk2)

2
> 0

R(ωni ) : =
Q(ν) + P †Ω(ν)

2
for all 2n−1 + 1 ≤ i ≤ 2n where ν ∈ Ωk with ωni � ν

R(ωni ) : = 0 otherwise.

That is, R is the arithmetic mean of Q and P †Ω on Lk. Beyond Lk, R equivocates under the k-states

which imply Ut1. For such n-states R(ωni ) =
Q(ν)+ 1

2n−1

2
holds. Beyond Lk, there are only two n-states

which imply ¬Ut1 which are assigned non-zero probability, wn1 and wn
2n−k+1 .

We now show that R has a strictly better loss profile than Q what contradicts Q ∈ minlossBL.
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Let ν−k ∈ arg minω∈{ωk
2k−1+1

,...,ωk
2k
}Q(ω). Trivially, 0 < Q(ν−k ) < 1

2k−1 . Next note that for all n ≥ k

which are large enough it holds that

min
ω∈{ωn1 ,ωn2n−1+1

,...,ωn2n}
R(ω) =

1
2k−1 +Q(ν−k )

2
· |Ωk|
|Ωn|

and that

min
ω∈{ωn

2n−1+1
,...,ωn2n}

Q(ω) ≤ Q(ν−k ) · |Ωk|
|Ωn|

.

We now find for all large enough n > k that

sup
P∈EL

Sng (P,Q)− sup
P∈EL

Sng (P,R) ≥ g(πn) log
(
Q(ν−k ) · |Ωk|

|Ωn|

)
− sup

P∈EL
Sng (P,R)

≥g(πn)
(
− log

(
Q(ν−k ) · |Ωk|

|Ωn|

)
− sup

P∈EL
SnΩ(P,R)

)
− sup

P∈EL
−

∑
π∈Πn\{πn}

g(π)
∑
F∈π

◦P (F ) log ◦R(F ).

Whenever ◦P (F ) > 0 with F ⊆ Ωn, then ◦R(F ) is bounded from below by 1
2n

. Hence, the last term in
the above sum converges to zero, since g is regular.

We now obtain the contradiction as follows: there exists some ε > 0 such that for all large enough
n ≥ k it holds that

− log
(
Q(ν−k )· |Ωk|

|Ωn|

)
− sup

P∈EL
SnΩ(P,R)

= − log
(
Q(ν−k ) · |Ωk|

|Ωn|

)
+ log

( 1
2k−1 +Q(ν−k )

2
· |Ωk|
|Ωn|

)
= log

( 1
2k−1 +Q(ν−k )

2

)
− logQ(ν−k )

≥ ε.

We have thus shown that if PL ∩minlossBL 6= ∅, then there exists some Q ∈ EL ∩minlossBL.
Case C1A Q(ω1

1) = 0. Then Q has infinite worst-case expected loss for all n ∈ N and we are done.
Case C1B Q(ω1

1) > 0.
By open-mindedness, Q(ω1

1) < 1 has to hold.
For all n ∈ N let ωn− ∈ arg minω∈{ωn

2n−1+1
,...,ωn2n}Q(ω). From Q ∈ EL we now obtain that for all large

enough n there exists a probability function R ∈ arg supP∈EL S
n
Ω(P,Q) such that R(ωn−) = 1.

Next, define a probability function Q′ ∈ EL where Q′(ωn1 ) := Q′(ω1
1) := Q(ω1

1) and Q′ equivocates
over Ut1, Q′(ωni ) := Q(ω1

2) |Ω1|
|Ωn| for all n ∈ N and for all 2n−1 + 1 ≤ i ≤ 2n. Assume for contradiction

that Q 6= Q′.
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We next show that Q′ ≺ Q. This contradicts Q ∈ minlossBL. To this end let us note that for all large
enough n

sup
P∈EL

Sng (P,Q′) ≤ sup
P∈EL

g(πn)SnΩ(P,Q′) + sup
P∈EL

−
∑

π∈Πn\{πn}

g(π)
∑
F∈π

◦P (F ) log ◦Q′(F )

≤ −g(πn) logQ′(ωn2n) + sup
P∈EL

−
∑

π∈Πn\{πn}

g(π)
∑
F∈π

◦P (F ) log Q′(ωn2n)

= −g(πn) logQ′(ωn2n)− log
(
Q′(ω1

2)
|Ω1|
|Ωn|

)
·

∑
π∈Πn\{πn}

g(π).

Since whenever ◦P (F ) > 0, then ◦Q′(F ) is bounded from below by Q′(ωn2n).
Thus, for all large enough n we have

0 ≤ sup
P∈EL

Sng (P,Q′)− g(πn) sup
P∈EL

SnΩ(P,Q′)

≤ − log
(
Q′(ω1

2)
|Ω1|
|Ωn|

)
·

∑
π∈Πn\{πn}

g(π).

g is regular, hence, this last term converges to zero. We thus obtain

lim
n−→∞

sup
P∈EL

g(πn)SnΩ(P,Q′)− sup
P∈EL

Sng (P,Q′) = 0. (17)

Since Q 6= Q′, Q,Q′ ∈ EL and Q(ω1
1) = Q′(ω1

1), there has to exist some minimal k ∈ N and a minimal
i ≥ 2k−1 + 1 such that Q(ωki ) < Q′(ωki ). We now find for all large enough n that

sup
P∈EL

Sng (P,Q)− g(πn) sup
P∈EL

SnΩ(P,Q′) ≥ g(πn) ·
(

sup
P∈EL

SnΩ(P,Q)− sup
P∈EL

SnΩ(P,Q′)
)

≥ g(πn) ·
(
− logQ(ωn−) + logQ′(ωn2n)

)
≥ g(πn) ·

(
− log

(
Q(ωki )

|Ωk|
|Ωn|

)
+ log

(
Q′(ωk2i)

|Ωk|
|Ωn|

))
≥ g(πn) ·

(
− logQ(ωki ) + logQ′(ωki )

)
> 0.

