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Abstract: This paper deals with the estimation of transfer entropy based on the k-nearest
neighbors (k-NN) method. To this end, we first investigate the estimation of Shannon entropy
involving a rectangular neighboring region, as suggested in already existing literature, and
develop two kinds of entropy estimators. Then, applying the widely-used error cancellation
approach to these entropy estimators, we propose two novel transfer entropy estimators,
implying no extra computational cost compared to existing similar k-NN algorithms.
Experimental simulations allow the comparison of the new estimators with the transfer
entropy estimator available in free toolboxes, corresponding to two different extensions
to the transfer entropy estimation of the Kraskov–Stögbauer–Grassberger (KSG) mutual
information estimator and prove the effectiveness of these new estimators.
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1. Introduction

Transfer entropy (TE) is an information-theoretic statistic measurement, which aims to measure an
amount of time-directed information between two dynamical systems. Given the past time evolution
of a dynamical system A, TE from another dynamical system B to the first system A is the amount of
Shannon uncertainty reduction in the future time evolution of A when including the knowledge of the
past evolution of B. After its introduction by Schreiber [1], TE obtained special attention in various
fields, such as neuroscience [2–8], physiology [9–11], climatology [12] and others, such as physical
systems [13–17].

More precisely, let us suppose that we observe the output Xi ∈ R, i ∈ Z, of some sensor connected to
A. If the sequence X is supposed to be an m-th order Markov process, i.e., if considering subsequences
X

(k)
i = (Xi−k+1, Xi−k+2, · · · , Xi), k > 0, the probability measure PX (defined on measurable subsets

of real sequences) attached to X fulfills the m-th order Markov hypothesis:

∀i : ∀m′ > m : dP
Xi+1|X

(m)
i

(
xi+1|x(m)

i

)
= dP

Xi+1|X
(m′)
i

(
xi+1|x(m′)

i

)
, xi+1 ∈ R, x(k)

i ∈ Rk, (1)

then the past information X(m)
i (before time instant i + 1) is sufficient for a prediction of Xi+k, k ≥ 1,

and can be considered as an m-dimensional state vector at time i (note that, to know from X the hidden
dynamical evolution of A, we need a one-to-one relation between X(m)

i and the physical state of A at
time i). For the sake of clarity, we introduce the following notation:

(
Xp
i , X

−
i , Y

−
i

)
, i = 1, 2, . . . , N ,

is an independent and identically distributed (IID) random sequence, each term following the same
distribution as a random vector (Xp, X−, Y −) ∈ R1+m+n whatever i (in Xp, X−, Y −, the upper indices
“p” and “-” correspond to “predicted” and “past”, respectively). This notation will substitute for the
notation

(
Xi+1, X

(m)
i , Y

(n)
i

)
, i = 1, 2, . . . , N , and we will denote by SXp,X−,Y − , SXp,X− , SX−,Y − and

SX− the spaces in which (Xp, X−, Y −), (Xp, X−), (X−, Y −) and X− are respectively observed.
Now, let us suppose that a causal influence exists from B on A and that an auxiliary random process

Yi ∈ R, i ∈ Z, recorded from a sensor connected to B, is such that, at each time i and for some n > 0,
Y −i , Y

(n)
i is an image (not necessarily one-to-one) of the physical state of B. The negation of this

causal influence implies:

∀ (m > 0, n > 0) : ∀i : dP
Xp

i |X
(m)
i

(
xpi |x

(m)
i

)
= dP

Xp
i |X

(m)
i ,Y

(n)
i

(
xpi |x

(m)
i , y

(n)
i

)
. (2)

If Equation (2) holds, it is said that there is an absence of information transfer from B toA. Otherwise,
the process X can be no longer considered strictly a Markov process. Let us suppose the joint process
(X, Y ) is Markovian, i.e., there exist a given pair (m′, n′), a transition function f and an independent
random sequence ei, i ∈ Z, such that [Xi+1, Yi+1]T = f

(
X

(m′)
i , Y

(n′)
i , ei+1

)
, where the random variable

ei+1 is independent of the past random sequence (Xj, Yj, ej), j ≤ i, whatever i. AsXi = g
(
X

(m)
i , Y

(n)
i

)
where g is clearly a non-injective function, the pair

{(
X

(m)
i , Y

(n)
i

)
, Xi

}
, i ∈ Z, corresponds to a hidden

Markov process, and it is well known that this observation process is not generally Markovian.
The deviation from this assumption can be quantified using the Kullback pseudo-metric, leading to

the general definition of TE at time i:

