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Abstract: Based on geometric invariance properties, we derive an explicit prior distribution
for the parameters of multivariate linear regression problems in the absence of further
prior information. The problem is formulated as a rotationally-invariant distribution of
L-dimensional hyperplanes inN dimensions, and the associated system of partial differential
equations is solved. The derived prior distribution generalizes the already known special
cases, e.g., 2D plane in three dimensions.
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1. Introduction

In the context of Bayesian probability theory, a proper assignment of prior probabilities is crucial.
Depending on the domain, quite different prior information can be available. It may be in the form
of point estimates provided by domain experts (see, e.g., [1] for prior distribution elicitation) or in the
form of invariances (of the prior knowledge) of the system of interest, which should be reflected in the
prior probability density [2]. However, especially for the ubiquitous case of the estimation of parameters
of linear equation systems (like a straight line or hyperplane fitting), the latter requirement is often
violated. Consider, for concreteness, the simple case of y = ax, a straight line through the origin,
with a the parameter of interest. Here, the commonly-applied prior is constant, p (a | I) = const.,
often accompanied by statements like “Since we do not have specific prior information, we chose a
uniform prior on a...”. In Figure 1 on the left-hand side, 15 random samples generated from this prior
distribution with a ∈ [0, 50] are displayed. Confronted with this result, the typical response is (at least in
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the experience of the author) that instead, a more “uniform” prior distribution of the slopes was intended,
which is often depicted like in Figure 1 on the right-hand side. This plot was generated from a prior
distribution that has an equal probability density for the angle of the line to the abscissa, corresponding to

p (a | I) ∼ 1

(1 + a2)3/2
. (1)

Additionally, in fact, in practice, the units of the axes are commonly chosen in such a way that
extreme values of the slopes are not a priori overrepresented. If we generalize this requirement to more
than one independent or dependent variable, then the desired prior probability should be invariant under
arbitrary rotations in this parameter space. Some important special cases have been given already in [3],
e.g., for a 1D line in two dimensions or a 2D plane in three dimensions. There also, the governing
transformation invariance equation underlying invariant priors is derived. These special cases have since
then been generalized to invariant priors for (N − 1)-dimensional hyperplanes in N -dimensional space;
see, e.g., [4]. These hyperplane priors proved to be valuable for Bayesian neural networks [5], where the
specific properties of the prior density favored node-pruning instead of simple edge pruning of standard
(quadratic) weight regularizers. This is especially helpful for a Bayesian approach to fully-connected
deep convolutional networks; see e.g., [6,7].
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Figure 1. Comparison of two different priors. (a) 15 random samples drawn from
p (a | I) = 1/50, i.e., a uniform distribution in the slope with 0 ≤ a ≤ 50. (b) the density
p (a | I) ∼ (1 + a2)

−3/2, corresponding to a distribution uniform in the angle, is visualized
by 15 samples.

Nevertheless, the general case of prior probability densities for L-dimensional hyperplanes in
N -dimensions (N > L) in a suitable parameterization has not been available so far. It has even been
conjectured that it is impossible to derive a general solution [8]. Luckily, this conjecture has been
too pessimistic, and an explicit formula for the prior density, which can directly be applied to linear
regression problems, is derived below.
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It should be pointed out that multivariate regression is of course a longstanding topic in Bayesian
inference. with classical contributions, e.g., by Box and Tiao [9], Zellner [10] or West [11]. However,
the standard approach is based on the use of conjugate priors (instead of invariance priors), mostly for
computational convenience [12]. In contrast, the subsequently derived prior distribution is determined by
the basic desideratum of consistency if the available prior information is invariant under the considered
transformations (i.e., rotations). Whether this invariance holds depends on the considered problem and
must not be assumed without further consideration (similar to the case of flat priors for the coefficients).
For example, the assumption of rotation invariance may not be suitable for covariates with different
underlying units (e.g., m2, kg).