Recall that there exists 0 < a ≤ b such that for all n ∈ N a ≤ g(πn) ≤ b holds. Hence, there exists some
constant c > 0 such that g(πn)(− logQ(ωki ) + logQ′(ωki )) ≥ c > 0. From (17) we conclude that for all
large enough n

sup
P∈EL

Sng (P,Q)− sup
P∈EL

Sng (P,Q′) > 0

holds. Thus, Q′ ≺ Q. So, Q /∈ minlossBL.
To complete the proof of Case C1B we show that there exists some N ∈ N such that P̄ †N has a strictly

better loss profile than Q′.
Let N ∈ N be such that P̄ †N(ω1

1) < Q′(ω1
1). Analogous to the above it holds that

lim
n−→∞

sup
P∈EL

Sng (P, P̄ †N)− sup
P∈EL

g(πn)SnΩ(P, P̄ †N) = 0. (18)
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It hence suffices to show that there exists some ε > 0 such that for large enough N ∈ N and all n ≥ N

g(πn) ·
(

sup
P∈EL

SnΩ(P,Q′)− sup
P∈EL

SnΩ(P, P̄ †N)
)
> ε.

We now recall that Q′(ω1
1) >

¯
P †N(ω1

1). The required inequality follows for large enough n ∈ N

sup
P∈EL

SnΩ(P,Q′)− sup
P∈EL

SnΩ(P, P̄ †N) = − log(
1−Q′(ω1

1)

2n−1
) + log(

1− P̄ †N(ω1
1)

2n−1
)

> ε.

Hence, P̄ †N ≺ Q′.
Case C2 There exist an α > 0 and an minimal N1 such that for all n ≥ N1

∑
ω∈Ωn

Binf(ω) ≤ 1 − α
holds.

We may assume that Binf is open-minded on L 6∃. Thus there has to exist some minimal N ≥ N1 such
that 0 < P †n(ω1

1) < Binf(ω1
1) for all n ≥ N . For all large enough n ≥ N we now find

1

g(πn)
sup
P∈EL

Sng (P,Binf) ≥ sup
P∈EL

SnΩ(P,Binf)

= max
ω∈Ωn\{ωn

2n−1+1
,...,ωn2n}

− logBinf(ω)

= − log( min
ω∈Ωn\{ωn

2n−1+1
,...,ωn2n}

Binf(ω))

≥ − log
1− α−Binf(ω1

1)

2n−1
.

Using (18) we find for all large enough n ∈ N

sup
P∈EL

Sng (P,Binf)− sup
P∈EL

Sng (P, P̄ †N) ≥g(πn) ·
(
− log

1− α−Binf(ω1
1)

2n−1
+ log

1− P †N(ω1
1)

2n−1

)
+
(

log(|Ωn|)− log(|ΩN |)− log(P †N(ωN2N ))
)
·

∑
π∈Πn\{πn}

g(π)

>0.

Proposition 31. For all regular g and all ε > 0 there exists an N ∈ N such that for all n ≥ N

sup
P∈EL

Sng (P, P̄ †N)− sup
P∈EL

Sng (P, P †n) ≤ ε.

Proof. Let ε > 0 be fixed. By (18) it suffices to show that there exists some N ∈ N such that for all
n ≥ N it holds that

0 ≤ sup
P∈EL

Sng (P, P̄ †N)− sup
P∈EL

Sng (P, P †n)

≤ g(πn) sup
P∈EL

SnΩ(P, P̄ †N)− g(πn) sup
P∈EL

SnΩ(P, P †n)

≤ ε.

Now simply note that we have proved this already in Proposition 29.
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Hence, for all ε > 0 there exists some N ∈ N such that for all n ≥ N and all Q ∈ BL

sup
P∈EL

Sng (P, P̄ †N)− sup
P∈EL

Sng (P,Q) ≤ sup
P∈EL

Sng (P, P̄ †N)− sup
P∈EL

Sng (P, P †n)

≤ ε.

Although, P̄ †N is not a minimal element of≺, the losses incurred by adopting any other B ∈ BL can only
be marginally better, eventually.

Thus, for fixed k and δ > 0 there exists an N ∈ N such that for all ϕ ∈ SLk |P̄ †N(ϕ) − P †Ω(ϕ)| < δ.
Hence, belief functions with an arbitrarily good loss can be found within an (Euclidean) neighbourhood
of P †Ω.

Since the P̄ †N are probability functions, there does not exist a B ∈ BL which dominates P̄ †N on L∃ or
on L6∃. Furthermore, the P̄ †N are optimal according to (∀*). The P̄ †N thus are almost optimal in all the
senses we here considered.

In essence, the phenomenon of minlossBL = ∅ arises from P̄ †n+1 having a strictly better loss profile
than P̄ †n but the limit of the sequence (P̄ †n)n∈N is P †Ω, which is not open-minded. This phenomenon is
reminiscent of min{x ∈ R : 0 < x < 1} = ∅, where it is possible to get ever closer to zero but it is
impossible to reach it.

6.2. When Losses Can Be Minimised

The analysis of Section 6.1, shows that there can be no general minimax theorem which covers any
evidence that is not finitely generated. On the other hand, we shall see in this section that for certain
natural cases evidence which cannot be finitely generated, minimax theorems do obtain.

Let L contain only one m-ary relation symbol, U , and c ∈ [0, 1]. Let νn1 :=∧
1≤i1,...,im≤n ¬Uti1ti2 . . . tim ∈ Ωn and let νn2 , . . . , ν

n
|Ωn| be an enumeration of the remaining n-states.

We shall consider the following example:

EL = {P ∈ PL : lim
n−→∞

P (νn1 ) = c}

= {P ∈ PL : P (∀x1x2 . . . xm¬Ux1x2 . . . xm) = c}.

Slightly less general versions of EL have attracted recent interest in the literature [18] (Example 3,
p. 95), [19] (Example 3.5, p. 172) and [1] (Example 5.7, p. 99). We here consider relations symbols U
of arbitrary arity, while previously U was taken to be unary.

First of all, if c = 0 and g is symmetric and inclusive, then P= ∈ EL and we immediately obtain that
P= = P †Ω and {P=} = maxentEL = minlossBL.

We shall assume from now on that c > 0.

Proposition 32. For symmetric and inclusive g it holds that P† = {P †} = {P †Ω} and P †Ω(νn1 ) = c+ 1−c
|Ωn|

and P †Ω(νni ) = 1−c
|Ωn| for all n ∈ N and all 1 ≤ i ≤ |Ωn|.