TEY→X,i =

∫
Rm+n+1

log

[
dPXp

i |X
−
i ,Y

−
i

(
xpi |x−i , y−i

)
dPXp

i |X
−
i

(
xpi |x−i

) ]
dPXp

i ,X
−
i ,Y

−
i

(
xpi , x

−
i , y

−
i

)
, (3)
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where the ratio in Equation (3) corresponds to the Radon–Nikodym derivative [18,19] (i.e., the
density) of the conditional measure dPXp

i |X
−
i ,Y

−
i

(
·|x−i , y−i

)
with respect to the conditional measure

dPXp
i |X

−
i

(
·|x−i

)
. Considering “log” as the natural logarithm, information is measured in natural units

(nats). Now, given two observable scalar random time series X and Y with no a priori given model
(as is generally the case), if we are interested in defining some causal influence from Y to X through
TE analysis, we must specify the dimensions of the past information vectors X− and Y −, i.e., m and
n. Additionally, even if we impose them, it is not evident that all of the coordinates in X(m)

i and Y (n)
i

will be useful. To deal with this issue, variable selection procedures have been proposed in the literature,
such as uniform and non-uniform embedding algorithms [20,21].

If the joint probability measure PXp
i ,X

−
i ,Y

−
i

(
xpi , x

−
i , y

−
i

)
is derivable with respect to the Lebesgue

measure µn+m+1 in R1+m+n (i.e., if PXp
i ,X

−
i ,Y

−
i

is absolutely continuous with respect to µn+m+1), then
the pdf (joint probability density function) pXp

i ,X
−
i ,Y

−
i

(
xpi , x

−
i , y

−
i

)
and also the pdf for each subset of{

Xp
i , X

−
i , Y

−
i

}
exist, and TEY→X,i can then be written (see Appendix A):

TEY→X,i = −E
[
log
(
pX−i ,Y

−
i

(
X−i , Y

−
i

))]
− E

[
log
(
pXp

i ,X
−
i

(
Xp
i , X

−
i

))]
+E

[
log
(
pXp

i ,X
−
i ,Y

−
i

(
Xp
i , X

−
i , Y

−
i

))]
+ E

[
log
(
pX−i

(
X−i
))] (4)

or:
TEY→X,i = H

(
X−i , Y

−
i

)
+H

(
Xp
i , X

−
i

)
−H

(
Xp
i , X

−
i , Y

−
i

)
−H

(
X−i
)
, (5)

whereH (U) denotes the Shannon differential entropy of a random vector U . Note that, if the processes
Y and X are assumed to be jointly stationary, for any real function g : Rm+n+1 → R, the expectation
E
[
g
(
Xi+1, X

(m)
i , Y

(n)
i

)]
does not depend on i. Consequently, TEY→X,i does not depend on i (and so

can be simply denoted by TEY→X), nor all of the quantities defined in Equations (3) to (5). In theory,
TE is never negative and is equal to zero if and only if Equation (2) holds.

According to Definition (3), TE is not symmetric, and it can be regarded as a conditional mutual
information (CMI) [3,22] (sometimes also named partial mutual information (PMI) in the literature [23]).
Recall that mutual information between two random vectors X and Y is defined by:

I (X;Y ) = H(X) +H(Y )−H(X, Y ), (6)

and TE can be also written as:
TEY→X = I

(
Xp, Y −|X−

)
. (7)

Considering the estimation Ÿ�TEY→X of TE, TEY→X , as a function defined on the set of observable
occurrences (xi, yi), i = 1, . . . , N , of a stationary sequence (Xi, Yi), i = 1, . . . , N , and Equation (5), a
standard structure for the estimator is given by (see Appendix B):Ÿ�TEY→X = ¤�H (X−, Y −) + ¤�H (Xp, X−)− ¤�H (Xp, X−, Y −)−Ÿ�H (X−)

= − 1

N

N∑
n=1

¤�log (pU1 (u1n))− 1

N

N∑
n=1

¤�log (pU2 (u2n)) +
1

N

N∑
n=1

¤�log (pU3 (u3n))

+
1

N

N∑
n=1

¤�log (pU4 (u4n)),

(8)
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where U1, U2, U3 and U4 stand respectively for (X−, Y −), (Xp, X−), (Xp, X−, Y −) and X−. Here, for
each n, ¤�log (pU (un)) is an estimated value of log (pU (un)) computed as a function fn (u1, . . . , uN) of the
observed sequence un, n = 1, . . . , N . With the k-NN approach addressed in this study, fn (u1, . . . , uN)

depends explicitly only on un and on its k nearest neighbors. Therefore, the calculation of ÷H(U)

definitely depends on the chosen estimation functions fn. Note that if, for N fixed, these functions
correspond respectively to unbiased estimators of log (p (un)), then Ÿ�TEY→X is also unbiased; otherwise,
we can only expect that Ÿ�TEY→X is asymptotically unbiased (for N large). This is so if the estimators of
log (pU (un)) are asymptotically unbiased.

