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Abstract: As one of the most common types of graphical models, the Bayesian classifier
has become an extremely popular approach to dealing with uncertainty and complexity. The
scoring functions once proposed and widely used for a Bayesian network are not appropriate
for a Bayesian classifier, in which class variable C is considered as a distinguished one.
In this paper, we aim to clarify the working mechanism of Bayesian classifiers from the
perspective of the chain rule of joint probability distribution. By establishing the mapping
relationship between conditional probability distribution and mutual information, a new
scoring function, Sum_MI , is derived and applied to evaluate the rationality of the Bayesian
classifiers. To achieve global optimization and high dependence representation, the proposed
learning algorithm, the flexible K-dependence Bayesian (FKDB) classifier, applies greedy
search to extract more information from the K-dependence network structure. Meanwhile,
during the learning procedure, the optimal attribute order is determined dynamically, rather
than rigidly. In the experimental study, functional dependency analysis is used to improve
model interpretability when the structure complexity is restricted.
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1. Introduction

Graphical models [1,2] provide a natural tool for dealing with two problems that occur throughout
applied mathematics and engineering: uncertainty and complexity. The two most common types of
graphical models are directed graphical models (also called Bayesian networks) [3,4] and undirected
graphical models (also called Markov networks) [5]. A Bayesian network (BN) is a type of
statistical model consisting of a set of conditional probability distributions and a directed acyclic
graph (DAG), in which the nodes denote a set of random variables and arcs describing conditional
(in)dependence relationship between them. Therefore, BNs can be used to predict the consequences
of intervention. The conditional dependencies in the graph are often estimated using known statistical
and computational methods.

Supervised classification is an outstanding task in data analysis and pattern recognition. It requires
the construction of a classifier, that is a function that assigns a class label to instances described by a
set of variables. There are numerous classifier paradigms, among which Bayesian classifiers [6–11],
based on probabilistic graphical models (PGMs) [2], are well known and very effective in domains with
uncertainty. Given class variable C and a set of attributes X = {X1, X2, · · · , Xn}, the aim of supervised
learning is to predict from a training set the class of a testing instance x = {x1, · · · , xn}, where xi is
the value of the i-th attribute. We wish to precisely estimate the conditional probability of P (c|x) by
selecting argmaxC P (c|x), where P (·) is a probability distribution function and c ∈ {c1, · · · , ck} are
the k classes. By applying Bayes’ theorem, the classification process can be done in the following way
with the BNs:

argmax
C

P (c|x1, · · · , xn) = argmax
C

P (x1, · · · , xn, c)
P (x1, · · · , xn)

∝ argmax
C

P (x1, · · · , xn, c) (1)

This kind of classifier is known as generative, and it forms the most common approach in the BN
literature for classification [6–11].

Many scoring functions, e.g., maximum likelihood (ML) [12], Bayesian information criterion
(BIC) [13], minimum description length (MDL) [14] and Akaike information criterion (AIC) [15], were
proposed to evaluate whether the learned BN best fits the dataset. For BN, all attributes (including class
variable) are treated equally, while for Bayesian classifiers, the class variable is treated as a distinguished
one. Additionally, these scoring functions do not work well for Bayesian classifiers [9]. In this paper,
we limit our attention to a class of network structures, restricted Bayesian classifiers, which require that
the class variable C be a parent of every attribute and no attribute be the parent of C. P (c, x) can be
rewritten in terms of the product of a set of conditional distributions, which is also known as the chain
rule of joint probability distribution.

P (x1, · · · , xn, c) = P (c)P (x1|c)P (x2|x1, c) · · ·P (xn|x1, · · · , xn−1, c) = P (c)
n∏
i=1

P (xi|Pai, c) (2)

where Pai denotes a set of parent attributes of the node Xi, except the class variable, i.e.,
Pai = {X1, · · · , Xi−1}. Each node Xi has a conditional probability distribution (CPD) representing
P (xi|Pai, c). If the Bayesian classifier can be constructed based on Equation (2), the corresponding
model is “optimal”, since all conditional dependencies implicated in the joint probability distribution are
fully described, and the main term determining the classification will take every attribute into account.
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From Equation (2), the order of attributes {X1, · · · , Xn} is fixed in such a way that an arc between
two attributes {Xl, Xh} always goes from the lower ordered attribute Xl to the higher ordered attribute
Xh. That is, the network can only contain arcs Xl → Xh where l < h. The first few lower ordered
attributes are more important than the higher ordered ones, because Xl may be possible parent attributes
of Xh, but Xh cannot be possible parent attributes of Xl. One attribute may be dependent on several
other attributes, and this dependence relationship will propagate to the whole attribute set. A slight move
in one part may affect the whole situation. Finding an optimal order requires searching the space of all
possible network structures for one that best describes the data. Without restrictive assumptions, learning
Bayesian networks from data is NP-hard [16]. Because of the limitation of time and space complexity,
only a limited number of conditional probabilities can be encoded in the network. Additionally, precise
estimation of P (xi|Pai, c) is non-trivial when given too many parent attributes. One of the most
important features of BNs is the fact that they provide an elegant mathematical structure for modeling
complicated relationships, while keeping a relatively simple visualization of these relationships. If the
network can capture all or at least the most important dependencies that exist in a database, we would
expect a classifier to achieve optimal prediction accuracy. If the structure complexity is restricted to
some extent, higher dependence cannot be represented. The restricted Bayesian classifier family can
offer different tradeoffs between structure complexity and prediction performance. The simplest model
is the naive Bayes [6,7], where C is the parent of all predictive attributes, and there are no dependence
relationships among them. On the basis of this, we can progressively increase the level of dependence,
giving rise to a extension family of naive Bayes models, e.g., tree-augmented naive Bayes (TAN) [8] or
K-dependence Bayesian network (KDB) [10,11].