Proof. For all n ≥ 2 and symmetric and inclusive gn it holds that P †n(νn2 ) = P †n(νn2+i) for all 1 ≤ i ≤
|Ωn| − 2 by [4] (Corollary 7, p. 3577). Thus, there exists some λn ≥ 0 such that P †n(νn1 ) = λn and
P †n(νnk ) = 1−λn

|Ωn|−1
for all 2 ≤ k ≤ |Ωn|.
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For all n ∈ N, now define a function P1 ∈ [En] by P1(νn1 ) := 1. Then, define a convex combination of
the equivocator on En and P1 by Pλn := λnP1 + (1− λn)P=�n. Recall that gn is equivocator-preserving
(Proposition 7) and that Hn

g is strictly concave on Pn (Lemma 1). Thus, Hn
g (Pλn) > Hn

g (Pλ′n) for all
0 ≤ λn < λ′n ≤ 1.

On the one hand g-entropy strictly increases with decreasing λn on the other hand P †n ∈ [EL] imposes
the constraint P †n(νn1 ) ≥ c. Let N ∈ N be minimal with |ΩN | > 1

c
. Then for all n ≥ N it holds that

P †n(νn1 ) = c and P †n(νn2 ) = P †n(νn2+i) = 1−c
|Ωn|−1

for all 1 ≤ i ≤ |Ωn| − 2.
For all r ≥ N it follows that

P †r (νN2 ) = P †r (νr2)
|Ωr|
|ΩN |

=
1− c
|Ωr| − 1

|Ωr|
|ΩN |

P †r (νN1 ) = 1− (|ΩN | − 1) · P †r (νN2 ).

Thus, for all r ≥ N we find

P †(νr2) = lim
n−→∞

P †n(νr2) =
1− c
|Ωr|

P †(νr1) = lim
n−→∞

P †n(νr1)

= 1− (|Ωr| − 1)P †(νr2)

=
|Ωr| − (|Ωr| − 1)(1− c)

|Ωr|

= c+
1− c
|Ωr|

= c+ P †(νr2).

Thus, for all n ∈ N P †(νn1 ) = c+ 1−c
|Ωn| and P †(νn2 ) = 1−c

|Ωn| .
We now show that P † is indeed a probability function. We need to show that

∑
ν∈Ωn+1
ν�ω

P †(ν) = P †(ω)

for all n ∈ N and all ω ∈ Ωn:

P †(νni ) =
1− c
|Ωn|

=
|Ωn+1|
|Ωn|

1− c
|Ωn+1|

=
|Ωn+1|
|Ωn|

P †(νn+1
i ) for all 2 ≤ i ≤ |Ωn|

P †(νn1 ) =c+
1− c
|Ωn|

=c+
1− c
|Ωn+1|

+ (
|Ωn+1|
|Ωn|

− 1)
1− c
|Ωn+1|

=P †(νn+1
1 ) + (

|Ωn+1|
|Ωn|

− 1)P †(νn+1
2 ).

Finally, observe that P†n = arg supP∈En H
n
Ω(P ). Hence, P† = {P †Ω}.

Proposition 33. If g = gΩ or if g is regular, then maxentEL = {P †Ω}.

Proof. Let Q ∈ EL \ {P †Ω}. For regular g, it suffices to show that there exists an N ∈ N such that for all
n ≥ N Hn

g (Q) < Hn
g (P †Ω) holds.

Since Q 6= P †Ω there has to exist a minimal N ∈ N and an N -state ω′ ∈ ΩN \ {νN1 } such that
Q(ω′) 6= P †Ω(ω′).
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Now define a function Q′ : SL −→ [0, 1] by requiring that Q′ respects logical equivalence, Q and Q′

agree on SLN ,

• Q′(ν ′) := |ΩN |
|Ωn|Q(ω′) for all n > N all ν ′ ∈ Ωn with ν ′ � ω′,

• Q′(νn1 ) := Q(νn1 ) for all n > N and

• Q′(ν) :=
1−Q(νn1 )−Q(ω′)

|Ωn|−1− |Ωn||ΩN |
for all n > N and all ν ∈ Ωn \ {νn1 } with ν 2 ω′.

In general, Q′ is not a probability function because

Q′(νn1 ) <
∑

ω∈Ωn+1
ω�νn1

Q′(ω).

Note that for all n ≥ N Hn
Ω(Q) ≤ Hn

Ω(Q′) holds.
We now show that for all large enough n Hn

Ω(Q′) < Hn
Ω(P †Ω) holds. Let us first compute

−Hn
Ω(Q′) =Q(νn1 ) log(Q(νn1 )) +

( |Ωn|
|ΩN |

|ΩN |
|Ωn|

Q(ω′)
)

log
Q(ω′) · |ΩN |
|Ωn|

+ (1−Q(νn1 )−Q(ω′)) log
1−Q(νn1 )−Q(ω′)

|Ωn| − 1− |Ωn|
|ΩN |

=Q(νn1 ) log(Q(νn1 )) +Q(ω′) · (log(Q(ω′)) + log(
|ΩN |
|Ωn|

))

+ (1−Q(νn1 )−Q(ω′)) ·
(

log(
1−Q(νn1 )−Q(ω′)

|ΩN | − |ΩN ||Ωn| − 1
) + log(

|ΩN |
|Ωn|

)
)

=Q(νn1 ) log(Q(νn1 )) +Q(ω′) log(Q(ω′)) + (1−Q(νn1 )) log(
|ΩN |
|Ωn|

)

+ (1−Q(νn1 )−Q(ω′)) · log(
1−Q(νn1 )−Q(ω′)

|ΩN | − |ΩN ||Ωn| − 1
).