Now, the theoretical derivation and analysis of the most currently used estimators÷H(U) (u1, . . . , uN) = − 1
N

∑N
n=1

¤�log (p(un)) for the estimation of H (U) generally suppose
that u1, . . . , uN are N independent occurrences of the random vector U , i.e., u1, . . . , uN is an
occurrence of an independent and identically distributed (IID) sequence U1, . . . , UN of random vectors
(∀i = 1, . . . , N : PUi

= PU ). Although the IID hypothesis does not apply to our initial problem
concerning the measure of TE on stationary random sequences (that are generally not IID), the new
methods presented in this contribution are extended from existing ones assuming this hypothesis,
without relaxing it. However, the experimental section will present results not only on IID observations,
but also on non-IID stationary autoregressive (AR) processes, as our goal was to verify if some
improvement can be nonetheless obtained for non-IID data, such as AR data.

If we come back to mutual information (MI) defined by Equation (6) and compare it with
Equations (5), it is obvious that estimating MI and TE shares similarities. Hence, similarly to
Equation (8) for TE, a basic estimation ⁄�I (X;Y ) of I (X;Y ) from a sequence (xi, yi), i = 1, . . . , N , of
N independent trials is:⁄�I (X;Y ) = − 1

N

N∑
n=1

¤�log (pX (xn))− 1

N

N∑
n=1

¤�log (pY (yn)) +
1

N

N∑
n=1

¤�log (pX,Y (xn, yn)). (9)

In what follows, when explaining the links among the existing methods and the proposed ones, we
refer to Figure 1. In this diagram, a box identified by a number k in a circle is designed by box k©.

Improving performance (in terms of bias and variance) of TE and MI estimators (obtained by
choosing specific estimation functions ⁄�log (p (·))) in Equations (8) and (9), respectively) remains an
issue when applied on short-length IID (or non-IID) sequences [3]. In this work, we particularly focused
on bias reduction. For MI, the most widely-used estimator is the Kraskov–Stögbauer–Grassberger
(KSG) estimator [24,31], which was later extended to estimate transfer entropy, resulting in the
k-NN TE estimator [25–27,32–35] (adopted in the widely-used TRENTOOL open source toolbox,
Version 3.0). Our contribution originated in the Kozachenko–Leonenko entropy estimator summarized
in [24] and proposed beforehand in the literature to get an estimation ◊�H (X) of the entropy H(X)

of a continuously-distributed random vector X , from a finite sequence of independent outcomes xi,
i = 1, . . . , N . This estimator, as well as another entropy estimator proposed by Singh et al. in [36] are
briefly described in Section 2.1, before we introduce, in Section 4, our two new TE estimators based
on both of them. In Section 2.2, Kraskov MI and standard TE estimators derived in literature from the
Kozachenko–Leonenko entropy estimator are summarized, and the passage from a square to rectangular
neighboring region to derive new entropy estimation is detailed in Section 3. Our methodology is
depicted in Figure 1.
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Figure 1. Concepts and methodology involved in k-nearest-neighbors transfer entropy (TE)
estimation. Standard k-nearest-neighbors methods using maximum norm for probability
density and entropy non-parametric estimation introduce, around each data point, a minimal
(hyper-)cube (Box 1©), which includes the first k-nearest neighbors, as is the case for two
entropy estimators, namely the well-known Kozachenko–Leonenko estimator (Box 3©) and
the less commonly used Singh’s estimator (Box 2©). The former was used in [24] to
measure mutual information (MI) between two signals X and Y by Kraskov et al., who
propose an MI estimator (Kraskov–Stögbauer–Grassberger (KSG) MI Estimator 1, Box 11©)
obtained by summing three entropy estimators (two estimators for the marginal entropies
and one for the joint entropy). The strategy was to constrain the three corresponding
(hyper-)cubes, including nearest neighbors, respectively in spaces SX , SY and SX,Y , to have
an identical edge length (the idea of projected distances, Box 14©) for a better cancellation
of the three corresponding biases. The same approach was used to derive the standard
TE estimator [25–29] (Box 10©), which has been implemented in the TRENTOOL toolbox,
Version 3.0. In [24], Kraskov et al. also suggested, for MI estimation, to replace minimal
(hyper-)cubes with smaller minimal (hyper-)rectangles equal to the product of two minimal
(hyper-)cubes built separately in subspaces SX and SY (KSG MI Estimator 2, Box 12©) to
exploit more efficiently the Kozachenko–Leonenko approach. An extended algorithm for TE
estimation based on minimal (hyper-)rectangles equal to products of (hyper-)cubes was then
proposed in [27] (extended TE estimator, Box 9©) and implemented in the JIDT toolbox [30].
Boxes 10© and 9© are marked as “standard algorithm” and “extended algorithm”. The new
idea extends the idea of the product of cubes (Box 13©). It consists of proposing a different
construction of the neighborhoods, which are no longer minimal (hyper-)cubes, nor products
of (hyper-)cubes, but minimal (hyper-)rectangles (Box 4©), with possibly a different length
for each dimension, to get two novel entropy estimators (Boxes 5© and 6©), respectively
derived from Singh’s entropy estimator and the Kozachenko–Leonenko entropy estimator.
These two new entropy estimators lead respectively to two new TE estimators (Box 7© and
Box 8©) to be compared with the standard and extended TE estimators.
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2. Original k-Nearest-Neighbors Strategies