2. Problem Statement

In standard notation, a multivariate regression model is notated as follows:

yi = Axi + t, xi ∈ RL,A ∈ RM×L, t ∈ RM and yi ∈ RM , (2)

with:
zi = yi + εi, εi ∈ RM , (3)

where zi is the response vector, yi the model value vector, xi the vector of the L covariates for
observation i, t the intercept vector and A the M × L-dimensional matrix of adjacent regression
coefficients. The observation noise εi of each data point is often considered as Gaussian distributed,
εi ∼ N (0,Σ). This regression model can also be considered as estimating the “best” L-dimensional
hyperplane in an N -dimensional space, because in an N -dimensional space, an L-dimensional
hyperplane is given by:

y1 = a11x1 + a12x2 + · · ·+ a1LxL + t1

y2 = a21x1 + a22x2 + · · ·+ a2LxL + t2

y3 = a31x1 + a32x2 + · · ·+ a3LxL + t3 (4)
...

yM = aM1x1 + aM2x2 + · · ·+ aMLxL + tM

with M = N − L.
The quantity of interest is the prior probability density F (A) = F (a11, · · · , aML, t1, · · · , tM |I) for

the coefficients a11, · · · , aML, t1, · · · , tM , which remains invariant under translations and rotations of
the coordinate system.

3. Derivation

Using the transformation invariance equation derived in [3]:

N∑
i=1

∂

∂zi
(F (z1, · · · , zN) gi (z1, · · · , zN)) = 0 (5)
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for infinitesimal transformations of the form z
′
i = zi + εgi (z1, · · · , zN), we can establish a partial

differential equation system for F .

3.1. Invariance under Translations

Let us first consider a translation with respect to yi : y
′
i = yi + ε, i.e., gi = 1, gj,j 6=i = 0. Then, the

equation in the primed variables reads:

y
′

i = yi + ε = a
′

i1x1 + a
′

i2x2 + · · ·+ a
′

iLxL + t
′

i (6)

Collecting the coefficients yields t′i = ti + ε, and therefore, Equation (5) results in:

0 + · · ·+ 0 +
∂

∂ti
(F (A, t) · 1) + 0 + · · ·+ 0 = 0, (7)

which holds for any i. Therefore, F (A, t) can be a function of ~a only. Since F (A | I) does not depend
on ~t, the prior distribution is improper (not normalizable in t) as long as there are no limits on the
magnitude of t.

The translation with respect to xi results in the same conclusion.

3.2. Invariance under Rotations

The general rotation in n-dimensional space may be expressed as a sequence of rotations around
rotation axes, which are perpendicular to the planes spanned by appropriately-chosen pairs of coordinate
system basis vectors [13]. This is based on the fact that any orthogonal matrix, i.e., rotation matrices,
can be written uniquely as a product of 2× 2 rotations. To avoid convoluted language, we denote in the
following the rotation around the rotation axis that is perpendicular to the plane spanned by the linear
combination of the basis vectors ei and ej simply as rotation in the xixj-plane.

3.2.1. Rotation in the xixj-Plane

Now, we perform one such infinitesimal 2 × 2-rotation for independent parameters around an
arbitrary rotation axis perpendicular to the plane spanned by ei and ej , preserving all other coordinates:
x
′

k = xk ∀ k 6= (j, i) and

x
′

i = xi − εxj, (8)

x
′

j = εxi + xj. (9)

Substituting the primed coordinates into Equation (5) yields the implied transformations:

a
′

ki = aki − akjε, (10)

a
′

kj = akj + akiε, (11)

t
′

k = tk (12)

and, therefore, the partial differential equation:
M∑
k=1

∂

∂aki
(F (A) · (−akj)) +

M∑
k=1

∂

∂akj
(F (A) · (aki)) = 0. (13)
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3.2.2. Rotation in the yiyj-Plane

Now, we perform one such rotation in the plane of two dependent parameters ei and ej; thus
y
′

k = yk ∀ k 6= (j, i) and:

y
′

i = yi − εyj, (14)

y
′

j = εyi + yj. (15)