Since

Hn
Ω(P †Ω) =− (c+

1− c
|Ωn|

) log(c+
1− c
|Ωn|

)− (|Ωn| − 1)
1− c
|Ωn|

log(
1− c
|Ωn|

)
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we now find with limn−→∞Q
′(νn1 ) = c that

lim
n−→∞

Hn
Ω(P †Ω)−Hn

Ω(Q′) = −c log(c) + lim
n−→∞

(
−(|Ωn| − 1)

1− c
|Ωn|

log(
1− c
|Ωn|

)

+Q(νn1 ) log(Q(νn1 )) +Q(ω′) log(Q(ω′)) + (1−Q(νn1 ))(log(
|ΩN |
|Ωn|

))

+ (1−Q(νn1 )−Q(ω′)) · (log(
1−Q(νn1 )−Q(ω′)

|ΩN | − |ΩN ||Ωn| − 1
))
)

=�����−c log(c)− (1− c) log(1− c) + lim
n−→∞

((1− c)(|Ωn| − 1)

|Ωn|
log(|Ωn|)

�����
+c log(c) +Q(ω′) log(Q(ω′)) + (1−Q(νn1 ))(log(

|ΩN |
|Ωn|

))
)

+ (1− c−Q(ω′)) · (log(
1− c−Q(ω′)

|ΩN | − 1
))

=− (1− c) log(1− c) +Q(ω′) log(Q(ω′))

+ (1− c−Q(ω′)) · (log(
1− c−Q(ω′)

|ΩN | − 1
))

+ lim
n−→∞

((1− c)(|Ωn| − 1)

|Ωn|
log(|Ωn|)

+ (1−Q(νn1 ))(log(|ΩN |)− log(|Ωn|))
)

=− (1− c) log(
1− c
|ΩN |

) +Q(ω′) log(Q(ω′))

+ (1− c−Q(ω′)) · (log(
1− c−Q(ω′)

|ΩN | − 1
))

+ lim
n−→∞

(1− c)(|Ωn| − 1)

|Ωn|
log(|Ωn|)− (1−Q(νn1 )) log(|Ωn|)

Q(ν1
n)≥c
≥ − (1− c) log(

1− c
|ΩN |

) +Q(ω′) log(Q(ω′))

+ (1− c−Q(ω′)) · (log(
1− c−Q(ω′)

|ΩN | − 1
))

+ lim
n−→∞

(1− c)(|Ωn| − 1)

|Ωn|
log(|Ωn|)− (1− c) log(|Ωn|)

=− (1− c) log(
1− c
|ΩN |

) +Q(ω′) log(Q(ω′))

+ (1− c−Q(ω′)) · (log(
1− c−Q(ω′)

|ΩN | − 1
))

+ (1− c) lim
n−→∞

(
|Ωn| − 1

|Ωn|
− 1) log(|Ωn|)

=− (1− c) log(
1− c
|ΩN |

)

+Q(ω′) log(Q(ω′)) + (1− c−Q(ω′)) · (log(
1− c−Q(ω′)

|ΩN | − 1
)).
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Since Q(ω′) 6= 1−c
|ΩN |

there exists some ε > 0 such that for all large enough n

Hn
Ω(P †Ω)−Hn

Ω(Q′) > ε > 0.

This establishes the result for g = gΩ.
We now turn to regular g.

Hn
g (P †Ω)−Hn

g (Q) ≥ Hn
Ω(P †Ω)−Hn

Ω(Q)−
∑

π∈Πn\{πn}

g(π)
∑
F∈π

◦Q(F ) log ◦Q(F )

≥ Hn
Ω(P †Ω)−Hn

Ω(Q′)−
∑

π∈Πn\{πn}

g(π)
∑
F∈π

◦Q(F ) log ◦Q(F ).

The last sum goes to zero since g is regular, Corollary 6 . Eventually, Hn
Ω(P †Ω) − Hn

Ω(Q′) is greater
some ε > 0 as we established in the first part of the proof. Thus, for all large enough n ∈ N and all
Q ∈ EL \ {P †} we have

Hn
g (P †Ω)−Hn

g (Q) > 0.

Lemma 12. The following three conditions are equivalent for all large enough n ∈ N and inclusive and
symmetric g

• P ′ ∈ arg supP∈EL S
n
g (P, P †Ω)

• P ′(νn1 ) = c

• P ′ ∈ arg supP∈EL S
n
Ω(P, P †Ω).

Proof. Note that for all P ∈ PL

Sng (P, P †Ω) =−
∑
π∈Πn

g(π)
∑
F∈π

◦P (F ) log ◦P †Ω(F )

=−
∑
ν∈Ωn

P (ν)
∑
F⊆Ωn
ν∈F

γn(F ) log ◦P †Ω(F )

=− P (ν1)
(
γn(ν1) logP †Ω(ν1) +

∑
F⊆Ωn
ν1∈F
|F |≥2

γn(F ) log ◦P †Ω(F )
)

+

|Ωn|∑
i=2

−P (νi)
(
γn(νi) logP †Ω(νi) +

∑
F⊆Ωn
νi∈F
|F |≥2

γn(F ) log ◦P †Ω(F )
)
.

The term between the last set of brackets
( )

does not depend on i. So, Sng (P, P †Ω) only depends on
P (ν1) but not on how P distributes probabilities among the other n-states.

For large enough N ∈ N it holds that P †Ω(ν1) > P †Ω(ν2) = P †Ω(νi) for all 3 ≤ i ≤ |Ωn|.
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Since g is symmetric, γn(F ) is only a function of the size of F , |F |, it follows that every P ′ ∈
arg supP∈EL S

n
g (P, P †Ω) assigns as little probability as possible to ν1. Since we require that P ∈ EL it

follows that P ′(ν1) = c.
The result for SnΩ follows as above by noting that for g = gΩ it holds that γn(ν) = 1 for all n-states

ν ∈ Ωn and γn(F ) = 0 otherwise.

Adapting Joyce’s notion of truth-directedness [14] we define:

Definition 26 (Chance-directed scoring rule). A function F f : [0, 1] × [0, 1] −→ [0,+∞] of the form
F f (x, y) = x · f(y) + (1 − x) · f(1 − y) is called chance-directed, if and only if for all x ∈ [0, 1], all
0 ≤ λ < 1 and all y ∈ [0, 1] \ {x}

F f (x, y) = x · f(y) + (1− x) · f(1− y)

> x · f((1− λ)x+ λy) + (1− x) · f(1− (1− λ)x− λy)

= F f (x, (1− λ)x+ λy)

holds. For a scoring rule F f this formalises the idea that beliefs which are closer to the chances on two
mutually exclusive and exhaustive events are strictly better scored.