Different Bayesian classifiers correspond to different factorizations of P (x|c). However, few
studies have proposed to learn Bayesian classifiers from the perspective of the chain rule. This
paper first establishes the mapping relationship between conditional probability distribution and mutual
information, then proposes to evaluate the rationality of the Bayesian classifier from the perspective of
information quantity. To build an optimal Bayesian classifier, the key point is to achieve the largest sum
of mutual information that corresponds to the largest a posteriori probability. The working mechanisms
of three classical restricted Bayesian classifiers, i.e., NB, TAN and KDB, are analyzed and evaluated from
the perspectives of the chain rule and information quantity implicated in the graphical structure. On the
basis of this, the proposed learning algorithm, the flexible K-dependence Bayesian (FKDB) classifier,
applies greedy search of the mutual information space to represent high-dependence relationships. The
optimal attribute order is determined dynamically during the learning procedure. The experimental
results on the UCImachine learning repository [17] validate the rationality of the FKDB classifier from
the viewpoints of zero-one loss and information quantity.

2. The Mapping Relationship between Probability Distribution and Mutual Information

Information theory is the theoretical foundation of modern digital communication and was invented
in the 1940s by Claude E. Shannon. Though Shannon was principally concerned with the problem of
electronic communications, the theory has much broader applicability. Many commonly-used measures
are based on the entropy of information theory and used in a variety of classification algorithms [18].
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Definition 1. [19]. The entropy of an attribute (or random variable) is a function that attempts to
characterize its unpredictability. When given a discrete random variable X with any possible value x
and probability distribution function P (·), entropy is defined as follows,

H(X) = −
∑
x∈X

P (x)log2P (x) (3)

Definition 2. [19]. Conditional entropy measures the amount of information needed to describe attribute
X when another attribute Y is observed. Given discrete random variables X and Y and their possible
value x, y, conditional entropy is defined as follows,

H(X|Y ) = −
∑
x∈X

∑
y∈Y

P (x, y)log2P (x|y) (4)

Definition 3. [19]. The mutual information I(X;Y ) of two random variables is a measure of the
variables’ mutual dependence and is defined as:

I(X;Y ) = H(X)−H(X|Y ) =
∑
x∈X

∑
y∈Y

P (x, y)log2
P (x, y)

P (x)P (y)
(5)

Definition 4. [19]. Conditional mutual information I(X;Y |Z) is defined as:

I(X;Y |Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

P (x, y, z)log2
P (x, y|z)

P (x|z)P (y|z)
(6)

Each part of the right side of Equation (2), i.e., P (xi|Pai, c), corresponds to a local structure of
the restricted Bayesian classifier. Additionally, there should exist a strong relationship between Xi and
{Pai, C}, which can be measured by I(Xi;Pai, C).

For example, let us consider the simplest situation in which the attribute set is composed of just two
attributes {X1, X2}. The joint probability distribution is:

P (x1, x2, c) = P (c)P (x1|c)P (x2|x1, c) (7)

Figure 1a shows the corresponding “optimal” network structure, which is a triangle, and also the
basic local structure of restricted Bayesian classifier. Similar to the learning procedure of TAN and
KDB, we also use I(Xi;Xj|C) to measure the weight of the arc between attributes Xi and Xj . Besides,
we use I(Xi;C) to measure the weight of the arc between class variable C and attribute Xi. The
arcs in Figure 1a are divided into two groups by their final targets, i.e., the arc pointing to X1 (as
Figure 1b shows) and arcs pointing to X2 (as Figure 1c shows). Suppose there exists information
flow in the network, then the information quantity provided to X1 and X2 will be I(X1;C) and
I(X2;C) + I(X1;X2|C) = I(X2;X1, C), respectively.

Thus, the mapping relationships between conditional probability distribution and mutual information
are:

P (xi|c)⇒ I(Xi;C) (8)

and
P (xi|Pai, c)⇒ I(Xi;Pai, C) = I(Xi;C) + I(Xi;Pai|C) (9)
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Figure 1. Arcs grouped according to their final targets.

To ensure the robustness of entire Bayesian structure, the sum of mutual information
∑
I(Xi;Pai, C)

should be maximized. Scoring function Sum_MI is proposed to measure the size of information
quantity implicated in the Bayesian classifier and defined as follows,

Sum_MI =
∑
Xi∈X

(I(Xi;C) +
∑

Xj∈Pai

I(Xi;Xj|C)) (10)

3. Restricted Bayesian Classifier Analysis

In the following discussion, we will analyze and summarize the working mechanisms of some
popular Bayesian classifiers to clarify their rationality from the viewpoints of information theory and
probability theory.

NB: NB simplified the estimation of P (x|c) by conditional independence assumption:

P (x|c) =
n∏
i=1

P (xi|c) (11)

Then, the following equation is often calculated in practice, rather than Equation (2).

P (c|x) ∝ P (c)
n∏
i=1

P (xi|c) (12)

As Figure 2 shows, the NB classifier can be considered as a BN with a fixed network structure, where
every attribute Xi has the class variable as its only parent attribute, i.e., Pai will be restricted to being
null. NB can only represent a zero-dependence relationship between predictive attributes. There exists
no information flow, but that between predictive attributes and the class variable.