Substituting the primed coordinates into Equation (5) yields the implied transformations:

a
′

ik = aik − ajkε, (16)

a
′

jk = ajk + aikε, (17)

t
′

i = ti − tjε, (18)

t
′

j = tj + tiε, (19)

t
′

k = tk (20)

and, therefore, the partial differential equation:

M∑
k=1

∂

∂aik
(F (A) · (−ajk)) +

M∑
k=1

∂

∂ajk
(F (A) · (aik)) = 0. (21)

3.2.3. Rotation in a Plane Spanned by xiyj-Axes

Performing a rotation in the xy-plane, we obtain:

x
′

i = xi − εyj, (22)

y
′

j = εxi + yj. (23)

which yields (see the Appendix):

a
′

ji = aji +
(
1 + a2ji

)
ε, (24)

a
′

kl = akl + (ajlaki) ε, (25)

t
′

k = tk + (akitj) ε (26)

and therefore:
M∑
k=1

L∑
l=1

∂

∂akl
(F · (ajlaki)) +

∂

∂aji
F + F · aji = 0. (27)

4. The PDE System

The translation invariance of Equation (5) excludes a dependence of F on t1, · · · , tM , so F is
of the form F (a11, · · · , aML|I). Rotation invariance with respect to the y-axis requires F to fulfill
the homogeneous, linear system of first order partial differential equations (i, j ∈ [1,M ] , i 6= j) (i.e.,
Equation (21)):

L∑
k=1

∂

∂ajk
(F · aik)−

L∑
k=1

∂

∂aik
(F · ajk) = 0 (28)
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and similar for rotations around the x-axis (i, j ∈ [1, L] , i 6= j) (Equation (13)):

M∑
k=1

∂

∂akj
(F · aki)−

M∑
k=1

∂

∂aki
(F · akj) = 0. (29)

Rotations around an axis perpendicular to a plane given by an x,y-pair require the probability
distribution to obey also (i ∈ [1, L] , j ∈ [1,M ]):

M∑
k=1

L∑
l=1

∂

∂akl
(F · (ajlaki)) +

∂

∂aji
F + F · aji = 0. (30)

Using the product rule, the double sum can be rewritten as

M∑
k=1

L∑
l=1

∂

∂akl
(F · (ajlaki)) =

M∑
k=1

L∑
l=1

ajlaki
∂

∂akl
F + F ·

M∑
k=1

L∑
l=1

∂

∂akl
(ajlaki) (31)

and the last term of the previous equation can be split into three parts and simplified:

F ·
M∑
k=1

L∑
l=1

∂

∂akl
(ajlaki) =

F ·
M∑

k=1,k 6=j

∂

∂aki
(ajiaki) + F ·

L∑
l=1,l 6=i

∂

∂ajl
(ajlaji) + F · ∂

∂aji
a2ji =

(M − 1) ajiF + (L− 1) ajiF + 2ajiF = (M + L) ajiF. (32)

Using this, Equation (30) can be written as:

M∑
k=1

L∑
l=1

ajlaki
∂

∂akl
F +

∂

∂aji
F + (M + L+ 1) ajiF = 0. (33)

5. Solution

This system of PDEs (Equations (28), (29) and (33)) can be tackled with the theory of Lie groups,
which provides a systematic, though algebraically-intensive solution strategy, which is implemented in
contemporary computer algebra systems. The solutions of several test cases computed by the Maple
computer algebra system (http://www.maplesoft.com/) (it proved to be superior to MATHEMATICA
(www.http://www.wolfram.com/mathematica/) for the present PDE-systems) led to the conjecture that
a general solution to this PDE system is given by the sum of the squares of all possible minors of the
coefficient matrix:

F (a11, · · · , aML|I)

=

1 + (MP )(
L
P)∑

k=1

(
det
(
AP,k

))2
+

( M
P−1)(

L
P−1)∑

k=1

(
det
(
AP−1,k))2 + · · ·+ (M1 )(

L
1)∑

k=1

(
det
(
A1,k

))2
−M+L+1

2

(34)

where An denotes a submatrix (minor) of size n × n (this notation is used at various places throughout
the paper and should not be confused with the power of a matrix, which does not occur in this paper) and
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P = Min (M,L). Equation (34) does not appear unreasonable from the onset as prior density, because
it preserves the underlying symmetry of the problem (permutation invariance of the parameters) and
it is non-negative.