In particular, F f (x, y) = −x log y − (1 − x) log(1 − y) is chance-directed. The score improves by
simultaneously moving y closer to x and 1− y closer to 1− x.

Proposition 34. If g is regular, then all B ∈ minlossBL agree with P †Ω on L 6∃.

Proof. If c = 1, then |EL| = 1 and maxentEL = {P †Ω} follows trivially. By Theorem 5 we have that for
every function B′ ∈ arg infB∈BL supP∈EL S

n
g (P,B) it holds that B′�n = P †Ω�n. Thus, all B ∈ minlossBL

agree with P †Ω on L6∃.
We now focus on 0 < c < 1.
From the above lemma we obtain

sup
P∈EL

SnΩ(P, P †Ω) = −c log
(
c+

1− c
|Ωn|

)
− (1− c) log

(1− c
|Ωn|

)
.

We now follow the structure of the proof of Proposition 16 for fixed 0 < c < 1. Let B ∈ minlossBL.
Case1 B ∈ PL \ {P †Ω}.
Case1A B ∈ [EL] \ {P †Ω}.
If there exists an n ∈ N such that B(νn1 ) > P †Ω(νn1 ), then

∑
ν∈Ωn\{νn1 }

B(ν) <
∑

ν∈Ωn\{νn1 }
P †Ω(ν). If

there exists an m ∈ N such that B(νm1 ) < P †Ω(νm1 ), then there has to exist some k > m such that∑
ν∈Ωk\{νk1 }
ν|=νk−1

1

B(ν) <
∑

ν∈Ωk\{νk1 }
ν|=νk−1

1

P †Ω(ν).

Since B 6= P †Ω either such an n ∈ N or such a k ∈ N has to exist, possibly both exist. Overall, there has
to exist some N ∈ N, a νN ∈ ΩN \ {νN1 } and an ε > 0 such that B(νN) + ε = P †Ω(νN).
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For large enough n ∈ N, depending on B, L and c, it holds that

sup
P∈EL

SnΩ(P,B) ≥− c logB(νn1 )− (1− c) log
(
B(νN)

|ΩN |
|Ωn|

)
>− c logB(νn1 )− (1− c) log

(
(B(νN) +

ε

2
)
|ΩN |
|Ωn|

)
sup
P∈EL

SnΩ(P, P †Ω) =− c log
(
c+

1− c
|Ωn|

)
− (1− c) log

(
P †Ω(νN)

|ΩN |
|Ωn|

)
.

Since we may assume that B(νn1 ) converges in n to c (B ∈ EL) we now find

lim
n−→∞

supP∈EL S
n
Ω(P,B)− supP∈EL S

n
Ω(P, P †Ω)

1− c

≥ lim
n−→∞

− log
(
B(νN)

|ΩN |
|Ωn|

)
+ log

(
P †Ω(νN)

|ΩN |
|Ωn|

)
>− log(B(νN) +

ε

2
) + logP †Ω(νN)

>0.

Whether this limit exists or not, we have thus established that for large enough n ∈ N there exists a lower
bound of the sequence

( sup
P∈EL

SnΩ(P,B)− sup
P∈EL

SnΩ(P, P †Ω))n∈N

which is strictly positive, since we take N ∈ N to be fixed here.
For all fixed n ∈ N let P ′n ∈ EL be such that P ′n(ωn1 ) := c and P ′n(ωn2 ) := 1 − c. Note that

P ′n ∈ arg supP∈EL S
n
g (P, P †Ω) for all large enough n and P ′n ∈ arg supP∈EL S

n
Ω(P, P †Ω) for all large

enough n, Lemma 12.
To simplify notation let Rn :=

∑
π∈Πn\{πn}−g(π)

∑
F∈π

◦P ′n(F ) log ◦P †Ω(F ). With this notation we
have for all large enough n ∈ N

0 ≤ Rn =
∑

π∈Πn\{πn}

−g(π)
∑
F∈π

◦P ′n(F ) log ◦P †Ω(F )

≤
∑

π∈Πn\{πn}

−g(π)
∑
F∈π

◦P ′n(F ) log
1− c
|Ωn|

=
∑

π∈Πn\{πn}

−g(π) log
1− c
|Ωn|

=
(

log(|Ωn|)− log(1− c)
)
·

∑
π∈Πn\{πn}

g(π).

By our standing assumption on g (regularity), we obtain that Rn converges to zero. We now find

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω) = sup
P∈EL

Sng (P,B)− g(πn)SnΩ(P ′n, P
†
Ω)−Rn

≥ g(πn)
(
SnΩ(P ′n, B)− SnΩ(P ′n, P

†
Ω)
)
−Rn.
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Because g(πn) is bounded and Rn converges to zero, we obtain for all large enough n ∈ N that

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω) > 0.

Case1B B /∈ [PL] \ [EL].
Case1Bi limn−→∞B(νn1 ) > c.
Let us first note that this limit has to exist, because B(νn1 ) is a (not necessarily strictly) decreasing

sequence bounded from below by c. Let b1 := limn−→∞B(νn1 ) > c.
Note that there has to exist some N ∈ N such that for all n ≥ N it holds that B(νn1 ) > P †Ω(νn1 ). For

all n ≥ N there has to exist some ν ∈ Ωn \ {νn1 } such that B(ν) < P †Ω(ν). Then, for all n ≥ N

1

g(πn)
· sup
P∈EL

Sng (P,B) ≥ −c logB(νn1 )− (1− c) log
1−B(νn1 )

|Ωn| − 1

=− c logB(νn1 )− (1− c)
(

log(1−B(νn1 )) + log
1

|Ωn| − 1

)
>− c log(c+

b1 − c
2

)− (1− c) log(1− c− b1 − c
2

) + (1− c) log
1

|Ωn| − 1

=c log(c+
b1 − c

2
)− (1− c) log

1− c− b1−c
2

|Ωn| − 1

=− c log(
b1 + c

2
)− (1− c) log

1− b1+c
2

|Ωn| − 1
,

where the strict inequality follows from chance-directedness. We now find

lim
n−→∞

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω)