Figure 2. The zero-dependence relationship between the attributes of the NB model.
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TAN: The disadvantage of the NB classifier is that it assumes that all attributes are conditionally
independent given the class, while this often is not a realistic assumption. As Figure 3 shows, TAN
introduces more dependencies by allowing each attribute to have an extra parent from the other attributes,
i.e., Pai can contain at most one attribute. TAN is based on the Chow–Liu algorithm [20] and can
achieve global optimization by building a maximal spanning tree (MST). This algorithm is quadratic in
the number of attributes.

Figure 3. The one-dependence relationship between the attributes of the tree-augmented
naive Bayes (TAN) model.

As a one-dependence Bayesian classifier, TAN is optimal. Different attribute orders provide the same
undirected Bayesian network, which is the basis of TAN. When a different attribute is selected as the root
node, the direction of some arcs may reverse. For example, Figure 3a,b represents the same dependence
relationship while X1 and X4 are selected as the root nodes, respectively. Additionally, corresponding
chain rules are described as:

P (x1, · · · , x5, c) = P (c)P (x1|c)P (x2|x1, c)P (x3|x2, c)P (x4|x3, c)P (x5|x3, c) (13)

and:
P (x1, · · · , x5, c) = P (c)P (x4|c)P (x3|x4, c)P (x2|x3, c)P (x1|x2, c)P (x5|x3, c) (14)

Sum_MI is the same for Figure 3a, b. That is the main reason why TAN performs almost the same,
while the causal relationships implicated in the network structure differ. To achieve diversity, Ma and
Shi [21] proposed the RTAN algorithm, the output of which is TAN ensembles. Each sub-classifier
is trained with different training subsets sampled from the original instances, and the final decision is
generated by a majority of votes.

KDB: In KDB, the probability of each attribute value is conditioned by the class variable and, at most,
K predictive attributes. The KDB algorithm adopts a greedy strategy in order to identify the graphical
structure of the resulting classifier. KDB sets the order of attributes by calculating mutual information
and achieves the weights of the relationship between attributes by calculating conditional mutual
information. For example, given five predictive attributes {X1, X2, X3, X4, X5} and supposing that
I(X1;C) > I(X2;C) > I(X3;C) > I(X4;C) > I(X5;C), the attribute order is {X1, X2, X3, X4, X5}
by comparing mutual information.

From the chain rule of joint probability distribution, there will be:

P (c, x) = P (c)P (x1|c)P (x2|c, x1)P (x3|c, x1, x2)P (x4|c, x2, x3, x1)P (x5|c, x3, x1, x2, x4) (15)
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Obviously, with more attributes to be considered as possible parent attributes, more causal
relationships will be represented, and Sum_MI will be larger correspondingly. However, because of the
time and space complexity overhead, only a limited number of attributes will be considered. For KDB,
each predictive attribute can select at most K attributes as parent attributes. Figure 4 gives an example
to show corresponding KDB models when given different K values.

Figure 4. The K-dependence relationship between attributes inferred from the K-
dependence Bayesian (KDB) classifier.

In summary, from the viewpoint of probability theory, all of these algorithms can be regarded as
different variations of the chain rule. Different algorithms tried to get different levels of tradeoff between
computational complexity and classification accuracy. One advantage of NB is avoiding model selection,
because selecting between alternative models can be expected to increase variance and allow a learning
system to overfit the training data. However, the conditional independence assumption makes NB neglect
the conditional mutual information between predictive attributes. Thus, NB is zero-dependence based
and performs the worst among the three algorithms. TAN proposes to achieve global optimization
by building MST to weigh the one-dependence causal relationships, i.e., TAN can only have at most
one parent, except the class variable. Thus, only a limited number of dependencies or a limited
information quantity can be represented in TAN. KDB allows for higher dependence to represent
much more complicated relationships between attributes and can have at most K parent attributes.
However, KDB is guided by a rigid ordering obtained by using the mutual information between the
predictive attribute and the class variable. Mutual information does not consider the interaction between
predictive attributes, and this marginal knowledge may result in sub-optimal order. Suppose K = 2 and
I(C;X1) > I(C;X2) > I(C;X3) > I(C;X4) > I(C;X5); X3 will use X2 as the parent attribute, even
if they are independent of each other. When K = 1, KDB performs poorer than TAN, because it can
only achieve a local optimal network structure. Besides, as described in Equation (9), I(Xi;Xj|C) can
only partially measure the dependence between Xi and {Xj, C}.

4. The Flexible K-Dependence Bayesian Classifier

To retain the privileges of TAN and KDB, i.e., global optimization and higher dependence
representation, we presently give an algorithm, i.e., FKDB, which also allows one to construct
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K-dependence classifiers along the attribute dependence spectrum. To achieve the optimal attribute
order, FKDB considers not only the dependence between the predictive attribute and the class variable,
but also the dependencies among predictive attributes. As the learning procedure proceeds, the attributes
will be put into order one by one. Thus, the order is determined dynamically.

Let S represent the attribute set, and predictive attributes will be added to S in a sequential order.
The newly-added attribute Xj must select parent attributes from S. To achieve global optimization,
Xj should have the strongest relationship with its parent attributes on average, i.e., the largest mutual
information should be between Xj and {Paj, C}. Once selected, Xj will be added to S as possible
parent attributes of the following attribute. FKDB applies greedy search of the mutual information space
to find an optimal ordering of all of the attributes, which may help to fully describe the interaction
between attributes.

Algorithm 1 is described as follows:

Algorithm 1 Algorithm FKDB.
Input: a database of pre-classified instances, DB, and the K value for the maximum allowable degree
of attribute dependence.
Output: a K-dependence Bayesian classifiers with conditional probability tables determined from the
input data.