An explicit example for the case N = 4, L = 2 is:

F (a11, a12, a21, a22|I) =
[
1 + a211 + a212 + a221 + a222 + (a11 · a22 − a12 · a21)2

]−5/2
. (35)

A two-dimensional slice of this probability density is given in Figure 2. The high symmetry of the
prior distribution with respect to parameter permutations results in similar, “Cauchy”-like shapes if slices
along other parameter axis are displayed.
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Figure 2. Probability density of p (a11, a21 | a12, a22, I) for a12 = 3 and a22 = 5 for the case
N = 4, L = 2. The probability density exhibits the typical “Cauchy-”like shape with heavy
tails compared to a binormal distribution. Due to the symmetry of the prior distribution,
slices with respect to the other parameters display the same basic features.

For the case N = 6, L = 3, the solution is given by:

F (a11, · · · , a33|I)
= (1 + a211 + a212 + a213 + a221 + a222 + a223 + a231 + a232 + a233 +

(a22a33 − a23a32)2 + (a21a33 − a23a31)2 + (a21a32 − a22a31)2 +
(a12a33 − a13a32)2 + (a11a33 − a13a31)2 + (a11a32 − a12a31)2 +
(a12a23 − a13a22)2 + (a11a23 − a13a21)2 + (a11a22 − a12a21)2 +
(a11 · (a22a33 − a23a32)− a12 · (a21a33 − a23a31) + a13 · (a21a32 − a22a31))2)−7/2.

6. Proof

6.1. Preliminaries

To prove that Equation (34) fulfills the equation system given by Equations (28), (29) and (33), we
verify directly that Equation (34) solves the PDEs.

We will make repeated use of the Laplace expansion of determinants:

det (An) =
n∑

j=1

aij (−1)i+j det
(
Mn−1

ij

)
(36)
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where the minor Mn−1
ij is the (n− 1)× (n− 1)-matrix derived from the n×n-matrix An by deletion of

the i-th row and j-th column (by definition M0 := 1). The cofactor matrix An−1
ij is defined to be:

An−1
ij = (−1)i+j Mn−1

ij (37)

and satisfies the following n-equations (i, j, k = 1, 2, · · · , N):

n∑
j=1

aijdet
(
An−1

kj

)
= δikdet (A

n) ,
n∑

i=1

aijdet
(
An−1

ik

)
= δjkdet (A

n) . (38)

Further useful is the following form of the Laplace expansion, taking into account index shifts of a
previous deletion of row k and column i of an (n+ 1)-matrix An+1, resulting in the minor Mn

ki:

det (Mn
ki) =

n+1∑
l=1,l 6=i

ajl (−1)(l
′+j′) det

(
Mn−1

(jk)(li)

)
(39)

where Mn−1
(jk)(li) is the minor given by deletion of the j-th and k-th row and the l-th and i-th column. l′

and j′ are defined as:

l′ = l ∀ (l < i) and l′ = l − 1 ∀ (l > i)

j′ = j ∀ (j < k) and j′ = j − 1 ∀ (j > k). (40)

In the following, we face the problem of possibly too heavy of a nomenclature, because we need
summation indices, while we also need to keep track of the original indices underlying the entries in the
minors, where some rows and columns have been deleted, although the relative order is preserved. The
mapping could be expressed, e.g., as ai(i′)j(j′) with i′, j′ ∈ [1,m] and i (:) ∈ [1,M ] and j (:) ∈ [1, L]. To
avoid this cumbersome notation, we implicitly assume from now on (up to the Conclusion Section) this
mapping for all summations that are indexed by either k or l. Therefore:

m∑
k=1

akidet
(
Am−1

kj

)
has to be read as

m∑
k′=1

ak(k′)idet
(
Am−1

k(k′)j

)
. (41)