> lim
n−→∞

g(πn)
(
−c log(

b1 + c

2
)− (1− c) log

(1− b1+c
2

|Ωn| − 1

)
+ c log

(
c+

1− c
|Ωn|

)
+ (1− c) log

(1− c
|Ωn|

))
−Rn

= lim
n−→∞

g(πn)
(
−c log(

b1 + c

2
)− (1− c) log

(1− b1+c
2

|Ωn| − 1
· |Ωn|

)
+ c log

(
c+

1− c
|Ωn|

)
+ (1− c) log(1− c)

)
= lim

n−→∞
g(πn)

(
−c log(

b1 + c

2
)− (1− c) log(1− b1 + c

2
)

+ c log
(
c+

1− c
|Ωn|

)
+ (1− c) log(1− c)

)
=
(

lim
n−→∞

g(πn)
)
·
(
−c log(

b1 + c

2
)− (1− c) log(1− b1 + c

2
)

+ c log(c) + (1− c) log(1− c)
)

>0,

where the last line follows from the fact that the standard logarithmic scoring rules is strictly proper, i.e.,
Equation (11) holds.
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Case1Bii limn−→∞B(νn1 ) < c.
Let b2 := limn−→∞B(νn1 ) < c, b2 exists for the same reasons b1 exists. Note that there has to

exist some N ∈ N such that for all n ≥ N it holds that B(νn1 ) < b2 + c−b2
2

< c < P †Ω(νn1 ). Using
chance-directedness we find for all n ≥ N

1

g(πn)
· sup
P∈EL

Sng (P,B) ≥− c logB(νn1 )− (1− c) log
1−B(νn1 )

|Ωn| − 1

>− c log(c+
b2 − c

2
)− (1− c) log

1− c− b2−c
2

|Ωn| − 1

=− c log(
b2 + c

2
)− (1− c) log

1− b2+c
2

|Ωn| − 1
.

Now proceed as in Case1Bi.
Case2 B ∈ BL \ PL and B respects logical equivalence on L 6∃.
Case2A There exists a PB ∈ PL such that for all n ∈ N and all F ⊆ Ωn it holds that ◦B(F ) ≤ ◦PB(F ).

Since B /∈ PL there has to exists an N ∈ N and an F ′ ∈ ΩN such that ◦B(F ′) < ◦PB(F ′).
Case2Ai PB = P †Ω and no other P ∈ PL is such that ◦B(F ) ≤ ◦P (F ) for all n and all F ⊆ Ωn.
Follows as does Case2Ai in Proposition 16.
Case2Aii There exists a PB ∈ PL such that PB 6= P †Ω.
Then for all n ≥ N and all P ∈ [EL] it holds that Sng (P,B) − Sng (P, PB) ≥ 0. For all large enough

n ∈ N it holds by Case1 that supP∈EL S
n
g (P, PB)− supP∈EL S

n
g (P, P †Ω) > 0. Thus,

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω) ≥ sup
P∈EL

Sng (P, PB)− sup
P∈EL

Sng (P, P †Ω)

> 0.

Case2B There does not exist a PB ∈ PL such that for all n ∈ N and all F ⊆ Ωn it holds that
◦B(F ) ≤ ◦PB(F ).

As in Case2B in Proposition 16 we obtain that there has to exist an α > 0 and a N ∈ N such that for
all n ≥ N it holds that

∑
ω∈Ωn

B(ω) ≤ 1− α.
We have for n ≥ N that

sup
P∈EL

Sng (P,B)− sup
P∈EL

Sng (P, P †Ω) = sup
P∈EL

Sng (P,B)− g(πn)SnΩ(P ′n, P
†
Ω)−Rn

≥ g(πn)
(
SnΩ(P ′n, B)− SnΩ(P ′n, P

†
Ω)
)
−Rn.

To complete the proof we will now show that there exists some β > 0, which depends on EL and g but
does not depend on the particular n ≥ N , such that SnΩ(P ′n, B) − SnΩ(P ′n, P

†
Ω) > β > 0. Since g(πn) is

bounded, we then obtain that supP∈EL S
n
g (P,B)− supP∈EL S

n
g (P, P †Ω) > 0 for all large enough n ∈ N.

We show that for all large enough n ∈ N that

−
∑
ω∈Ωn

P ′n(ω) log f(ω)− c log
(
c+

1− c
|Ωn|

)
− (1− c) log

(1− c
|Ωn|

)
≥ β

for all functions f : Ωn −→ [0, 1] such that
∑

ω∈Ωn
f(ω) ≤ 1− α.
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The minimum obtains, if and only if f(ω) = (1−α)P ′n(ω) for all ω ∈ Ωn as we saw in Proposition 16.
Thus, the minimum obtains for f(νn1 ) = (1−α)(c+ 1−c

|Ωn|) and f(νni ) = (1−α) 1−c
|Ωn|−1

for all other νni ∈ Ωn.
Let us now compute

−
∑
ω∈Ωn

P ′n(ω) log f(ω) =− c log((1− α)(c+
1− c
|Ωn|

))− (1− c) log
((1− c)(1− α)

|Ωn| − 1

)
=− c

(
log(c+

1− c
|Ωn|

) + log(1− α)
)
− (1− c)

(
log(

1− c
|Ωn| − 1

) + log(1− α)
)

=− c log(c+
1− c
|Ωn|

)− (1− c) log(
1− c
|Ωn| − 1

)− log(1− α).

For n approaching infinity we find

lim
n−→∞

−
∑
ω∈Ωn

P ′n(ω) log f(ω) + c log
(
c+

1− c
|Ωn|

)
+ (1− c) log

(1− c
|Ωn|

)
= − log(1− α)

which is strictly greater some β > 0 as required.
Case3 B ∈ BL \ PL and B does not respect logical equivalence on L6∃.
Simply proceed as in Case2 in Theorem 17.

Theorem 9.

maxentEL = {P †Ω} = {B∀† }.

Proof. Since all B ∈ minlossBL agree with P †Ω on L6∃, all B† ∈ minloss∗ BL agree with {P †Ω} on L6∃; as
we noted in Proposition 20.

Recall that Theorem 8 does not depend on the particular probability function, as we stated on
Page 2508. We can thus apply Theorem 8 to infer that

maxentEL = {P †Ω} = {B∀† }.