1. Let the used attribute list, S, be empty.
2. Select attribute Xroot that corresponds to the largest value I(Xi;C), and add it to S.
3. Add an arc from C to Xroot.
4. Repeat until S includes all domain attributes
5. • Select attribute Xi, which is not in S and corresponds to the largest sum value:

I(Xi;C) +

q∑
j=1

I(Xi, Xj |C),

where Xj ∈ S and q = min(|S|;K).
6. • Add a node to BN representing Xi.
7. • Add an arc from C to Xi in BN .
8. • Add q arcs from q distinct attributes Xj in S to Xi.
9. • Add Xi to S.

10. Compute the conditional probability tables inferred by the structure of BN using counts from DB, and output BN .

FKDB requires that at most K parent attributes can be selected for each new attribute. To make
the working mechanism of FKDB clear, we set K = 2 in the following discussion. Because
I(Xi;Xj|C) = I(Xj;Xi|C), we describe the relationships between attributes using an upper triangular
matrix of conditional mutual information. The format and one example with five predictive attributes
{X0, X1, X2, X3, X4} are shown in Figure 5a,b, respectively. Suppose that I(X0;C) > I(X3;C) >

I(X2;C) > I(X4;C) > I(X1;C), X0 is added into S as the root node. X3 = argmax (I(Xi;C) +

I(X0;Xi|C)) (Xi /∈ S); thus, X3 is added to S; and S = {X0, X3}. X2 = argmax (I(Xi;C) +

I(X0;Xi|C) + I(X3;Xi|C)) (Xi /∈ S); thus, X2 is added into S; and S = {X0, X2, X3}. Similarly,
X4 = argmax (I(Xi;C) + I(Xj, Xi|C) + I(Xk, Xi|C)) (Xi /∈ S,Xj, Xk ∈ S); thus, X4 is added into
S, and X1 will be the last one in the order. Thus, the whole attribute order and causal relationship can be
achieved simultaneously. The final network structures is illustrated in Figure 6.
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Figure 5. The upper triangular matrix of conditional mutual information between attributes
and one example.

Figure 6. The final network structure of flexible K-dependence Bayesian (FKDB).
Additionally, the order number of predictive attributes is also annotated.

Optimal attribute order and high dependence representation are two key points for learning KDB.
Note that KDB achieves these two goals in different steps. KDB first computes and compares mutual
information to get an attribute order before structured learning. Then, during the structured learning
procedure, each predictive attribute Xi can select at most K attributes as parent attributes by comparing
conditional mutual information (CMI). Because these two steps are separate, the attribute order cannot
ensure that the first K strongest dependencies between Xi and other attributes should be represented.
On the other hand, to achieve the optimal attribute order, FKDB considers not only the dependence
between predictive attribute and class variable, but also the dependencies among predictive attributes.
As the learning procedure proceeds, the attributes will be put into order one by one. Thus, the order is
determined dynamically. That is why the classifier is named “flexible”.

We will further compare KDB and FKDB with an example. Suppose that for KDB, the attribute
order is {X1, X2, X3, X4}; Figure 7 shows the corresponding network structure of KDB when K = 2

corresponds to the CMI matrix shown in Figure 7b, and the learning steps are annotated. The weight
of dependencies between attributes are depicted in Figure 7b. Although the dependence relationship
between X2 and X1 is the weakest, X1 is selected as the parent attribute of X2; whereas the strong
dependence between X4 and X1 is neglected. Suppose that for FKDB, the mutual information I(Xi;C)

is the same for all predictive attributes. Figure 8a shows the network structure of FKDB corresponding
to the CMI matrix shown in Figure 8b, and learning steps are also annotated. The weights of causal
relationships are depicted in Figure 8b, from which we can see that all strong causal relationships are
implicated in the final network structure.
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Figure 7. The K-dependence relationships among attributes inferred from the KDB learning
algorithm are shown (a), and the learning steps are annotated. The unused causal relationship
(b) is annotated in pink.

Figure 8. The K-dependency relationships among attributes inferred from the FKBN
learning algorithm are shown (a), and the learning steps are annotated. The unused causal
relationship (b) is annotated in pink.

5. Experimental Study

In order to verify the efficiency and effectiveness of the proposed FKDB (K = 2), we conduct
experiments on 45 datasets from the UCI machine learning repository. Table 1 summarizes the
characteristics of each dataset, including the numbers of instances, attributes and classes. Missing values
for qualitative attributes are replaced with modes, and those for quantitative attributes are replaced with
means from the training data. For each benchmark dataset, numeric attributes are discretized using MDL
discretization [22]. The following algorithms are compared:

• NB, standard naive Bayes.
• TAN [23], tree-augmented naive Bayes applying incremental learning.
• RTAN [21], tree-augmented naive Bayes ensembles.
• KDB (K = 2), standard K-dependence Bayesian classifier.
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Table 1. Datasets.