6.2. xixj- and yiyj-Rotations

We now verify that Equation (34) solves Equation (29). It is obvious that only those determinants
of Equation (34) that contain column i or column j have the potential to provide non-zero contributions
in Equation (29): if column j is missing, the derivative in the first term is zero. If, instead, column i is
missing, then the derivative in the second term of Equation (29) yields zero. To proceed, we introduce
H(A) via:

F (A) = H(A)−
L+M+1

2 . (42)

It is noteworthy that H(A) has a very simple form: it is given by a sum of positive terms. This almost
decouples the problem, and we can largely proceed on a term-by-term basis. Using the equality:

∂

∂apq
(det (Am))2 = 2det (Am) det

(
Am−1

pq

)
(43)
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the left-hand side of Equation (29) transforms to (i, j ∈ [1, L] , i 6= j):

− (M + L+ 1)H (a)−
L+M+3

2 det (Am) ·

(
m∑
k=1

akidet
(
Am−1

kj

)
−

m∑
k=1

akjdet
(
Am−1

ki

))
(44)

and using Equation (38), we obtain:

− (M + L+ 1)H (a)−
L+M+3

2 det (Am) · (δijdet (Am)− δijdet (Am)) = 0 (45)

and, therefore, Equation (34) solves Equation (29). The calculation is similar for Equation (28) and
yields the result that Equation (34) solves also the system Equation (28).

6.3. (xiyj)-Rotations

The verification of the successful solution of Equation (33) by Equation (34) requires some more
steps. As before, Equation (33) can be written as:

− M + L+ 1

2

(
M∑
k=1

L∑
l=1

ajlakiH (A)−
L+M+3

2
∂H (A)

∂akl
+H (A)−

L+M+3
2

∂H (A)

∂aji
− 2ajiH (A)−

L+M+1
2

)
= 0

(46)
and after multiplication with H (A)

L+M+3
2 as:

− (M + L+ 1) · (47) P∑
m=1

(Mm)(
L
m)∑

r=1

(
m∑
k=1

m∑
l=1

ajlakidet (A
m,r) det

(
Am−1,r

kl

)
+ det (Am,r) det

(
Am−1,r

ji

))
− ajiH(A)


= 0

6.3.1. Matrices with Either Row j or Column i

The inner double sum can be simplified for all matrices containing either row j or column i (i.e.,
all matrices of size P × P and all matrices Am,r of size m × m,m ∈ (1, 2, · · · , P − 1) with label
r = 1, 2, · · · ,

(
M
m

)(
L
m

)
−
(
M−1
m

)(
L−1
m

)
) using the Laplace expansion (here, the expansion with respect to

row j is shown):

m∑
k=1

m∑
l=1

ajlakidet (A
m,r) det

(
Am−1,r

kl

)
= det (Am,r)

m∑
k=1

aki

m∑
l=1

ajldet
(
Am−1,r

kl

)
(48)

= det (Am,r)
m∑
k=1

akiδjkdet (A
m,r) = aji (det (A

m,r))2

which cancels the corresponding determinant of H (A) in the last term of Equation (48).
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6.3.2. Matrices with Neither Row j nor Column i

The basic idea is to show that
(
M−1
m

)(
L−1
m

)
-matrices with neither row j nor column i,

m ∈ (1, 2, · · · , P − 1), cancel with the contributions of the corresponding matrices including row j

and column i of size (m+ 1)× (m+ 1) of the second term.
Please note that there is a one-to-one correspondence of minors of size m ×m without the j-th row

and i-th column and the matrices of size (m+ 1) × (m+ 1) with row j and column i in the second
term, therefore allowing one to label both with the same index r. After division by − (M + L+ 1), the
remaining terms of Equation (48) are (taking into account that the labeling of the rows and columns of
the matrices of size (m+ 1)× (m+ 1) and (m)× (m) must be consistent):

m+1∑
k=1,k 6=j

m+1∑
l=1,l 6=i

ajlakidet
(
Am,r

ji

)
det
(
Am−1,r

(jk)(il)