7. Conclusion

In this paper we have set out to provide a unified justification of the three norms of objective
Bayesianism in the setting in which the underlying language is a first-order predicate language. We
have seen that an approach based on scoring rules can be used to justify the norms on sentences without
quantifiers: if the evidence is finitely generated, then the belief function with the best loss profile is a
probability function in the set of those calibrated with evidence which has maximum standard entropy,
as long as the scoring rule used in the definition of loss profile is defined in terms of a regular weighting
function. One can extend this line of argument to handle sentences with quantifiers if one extends the
notion of loss profile and imposes two extra desiderata: (i) language invariance and (ii) that one should
not give universal hypotheses less credence than the maximum forced by the evidence.
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Finally, we saw that this line of justification also applies in some cases in which evidence is not finitely
generated. However, we investigated another case in which the justification does not apply because the
evidence is such that there is no belief function with the best loss profile. The most one can ask in such a
situation is for a belief function that has a sufficiently good loss profile. We saw that in this case one can
use standard entropy maximisers to determine belief functions which are arbitrarily close to optimal.

We would identify two main questions for further research. First, it remains an open question as
to whether, when the evidence is not finitely generated, a construction appealing to standard entropy
maximisers always leads to belief functions that are arbitrarily close to optimal. Second, it would be
interesting to investigate the extent to which one can relax the condition that a weighting function should
be regular. We speculated that it may be the case that language invariance can be used in place of the
condition that the weighting function be strongly refined, but we have little evidence, at this stage, to
warrant apportioning a high degree of belief to this claim.
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Appendix

A. Non-maximal entropies and non-minimal losses

In Section Section 4.4 we gave a number of minimax theorems for finitely generated evidence. As we
saw in Section Section 6.1 the case of evidence which is not finitely generated is more complex. Entropy
limits incur, in certain cases, infinite worst case expected loss.

While the minimax theorems relate entropy maximisers (respectively entropy limits) to loss
minimisers (respectively belief functions with the best loss profile), these theorems do not tell us much
about the general relation between entropy and loss. In particular, the minimax theorems leave open the
question as to whether an improvement in loss profile is always accompanied by greater entropy. In this
section we will show that this is not the case, by appealing to an example involving a set of calibrated
probability functions EL ⊂ PL which is finitely generated and two probability functions, Q,R ∈ EL,
such that Q has a better loss profile than R but has lower entropy than R.

In contrast to Section 6.1, our functions Q and R are open-minded. So, all losses we consider are
finite. The fact that R has greater entropy than Q but also incurs a greater loss is thus not due to taking
logarithms of zero.

For the sake of simplicity, we shall consider L = LU .



Entropy 2015, 17 2538

Proposition 35. There exist regular weightings g, a finitely generated set EL ⊂ PL and probability
functions Q,R ∈ EL such that for all n ∈ N

Hn
g (Q) < Hn

g (R)

sup
P∈EL

Sng (P,Q) < sup
P∈EL

Sng (P,R).

The standard weighting gΩ is another such weighting.

Thus, Q has a better loss profile than R, Q ≺ R, but Q also has lower entropy than R, R� Q.

Proof. Let

EL = {P ∈ PL : P (ω2
2) = P (ω2

3) = 0 &P (ω1
2) ≥ 0.495}.

We now define R and Q as follows for n ≥ 3:

R(ω1
1) := 0.505 =: R(ω2

1) and R(ω1
2) := 0.495 =: R(ω2

4)

R(ωni ) := 0.505 · 4

|Ωn|
for all 1 ≤ i ≤ 1

4
|Ωn|

R(ωni ) := 0 for all
1

4
|Ωn|+ 1 ≤ i ≤ 3

4
|Ωn|

R(ωni ) := 0.495 · 4

|Ωn|
for all

3

4
|Ωn|+ 1 ≤ i ≤ |Ωn|

Q(ω1
1) := 0.490 =: R(ω2

1) and R(ω1
2) := 0.510 =: R(ω2

4)

Q(ωni ) := 0.490 · 4

|Ωn|
for all 1 ≤ i ≤ 1

4
|Ωn|

Q(ωni ) := 0 for all
1

4
|Ωn|+ 1 ≤ i ≤ 3

4
|Ωn|

Q(ωni ) := 0.510 · 4

|Ωn|
for all

3

4
|Ωn|+ 1 ≤ i ≤ |Ωn|.

That is, Q and R equivocate beyond L2.
We find for n = 1

g(π1) ·H1
Ω(Q) = H1

g (Q) = −g(π1)(0.49 log(0.49) + 0.51 log(0.51))

≈ 0.6929 · g(π1)

< 0.6931 · g(π1)

≈ −g(π1)(0.505 log(0.505) + 0.495 log(0.495))

= H1
g (R) = g(π1) ·H1

Ω(R)

and

g(π1) · sup
P∈EL

S1
Ω(P,Q) = sup

P∈EL
S1
g (P,Q) = −g(π1)(0.495 log(0.51) + 0.505 log(0.49))

≈ 0.6935 · g(π1)

< 0.7032 · g(π1)

≈ −g(π1) log(0.495)

= sup
P∈EL

S1
g (P,R) = g(π1) · sup

P∈EL
S1

Ω(P,R).
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Having established the result for n = 1 we shall now to the general case for n ≥ 2.
For n = 2 note that

H2
Ω(Q) = H1

Ω(Q) < H1
Ω(R) = H1

Ω(R)

sup
P∈EL

S2
Ω(P,Q) = sup

P∈EL
S1

Ω(P,Q) < sup
P∈EL

S1
Ω(P,R) = sup

P∈EL
S2

Ω(P,R).

For n ≥ 3 we have

Hn
Ω(Q) =− (0.49 · 4

|Ωn|
)
|Ωn|

4
log(0.49 · 4

|Ωn|
)− (0.51 · 4

|Ωn|
)
|Ωn|

4
log(0.51 · 4

|Ωn|
)

=− 0.49 log(0.49)− 0.51 log(0.51) + log
|Ωn|

4

=H1
Ω(Q) + log

|Ωn|
4

and in the same way we find

Hn
Ω(R) =H1

Ω(R) + log
|Ωn|

4

Furthermore,

sup
P∈EL

SnΩ(P,Q) =− 0.505 log(0.49 · 4

|Ωn|
)− 0.495 log(0.51 · 4

|Ωn|
)

=− 0.49 log(0.49)− 0.51 log(0.51) + log
|Ωn|

4

= sup
P∈EL

S1
Ω(P,Q) + log

|Ωn|
4

sup
P∈EL

SnΩ(P,R) =− log(0.495 · 4

|Ωn|
)

= sup
P∈EL

S1
Ω(P,R) + log

|Ωn|
4
.