No. Dataset # Instance Attribute Class

1 Lung Cancer 32 56 3
2 Zoo 101 16 7
3 Echocardiogram 131 6 2
4 Hepatitis 155 19 2
5 Glass Identification 214 9 3
6 Audio 226 69 24
7 Hungarian 294 13 2
8 Heart Disease 303 13 2
9 Haberman’s Survival 306 3 2
10 Primary Tumor 339 17 22
11 LiveDisorder (Bupa) 345 6 2
12 Chess 551 39 2
13 Syncon 600 60 6
14 Balance Scale (Wisconsin) 625 4 3
15 Soybean 683 35 19
16 Credit Screening 690 15 2
17 Breast-cancer-w 699 9 2
18 Pima-ind-diabetes 768 8 2
19 Vehicle 846 18 4
20 Anneal 898 38 6
21 Vovel 990 13 11
22 German 1000 20 2
23 LED 1000 7 10
24 Contraceptive Method Choice 1473 9 3
25 Yeast 1484 8 10
26 Volcanoes 1520 3 4
27 Car 1728 6 4
28 Hypothyroid 3163 25 2
29 Abalone 4177 8 3
30 Spambase 4601 57 2
31 Optdigits 5620 64 10
32 Satellite 6435 36 6
33 Mushroom 8124 22 2
34 Thyroid 9169 29 20
35 Sign 12,546 8 3
36 Nursery 12,960 8 5
37 Magic 19,020 10 2
38 Letter-recog 20,000 16 26
39 Adult 48,842 14 2
40 Shuttle 58,000 9 7
41 Connect-4 Opening 67,557 42 3
42 Waveform 100,000 21 3
43 Localization 164,860 5 11
44 Census-income 299,285 41 2
45 Poker-hand 1,025,010 10 10
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All algorithms were coded in MATLAB 7.0 (MathWorks, Natick, MA, USA) on a Pentium 2.93
GHz/1 G RAM computer. Base probability estimates P (c), P (c, xi) and P (c, xi, xj) were smoothed
using the Laplace estimate, which can be described as follows:

P̂ (c) =
F (c) + 1

M +m

P̂ (c, xi) =
F (c, xi) + 1

Mi +mi

P̂ (c, xi, xj) =
F (c, xi, xj) + 1

Mij +mij

(16)

where F (·) is the frequency with which a combination of terms appears in the training data, M is the
number of training instances for which the class value is known, Mi is the number of training instances
for which both the class and attribute Xi are known and Mij is the number of training instances for
which all of the class and attributesXi andXj are known. m is the number of attribute values of class C;
mi is the number of attribute value combinations of C and Xi; and mij is the number of attribute value
combinations of C, Xj and Xi.

In the following experimental study, functional dependencies (FDs) [24] are used to detect redundant
attribute values and to improve model interpretability. To maintain the K-dependence restriction,
P (xi|x1, · · · , xK , c) will be used as an approximate estimation of P (xi|x1, · · · , xi−1, c) when i > K.
Obviously, P (xi|x1, · · · , xK+1, c) will be more accurate than P (xi|x1, · · · , xK , c). If there exists
FD:x2 → x1, then x2 functionally determines x1 and x1 is extraneous for classification. According
to the augmentation rule of probability [24],

P (xi|x1, · · · , xK+1, c) = P (xi|x2, · · · , xK+1, c).

Correspondingly, in practice, FKDB uses P (xi|x2, · · · , xK+1, c) instead, which still maintains K-
dependence restriction, whereas it represents more causal relationships.

FDs use the following criterion:

Count(xi) = Count(xi, xj) ≥ l

to infer that xi → xj , where Count(xi) is the number of training cases with value xi, Count(xi, xj)
is the number of training cases with both values and l is a user-specified minimum frequency. A large
number of deterministic attributes, which are on the left side of the FD, will increase the risk of incorrect
inference and, at the same time, needs more computer memory to store credible FDs. Consequently, only
the one-one FDs are selected in our current work. Besides, as no formal method has been used to select
an appropriate value for l, we use the setting that l = 100, which is achieved from empirical studies.

Kohavi and Wolpert [25] presented a powerful tool from sampling theory statistics for analyzing
supervised learning scenarios. Suppose c and ĉ are the true class label and that generated by classifier A,
respectively, for the i-th testing sample; the zero-one loss is defined as:

ξi(A) = 1− δ(c, ĉ)

where δ(c, ĉ) = 1 if ĉ = c and 0 otherwise. Table 2 presents for each dataset the zero-one loss and
the standard deviation, which are estimated by 10-fold cross-validation to give an accurate estimation of
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the average performance of an algorithm. Statistically, a win/draw/loss record (W/D/L) is calculated for
each pair of competitors A and B with regard to a performance measure M . The record represents the
number of datasets in which A respectively beats, loses to or ties with B on M . Small improvements
may be attributable to chance. Runs with the various algorithms are carried out on the same training
sets and evaluated on the same test sets. In particular, the cross-validation folds are the same for all of
the experiments on each dataset. Finally, related algorithms are compared via a one-tailed binomial sign
test with a 95 percent confidence level. Table 3 shows the W/D/L records corresponding to zero-one
loss. When dependence complexity increases, the performance of TAN gets better than that of NB.
RTAN investigates the diversity of TAN by the K statistic. The bagging mechanism helps RTAN to
achieve superior performance to TAN. FKDB performs undoubtedly the best. However, surprisingly, as a
2-dependence Bayesian classifier, the advantage of KDB is not obvious when compared to 1-dependence
classifiers, and it even performs poorer than RTAN in general. However, when the data size increases to a
certain extent, e.g., 4177 (the size of dataset “Abalone”), as Table 4 shows, the prediction performance of
all restricted classifiers can be evaluated from the perspective of the dependence level. Two-dependence
Bayesian classifiers, e.g., FKDB and KDB, perform the best. The one-dependence Bayesian classifier,
e.g., TAN, performs better. Additionally, 0-dependence Bayesian classifiers, e.g., NB, perform the worst.

Table 2. Experimental results of zero-one loss.