)
+ det

(
Am+1,r

)
det
(
Am,r

ji

)
− ajiHji(A) = 0 (49)

with Hji now only containing determinants with neither row j nor column i. If we now only consider
the relevant term of Hji, we can write:

m+1∑
k=1,k 6=j

m+1∑
l=1,l 6=i

ajlakidet
(
Am,r

ji

)
det
(
Am−1,r

(jk)(il)

)
+ det

(
Am+1,r

)
det
(
Am,r

ji

)
− ajidet

(
Am,r

ji

)2
= 0. (50)

The equation is trivially true if det
(
Am,r

ji

)
= 0; otherwise, we can divide by det

(
Am,r

ji

)
and obtain:

m+1∑
k=1,k 6=j

m+1∑
l=1,l 6=i

ajlakidet
(
Am−1,r

(jk)(il)

)
+ det

(
Am+1,r

)
− ajidet

(
Am,r

ji

)
= 0. (51)

Replacing the various cofactors by the corresponding minors (cf. Equations (36) and (37)) yields:
m+1∑

k=1,k 6=j

m+1∑
l=1,l 6=i

ajlaki (−1)(i+j+k′+l′) det
(
Mm−1,r

(jk)(il)

)
+det

(
Am+1,r

)
−aji (−1)(i+j) det

(
Mm,r

ji

)
= 0 (52)

and after replacing det (Am+1,r) by its Laplace expansion together with multiplication by (−1)(i+j), the
equation reads:

m+1∑
k=1,k 6=j

m+1∑
l=1,l 6=i

ajlaki (−1)(k
′+l′) det

(
Mm−1,r

(jk)(il)

)
+

(−1)(i+j)
∑
k=1

aki (−1)(i+k) det (Mm,r
ki )− ajidet

(
Mm,r

ji

)
= 0 (53)

and can be simplified to:
m+1∑

k=1,k 6=j

m+1∑
l=1,l 6=i

ajlaki (−1)(k
′+l′) det

(
Mm−1,r

(jk)(il)

)
+
∑
k=1

aki (−1)(j+k) det (Mm,r
ki )− ajidet

(
Mm,r

ji

)
= 0

(54)
because (−1)2i equals one in the second term. Therefore, the third term cancels with the second term for
k = j, and the remaining equation is given by:

m+1∑
k=1,k 6=j

aki (−1)k
′

m+1∑
l=1,l 6=i

ajl (−1)l
′
det
(
Mm−1,r

(jk)(il)

)
+

∑
k=1,k 6=j

aki (−1)(j+k) det (Mm,r
ki ) = 0. (55)
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Using Equation (39) together with the definition Equation (40), the inner sum of the first term of
Equation (55) can be rewritten as:

m+1∑
l=1,l 6=i

ajl (−1)l
′
det
(
Mm−1,r

(jk)(il)

)
= (−1)j Mm,r

ki ∀ (j < k) (56)

and:
m+1∑

l=1,l 6=i

ajl (−1)l
′
det
(
Mm−1,r

(jk)(il)

)
= (−1)j−1Mm,r

ki ∀ (j > k) . (57)

Splitting the summation over k into two parts (k < j) and (k > j) and inserting the definition for k′,
we obtain: ∑

k=1,k<j

aki (−1)(j+k) det (Mm,r
ki ) +

∑
k>j

aki (−1)(j+k) det (Mm,r
ki ) +∑

k=1,k<j

aki (−1)((j−1)+k) det (Mm,r
ki ) +

∑
k>j

aki (−1)(j+(k−1)) det (Mm,r
ki ) = 0 (58)

where the first two terms cancel the last two terms.
Summarizing the previous approach, we have shown that for an arbitrary n× n-determinant, the first

and third term of Equation (48) almost cancel. Only determinants not containing the j-th row and the i-th
column remain. These remaining contributions are canceled by the (n+ 1)-order determinant (required
to contain the matrix element aji) of the second term in Equation (48). This schema can be repeated
down to n = 1, and the last step (n = 0) is easily explicitly calculated. This finishes our derivation.