This establishes the result for g = gΩ.
The result follows for such general weightings g which converge quickly enough to the standard

weighting gΩ so that all further terms are negligible.

B. Symmetry and equivocator preservation

Recall Definition 14: g is called equivocator-preserving, if and only if gn is equivocator-preserving
for all n ∈ N, i.e., if and only if

P†n = {Q�n : Q ∈ arg sup
P∈PL

Hn
g (P )} = {P=�n}.

So, if g is equivocator-preserving and if P= ∈ [EL], then P= maximises supP∈EL H
n
g (P ) and thus P† =

{P=} = maxentEL = minlossBL. We know from Proposition 7 that inclusive and symmetric g are
equivocator-preserving.

Interestingly, we shall see that there exist non-symmetric gn which are equivocator-preserving. This
answers the question posed at the bottom of Landes and Williamson [4] (p. 3574) in the negative.
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Proposition 36 (Non-symmetric equivocator preservation). For all n ∈ N such that |Ωn| ≥ 4 there
exist inclusive, equivocator-preserving and non-symmetric weighting functions gn. The set of such
weighting functions gn is convex.

Proof. By Landes and Williamson [4] (Lemma 9 p. 3573) it holds that gn is inclusive and
equivocator-preserving, if and only if

y(ω) :=
∑
F⊆Ωn
ω∈F

∑
π∈Πk
F∈π

−gn(π)(1− log |Ωn|+ log |F |) = c

for some constant, c.
Note that we can simply this expression as follows∑

F⊆Ωn
ω∈F

∑
π∈Πn
F∈π

− gn(π)(1− log |Ωn|+ log |F |)

= (1− log |Ωn|)
∑
F⊆Ωn
ω∈F

∑
π∈Πn
F∈π

−gn(π) +
∑
F⊆Ωn
ω∈F

∑
π∈Πn
F∈π

−gn(π) log |F |

= (1− log |Ωn|)
∑
π∈Πn

−gn(π) +
∑
F⊆Ωn
ω∈F

log(|F |) ·
∑
π∈Πn
F∈π

−gn(π)

= (1− log |Ωn|)
∑
π∈Πn

−gn(π) +
∑
F⊆Ωn
ω∈F

−γn(F ) log |F |.

The first sum does not depend on ω. Thus, y(ω) is constant, if and only if z(ω) :=∑
F⊆Ωn
ω∈F
−γn(F ) log |F | is constant.

Let us now define an inclusive and non-symmetric weighting function g′n which satisfies this
condition. Let k be such that Ωn = {ω1, . . . ω2k} and put

g′n({ω1, . . . , ω2k−1}, {ω2k−1+1, . . . , ω2k}) :=
1

2

g′n(π) := 1 for all other π ∈ Πn.

Clearly, g′n is inclusive (gn(π) > 0 for all π ∈ Πn), non-symmetric (there are two partitions π, π′ such
that the classes of π and π′ have the same number of elements but g′n(π) 6= g′n(π′)) and z(ω) is constant
(since

∑
F⊆Ωn
ω∈F

log(|F |) ·
∑

π∈Πk
F∈π
−gn(π) is invariant under permutations of n-states).

Addressing the second part of the proof: For inclusive and equivocator-preserving gn it holds that Hn
g

is a strictly concave function on Pn and supP∈Pn H
n
g (P ) always obtains for P=�n. Pn is convex. Hence,

the unique maximum of every convex combination of such gn obtains for P=�n.

In general, computing a function which maximisesHn
g (P ) for P ∈ [EL] is a non-trivial computational

problem, even for g = gΩ. The only widely shared intuition is that P= ought to be the function
in PL which has greatest entropy. Imposing symmetry is sufficient—but, as we have just seen,
not necessary—to ensure that this constraint is satisfied. Imposing symmetry has further structural
consequences such as: if EL is invariant under renaming of states, then so is P †n; see Landes and
Williamson [4] (Appendix B.3) for details.



Entropy 2015, 17 2541

C. Key notation

Here we summarise key notation, for ease of reference.

Symbol Reference Meaning
〈 〉 Page 2460 Convex hull
[ ] Page 2463 Closure
L∃ Page 2463 Predicate language with quantifiers
L 6∃ Page 2463 Predicate language without quantifiers
BL Definition 1 (Normalised) belief functions on sentences SL
PL Page 2465 Probability functions on SL
Pn Page 2469 Probability functions on SLn
Ωn Page 2463 n-states
P= Page 2473 Equivocator function in PL, P=(ω) = 1/|Ωn| for each ω ∈ Ωn

ΠL Page 2464 Partitions of sentences SL
Πn Definition 4 Partitions of propositions PΩn

Π Definition 4 All partitions of propositions,
⋃∞
n=1 Πn

πn Page 2470 {{ω} : ω ∈ Ωn}, the finest partition of Ωn

EL Page 2464 Calibrated belief functions on SL
En Page 2469 Restrictions of these functions to SL 6∃n
◦B Page 2467 Belief function on propositions induced by B defined on sentences
g Definition 6 Weighting function
gΩ Page 2470 Standard weighting function
Hn
g Definition 9 n-entropy

Hn
Ω Definition 10 Standard (Shannon) entropy

maxentEL Page 2472 Calibrated functions on L with maximal entropy
P†n Page 2472 Calibrated functions on Ln with maximum n-entropy
P †n Page 2472 Unique such function
P† Definition 11 Limit points of maximum n-entropy functions
P † Page 2472 Unique such entropy limit
P †Ω Page 2472 Standard entropy limit
%n Definition 19 n-representations
Sng Page 2484 Logarithmic n-score of a belief function wrt a probability function
Sng,ρ Page 2484 Representation-relative n-score
minlossBL Definition 21 Belief functions on L 6∃ with the best loss profile
minloss∗ BL Definition 24 Belief functions on L∃ with the best loss profile
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