Dataset NB TAN RTAN KDB FKDB

Lung Cancer 0.438 ± 0.268 0.594 ± 0.226 0.480 ± 0.319 0.594 ± 0.328 0.688 ± 0.238
Zoo 0.029 ± 0.047 0.010 ± 0.053 0.029 ± 0.050 0.050 ± 0.052 0.028 ± 0.047
Echocardiogram 0.336 ± 0.121 0.328 ± 0.107 0.308 ± 0.101 0.344 ± 0.067 0.320 ± 0.072
Hepatitis 0.194 ± 0.100 0.168 ± 0.087 0.173 ± 0.090 0.187 ± 0.092 0.170 ± 0.089
Glass Identification 0.262 ± 0.079 0.220 ± 0.083 0.242 ± 0.087 0.220 ± 0.086 0.201 ± 0.079
Audio 0.239 ± 0.055 0.292 ± 0.093 0.195 ± 0.091 0.323 ± 0.088 0.358 ± 0.073
Hungarian 0.160 ± 0.069 0.170 ± 0.063 0.160 ± 0.079 0.180 ± 0.088 0.177 ± 0.081
Heart Disease 0.178 ± 0.069 0.193 ± 0.092 0.164 ± 0.073 0.211 ± 0.083 0.164 ± 0.079
Haberman’s Survival 0.281 ± 0.101 0.281 ± 0.100 0.270 ± 0.097 0.281 ± 0.103 0.281 ± 0.092
Primary Tumor 0.546 ± 0.091 0.543 ± 0.100 0.552 ± 0.094 0.572 ± 0.091 0.590 ± 0.089
Live Disorder(Bupa) 0.444 ± 0.078 0.444 ± 0.017 0.426 ± 0.037 0.444 ± 0.046 0.443 ± 0.067
Chess 0.113 ± 0.055 0.093 ± 0.049 0.096 ± 0.045 0.100 ± 0.054 0.076 ± 0.048
Syncon 0.028 ± 0.033 0.008 ± 0.015 0.010 ± 0.025 0.013 ± 0.022 0.011 ± 0.019
Balance Scale 0.285 ± 0.025 0.280 ± 0.022 0.286 ± 0.026 0.278 ± 0.028 0.280 ± 0.021
Soybean 0.089 ± 0.024 0.047 ± 0.014 0.045 ± 0.014 0.056 ± 0.013 0.051 ± 0.021
Credit Screening 0.141 ± 0.033 0.151 ± 0.048 0.134 ± 0.037 0.146 ± 0.051 0.149 ± 0.042
Breast-cancer-w 0.026 ± 0.022 0.042 ± 0.048 0.034 ± 0.032 0.074 ± 0.025 0.080 ± 0.039
Pima-ind-diabetes 0.245 ± 0.075 0.238 ± 0.062 0.229 ± 0.065 0.245 ± 0.113 0.247 ± 0.089
Vehicle 0.392 ± 0.059 0.294 ± 0.056 0.278 ± 0.060 0.294 ± 0.061 0.299 ± 0.056
Anneal 0.038 ± 0.343 0.009 ± 0.376 0.009 ± 0.350 0.009 ± 0.281 0.008 ± 0.296
Vowel 0.424 ± 0.056 0.130 ± 0.046 0.144 ± 0.036 0.182 ± 0.026 0.150 ± 0.041
German 0.253 ± 0.034 0.273 ± 0.062 0.238 ± 0.044 0.289 ± 0.068 0.284 ± 0.052
LED 0.267 ± 0.062 0.266 ± 0.057 0.258 ± 0.052 0.262 ± 0.052 0.272 ± 0.060
Contraceptive Method 0.504 ± 0.038 0.489 ± 0.023 0.474 ± 0.028 0.500 ± 0.038 0.488 ± 0.030
Yeast 0.424 ± 0.031 0.417 ± 0.037 0.407 ± 0.032 0.439 ± 0.031 0.438 ± 0.034
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Table 2. Cont.

Dataset NB TAN RTAN KDB FKDB

Volcanoes 0.332 ± 0.029 0.332 ± 0.030 0.318 ± 0.024 0.332 ± 0.024 0.338 ± 0.027
Car 0.140 ± 0.026 0.057 ± 0.018 0.078 ± 0.022 0.038 ± 0.012 0.046 ± 0.018
Hyprothyroid 0.015 ± 0.004 0.010 ± 0.005 0.013 ± 0.004 0.011 ± 0.012 0.010 ± 0.008
Abalone 0.472 ± 0.024 0.459 ± 0.025 0.450 ± 0.024 0.467 ± 0.028 0.467 ± 0.024
Spambase 0.102 ± 0.013 0.067 ± 0.010 0.066 ± 0.010 0.064 ± 0.014 0.065 ± 0.011
Optdigits 0.077 ± 0.009 0.041 ± 0.008 0.040 ± 0.007 0.037 ± 0.010 0.031 ± 0.009
Satellite 0.181 ± 0.016 0.121 ± 0.011 0.119 ± 0.015 0.108 ± 0.014 0.115 ± 0.012
Mushroom 0.020 ± 0.004 0.000 ± 0.008 0.000 ± 0.004 0.000 ± 0.000 0.000 ± 0.001
Thyroid 0.111 ± 0.010 0.072 ± 0.005 0.071 ± 0.007 0.071 ± 0.006 0.069 ± 0.008
Sign 0.359 ± 0.007 0.276 ± 0.010 0.270 ± 0.008 0.254 ± 0.006 0.223 ± 0.007
Nursery 0.097 ± 0.006 0.065 ± 0.008 0.064 ± 0.006 0.029 ± 0.006 0.028 ± 0.006
Magic 0.224 ± 0.006 0.168 ± 0.004 0.165 ± 0.009 0.157 ± 0.011 0.160 ± 0.006
Letter-recog 0.253 ± 0.008 0.130 ± 0.007 0.127 ± 0.008 0.099 ± 0.007 0.081 ± 0.005
Adult 0.158 ± 0.004 0.138 ± 0.003 0.135 ± 0.004 0.138 ± 0.004 0.132 ± 0.003
Shuttle 0.004 ± 0.001 0.002 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
Connect-4 Opening 0.278 ± 0.006 0.235 ± 0.005 0.231 ± 0.004 0.228 ± 0.004 0.218 ± 0.005
Waveform 0.022 ± 0.002 0.020 ± 0.001 0.020 ± 0.002 0.026 ± 0.002 0.018 ± 0.010
Localization 0.496 ± 0.003 0.358 ± 0.002 0.350 ± 0.003 0.296 ± 0.003 0.280 ± 0.001
Census-income 0.237 ± 0.002 0.064 ± 0.002 0.063 ± 0.002 0.051 ± 0.002 0.051 ± 0.002
Poker-hand 0.499 ± 0.002 0.330 ± 0.002 0.333 ± 0.002 0.196 ± 0.002 0.192 ± 0.002