7. Relation to Previously-Derived Special Cases

The underlying equation systems of the special case of an (n−1)-dimensional hyperplane in an n-dim
space used in [8] and in this paper differ slightly due to a different parameterization, and therefore, the
derived priors appear on first glance to be different, although they are identical, as will be shown below.

For probability density functions in different coordinate systems, the following equation holds:

p (~a) d~a = p
(
~b (~a)

) ∣∣∣∣∣∣
∂
(
~b
)

∂ (~a)

∣∣∣∣∣∣ d~a, (59)

where |· · · | denotes the absolute value of the Jacobi determinant:∣∣∣∣∣∣
∂
(
~b
)

∂ (~a)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣det


∂b1
∂a1

∂b1
∂a2

· · · ∂b1
∂an

...
...

∂bn
∂a1

∂bn
∂a2

· · · ∂bn
∂an


∣∣∣∣∣∣∣ . (60)

The equation describing the (n-1)-dim hyperplane in an n-dim space in this paper is given by:

y1 = a11x1 + a12x2 + · · ·+ a1(n−1)xn−1 + t1 (61)

and results in the following prior:

p
(
a11, a12, · · · , a1(n−1), t1

)
=

(
1 +

n−1∑
i=1

a21i

)−n+1
2

. (62)
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In [8], the corresponding hyperplane equation reads:

0 = b1x1 + b2x2 + · · ·+ bnxn + 1 (63)

with prior distribution:

p (b1, b2, · · · , bn) =

(
n∑

i=1

b2i

)−n+1
2

,with
n∑

i=1

b2i > R2
0. (64)

The latter constraints yield a proper (normalizable) prior. The relation of the two different
parameterizations is given by:

bi =
a1i
t1

∀i 6= n and bn = − 1

t1
(65)

which yields the Jacobian:

∣∣∣∣∣∣
∂
(
~b
)

∂ (~a)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣
det



1
t1

0 0 · · · 0 −a11
t1

0 1
t1

0 · · · 0 −a12
t1... . . . · · · ...

0 0 0 · · · 1
t1
−a1(n−1)

t1

0 0 0 · · · 0 − 1
t21



∣∣∣∣∣∣∣∣∣∣∣∣
=

1

tn+1
1

(66)

Using this result and Equation (65), we can write:

p
(
~b (~a)

) ∣∣∣∣∣∣
∂
(
~b
)

∂ (~a)

∣∣∣∣∣∣ d~a =
1(∑n−1

i=1

(
a1i
t1

)2
+ 1

t21

)n+1
2

tn+1
1

d~a =
1(

1 +
∑n−1

i=1 a
2
1i

)n+1
2

d~a (67)

which shows the equivalence of the two priors (Equations (62) and (64)). The requirement of
∑
b2i > R2

0

leads to:

R2
0 ≤

n∑
i=1

b2i =
n−1∑
i=1

(
a1i
t1

)2

+
1

t21
=

1

t21

(
1 +

n−1∑
i=1

a21i

)
. (68)

In the case of all a1i = 0, we obtain:

t21 ≤
1

R2
0

(69)

which means that the lower limit R2
0 corresponds to an upper limit of t21.

8. Practical Hints

In the worst case, the hyperplane prior has an exponentially-increasing number of determinants with
increasing dimension. The total number of individual determinants for an N -dimensional plane in a
2N -dimensional space is given by:

N∑
k=0

(
N

k

)2

=

(
2N

N

)
(70)
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which is already 70 for a 4D hyperplane in an 8D space. Therefore, it is advantageous to compute
the determinants using iteratively the Laplace expansion, starting from small determinants, storing the
determinants of the previous step. This requires the storage of at most

(
N
N/2

)2
terms. As a proposal

density for Markov chain Monte Carlo (MCMC) sampling methods (e.g., rejection sampling), the
dominating multivariate Cauchy distribution is a good candidate. Source code for the set up of the
PDE system and for the solution, together with a Maple script for the verification of the solution, can be
obtained from the author.