Table 3. Win/draw/loss record (W/D/L) comparison results of zero-one loss on all datasets.

W/D/L NB TAN RTAN KDB

TAN 27/11/7
RTAN 29/13/3 10/27/8
KDB 24/13/8 12/20/13 15/12/18
FKDB 26/11/8 16/20/9 15/15/15 12/28/5

Table 4. Win/draw/loss record (W/D/L) comparison results of zero-one loss when the data
size > 4177.

W/D/L NB TAN RTAN KDB

TAN 16/1/0
RTAN 16/1/0 0/17/0
KDB 15/1/1 11/5/1 10/6/1
FKDB 16/1/0 11/6/0 10/7/0 4/12/1

Friedman proposed a non-parametric measure [28], the Friedman test, which compares the ranks of
the algorithms for each dataset separately. The null-hypothesis is that all of the algorithms are equivalent,
and there is no difference in average ranks. We can compute the Friedman statistic:

Fr =
12

Nt(t+ 1)

t∑
j=1

R2
j − 3N(t+ 1)
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by using the chi-square distribution with t − 1 degrees of freedom, where Rj =
∑

i r
j
i and rji is the

rank of the j-th of t algorithms on the i-th of N datasets. Thus, for any selected level of significance α,
we reject the null hypothesis if the computed value of Fr is greater than χ2

α, the upper-tail critical value
for the chi-square distribution having t − 1 degrees of freedom. The critical value of χ2

α for α = 0.05

is 1.8039. The Friedman statistic for 45 datasets and 17 large (size > 4177) datasets are 12 and 28.9,
respectively. Additionally, p < 0.001 for both cases. Hence, we reject the null-hypotheses.

The average ranks of zero-one loss of different classifiers on all and large datasets are {NB( 3.978),
TAN(2.778), RTAN(2.467), KDB(3.078), FKDB(2.811)} and {NB(4.853), TAN(3.118), RTAN(3),
KDB(2.176) and FKDB(2)}, respectively. Correspondingly, the order of these algorithms is {RTAN,
TAN, FKDB, KDB, NB} when comparing the experimental results on all datasets. The performance of
FKDB is not obviously superior to other algorithms. However, when comparing the experimental results
on large datasets, the order changes greatly and turns out to be {FKDB, KDB, RTAN, TAN, NB}.

When the class distribution is imbalanced, traditional classifiers are easily overwhelmed by instances
from majority classes, while the minority classes instances are usually ignored [26]. A classification
system should, in general, work well for all possible class distribution and misclassification costs. This
issue was successfully addressed in binary problems using ROC analysis and the area under the ROC
curve (AUC) metric [27]. Research on related topics, such as imbalanced learning problems, is highly
focused on the binary class problem, while progress on multiclass problems is limited [26]. Therefore,
we select 16 datasets with binary class labels for comparison of the AUC. The AUC values are shown in
Table 5. With 5 algorithms and 16 datasets, the Friedman statistic Fr = 2.973 and p < 0.004. Hence,
we reject the null-hypotheses again. The average ranks of different classifiers are {NB(3.6), TAN(3.0),
RTAN(2.833), KDB(2.867) and FKDB(2.7)}. Hence, the order of these algorithms is {FKDB, RTAN,
KDB, TAN, NB}. The effectiveness of FKDB is proven from the perspectives of AUC.

Table 5. Experimental results of the average AUCs for datasets with binary class labels.

Dataset NB TAN RTAN KDB FKDB

Adult 0.920 0.928 0.931 0.941 0.935
Breast-cancer-w 0.992 1.000 1.000 1.000 1.000
Census-income 0.960 0.989 0.991 0.992 0.993
Chess 0.957 0.986 0.992 0.988 0.993
Credit Screening 0.932 0.963 0.956 0.978 0.967
Echocardiogram 0.737 0.771 0.775 0.771 0.776
German 0.814 0.877 0.893 0.941 0.929
Haberman’s Survival 0.659 0.658 0.687 0.657 0.692
Heart Disease 0.922 0.936 0.946 0.956 0.951
Hepatitis 0.929 0.968 0.983 0.985 0.977
Hungarian 0.931 0.957 0.961 0.964 0.962
Live Disorder(Bupa) 0.620 0.620 0.620 0.620 0.620
Magic 0.866 0.905 0.902 0.916 0.911
Mushroom 0.999 1.000 1.000 1.000 1.000
Pima-ind-diabetes 0.851 0.865 0.866 0.876 0.877
Spambase 0.966 0.980 0.987 0.989 0.985
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To compare the relative performance of classifiersA andB, the zero-one loss ratio (ZLR) is proposed
in this paper and defined as ZLR(A/B) =

∑
ξi(A)/

∑
ξi(B). Figures 9–12 compare FKDB with NB,

TAN, RTAN and KDB, respectively. Each figure is divided into four parts by comparing data size and
ZLR. That is, the data size is greater than 4177 while ZLR ≥ 1 or ZLR < 1, and the data size is smaller
than 4177 while ZLR ≥ 1 or ZLR < 1. In different parts, different symbols are used to represent
different situations. When dealing with small datasets (data size <4177), the performance superiority of
FKDB is not obvious when compared to the 0-dependence (NB) or 1-dependence Bayesian classifiers
(TAN). For some datasets, e.g., “Lung Cancer” and “Hungarian”, NB even performs the best. Because
precise estimation of conditional mutual information is determined by probability estimation, which is
affected greatly by data size, the robustness of network structure will be affected negatively by imprecise
probability estimation. For example, for dataset “Lung Cancer” with 32 instances and 56 attributes, it
is almost impossible to ensure that the basic causal relationships learned are of a high confidence level.
That is why a simple structure can perform better than a complicated one. Since each submodel of
RTAN can represent only a small proportion of all dependencies, the complementarity of the bagging
mechanism works and helps to improve the performance of TAN. KDB shows equivalent performance
to FKDB.

Figure 9. The experimental results of zero-one loss ratio ZLR(FKDB/NB).

Figure 10. The experimental results of zero-one loss ratio ZLR(FKDB/TAN).
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Figure 11. The experimental results of zero-one loss ratio ZLR(FKDB/RTAN).

Figure 12. The experimental results of zero-one loss ratio ZLR(FKDB/KDB).

As data size increases, high-dependence Bayesian classifiers gradually show their superiority, and the
advantage of FKDB is almost overwhelming when compared to NB and TAN. Because almost all strong
dependencies can be detected and illustrated in each submodel of RTAN, the high degree of uniformity
in the basic structure cannot help to improve the prediction performance of TAN. Thus, RTAN shows
equivalent performance to TAN. The prediction superiority of FKDB over KDB becomes much more
obvious. Because they both are 2-dependence Bayesian classifiers, a minor difference in local structure
may be the main cause of the performance difference. To further clarify this idea, we propose a new
criterion, Info_ratio(A/B), to compare the information quantity implicated in Bayesian classifiers A
and B.

Info_ratio(A/B) = Sum_MI(A)/Sum_MI(B) (17)

The comparison results of Info_ratio(FKDB/KDB) are shown in Figure 13, from which the
superiority of FKDB in extracting information is much more obvious when dealing with large datasets.
The increased information quantity does help to decrease zero-one loss. However, note that the growth
rate of information quantity is not in proportion to the descent rate of zero-one loss. For some
datasets, e.g., “Localization” and “Poker-hand”, KDB and FKDB achieve the same Sum_MI , while
their zero-one losses are different. The same Sum_MI corresponds to the same causal relationships.



Entropy 2015, 17 3783

The network structures learned from KDB and FKDB are similar, because the major dependencies are
all implicated, except that the directions of some arcs are different. Dependence “X3 − X4” can be
represented by conditional probability distribution P (x3|x4, c) or P (x4|x3, c). Just as we clarified in
Section 3, although the basic structures described in Figure 3a,b are the same, the corresponding joint
probability distributions represented by Equations (13) and (14) are different. Since ZLR ≈ 1 for
these two datasets, the difference in zero-one loss can be explained from the perspective of probability
distribution.

Figure 13. The experimental results of Info_ratio(FKDB/KDB).

To prove the relevance of information quantity to zero-one loss, Figure 14 is divided into four zones.
Similar to the comparison of Equations (13) and (14), the same information quantity does not certainly
correspond to the same Bayesian network and, then, the same zero-one loss. Zone A contains 27
datasets and describes the situation that ZLR<1 and Info_ratio ≥ 1. The performance superiority
of FKDB over KDB can be attributed to mining more information or correct conditional dependence
representation. Zone D contains 6 datasets and describes the situation that ZLR>1 and Info_ratio ≤ 1.
The performance inferiority of FKDB over KDB can be attributed to mining less information. Thus, the
information quantity is strongly correlated to zero-one loss on 73.3% (27+6

45
) of all datasets. On the

other hand, although FKDB has proven its effectiveness from the perspective of W/D/L results and the
Friedman test, the information quantity is a very important score, but not the only one.
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Figure 14. The relationship between ZLR and Info_ratio.

6. Conclusions

BNs can graphically describe conditional dependence between attributes, and they have been
previously demonstrated to be computationally efficient approaches to further reducing zero-one loss.
Conditional mutual information is commonly applied to weigh the dependencies between attributes,
while it cannot measure the information quantity provided to predictive attributes. On the basis
of analyzing and summarizing the working mechanisms of three popular Bayesian classifiers from
the viewpoints of information theory and probability theory, this paper proposed to mine reliable
dependencies by maximizing the sum of mutual information. The experimental results validate the
mapping relationship between conditional probability distribution and mutual information.
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