9. Conclusions

This paper has derived a prior density for L-dimensional hyperplanes in N -dimensional space, based
on geometric invariances. It is suited, e.g., to parameter estimation of multilinear regression problems
in the absence of further prior knowledge or Bayesian model estimation for neural networks. In the
latter case, the prior has to be made proper by suitable restriction of the range of the offset parameters,
which depends on domain knowledge. The obtained prior density avoids the too strong weight of “large”
values of the regression coefficients typically assigned by uniform priors. Being a rational function, its
influence on the parameter estimates on standard problems with Gaussian uncertainties (resulting in an
exponential likelihood) on the data will be limited. However, this can be different for robust estimation
approaches with heavy-tailed likelihood distributions.

Appendix

In this section, the relation between the primed coefficient a′nm and the unprimed coefficient anm is
derived. A rotation perpendicular to the xiyj-plane relates xi, yj with x′i, y

′
j by:

x
′

i = xi − εyj, (A1)

y
′

j = εxi + yj. (A2)

and x
′

k = xk, k = 1, · · · , L; k 6= i and y
′

k = yk, k = 1, · · · ,M ; k 6= j. Using this, the system
Equation (5) in the transformed coordinate system reads (n = 1, · · · ,M ;n 6= j):

yn = a
′

n1x1 + a
′

n2x2 + · · ·+ a
′

ni (xi − εyj) + a
′

n(i+1)x(i+1) + · · ·+ a
′

nLxL + t
′

n

yj + εxi = a
′

j1x1 + a
′

j2x2 + · · ·+ a
′

ji (xi − εyj) + a
′

j(i+1)x(i+1) + · · ·+ a
′

jLxL + t
′

j. (A3)

Solving for yj , we obtain:

yj =
1

1 + a
′
jiε

(
t
′

j − xiε+
L∑

k=1

a
′

jkxk

)
(A4)

and subsequently:

yn =

(
t
′

n +
L∑

k=1

a
′

nkxk

)
− a′niε

1

1 + a
′
jiε

(
t
′

j − xiε+
L∑

k=1

a
′

jkxk

)
. (A5)
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Using the Taylor expansion 1/
(
1 + a

′
jiε
)
= 1 − a

′
jiε + O (ε2) up to first order and collecting the

coefficients, the previous equations yield:

aji = a
′

ji − a
′

ji

2
ε− ε ; tj = t

′

j − t
′

ja
′

jiε

ank = a
′

nk − a
′

nia
′

jkε ; tn = t
′

n − t
′

ja
′

niε. (A6)

First, we solve for a′ji:

a
′

ji

2
ε− a′ji + ε+ aji = 0→ a

′

ji =
1−

√
1− 4ε (ε+ aji)

2ε
= aji +

(
1 + aji

2
)
ε+O

(
ε2
)

(A7)

and next for a′jk:

ajk = a
′

jk

(
1− a′jiε

)
→

a
′

jk =
ajk

1− a′jiε
= ajk

(
1 + a

′

jiε
)
+O

(
ε2
)

= ajk (1 + ajiε) +O
(
ε2
)
. (A8)

A similar calculation for a′ni yields:

a
′

ni = ani (1 + ajiε) +O
(
ε2
)

(A9)

which then allows one to compute a′nk for index pairs with {nk} 6= {ji}:

a
′

nk = ank + (ani + aniajiε) (ajk + ajkajiε) ε = ank + aniajkε+O
(
ε2
)
. (A10)

The offset variable tj is given by:

tj = t
′

j

(
1− a′jiε

)
→

t
′

j =
tj

1− a′jiε
= tj

(
1 + a

′

jiε
)
+O

(
ε2
)

= tj (1 + ajiε) +O
(
ε2
)
. (A11)

and the other offset variables tn by:

t
′

n = tn + (ani + aniajiε) (tj + tjajiε) ε = tn + anitjε+O
(
ε2
)

(A12)

which concludes the derivation of Equations (24)–(26).
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