2.1. Kozachenko–Leonenko and Singh’s Entropy Estimators for a Continuously-Distributed
Random Vector

2.1.1. Notations

Let us consider a sequence xi, i = 1, . . . , N in RdX (in our context, this sequence corresponds to an
outcome of an IID sequence X1, . . . , XN , such that the common probability distribution will be equal
to that of a given random vector X). The set of the k nearest neighbors of xi in this sequence (except
for xi) and the distance between xi and its k-th nearest neighbor are respectively denoted by χki and
dxi,k. We denote Dxi

(
χki
)
⊂ RdX a neighborhood of xi in RdX , which is the image of

(
xi, χ

k
i

)
by

a set valued map. For a given norm ‖·‖ on RdX (Euclidean norm, maximum norm, etc.), a standard
construction

(
xi, χ

k
i

)
∈
(
RdX

)k+1 → Dxi
(
χki
)
⊂ RdX is the (hyper-)ball of radius equal to dxi,k, i.e.,

Dxi
(
χki
)

= {x : ‖x− xi‖ ≤ dxi,k}. The (hyper-)volume (i.e., the Lebesgue measure) of Dxi
(
χki
)

is
then vi =

∫
Dxi(χk

i )
dx (where dx , dµdX (x)).

2.1.2. Kozachenko–Leonenko Entropy Estimator

The Kozachenko–Leonenko entropy estimator is given by (Box 3© in Figure 1):◊�H(X)KL = ψ(N) +
1

N

N∑
i=1

log (vi)− ψ(k), (10)

where vi is the volume of Dxi
(
χki
)

= {x : ‖x− xi‖ ≤ dxi,k} computed with the maximum norm and
ψ(k) = Γ′(k)

Γ(k)
denotes the digamma function. Note that using Equation (10), entropy is measured in

natural units (nats).
To come up with a concise presentation of this estimator, we give hereafter a summary of the different

steps to get it starting from [24]. First, let us consider the distance dxi,k between xi and its k-th nearest
neighbor (introduced above) as a realization of the random variable Dxi,k, and let us denote by qxi,k (x),
x ∈ R, the corresponding probability density function (conditioned by Xi = xi). Secondly, let us
consider the quantity hxi (ε) =

∫
‖u−xi‖≤ε/2 dPX (u). This is the probability mass of the (hyper-)ball with

radius equal to ε/2 and centered on xi. This probability mass is approximately equal to:

hxi (ε) ' pX (xi)

∫
‖ξ‖≤ε/2

dµd (ξ) = pX (xi) cdε
d, (11)

if the density function is approximately constant on the (hyper-)ball. The variable cd is the volume of
the unity radius d-dimensional (hyper-)ball in Rd (cd = 1 with maximum norm). Furthermore, it can
be established (see [24] for details) that the expectation E

[
log
(
hXi (DXi,k)

)]
, where hXi is the random

variable associated with hxi , DXi,k (which must not be confused with the notation Dxi
(
χki
)

introduced
previously) denotes the random distance between the k-th neighbor selected in the set of random vectors
{Xk, 1 ≤ k ≤ N, k 6= i}, and the random point Xi is equal to ψ(k) − ψ(N) and does not depend on
pX (·). Equating it with E [log (pX (Xi) cdDXi,k)] leads to:
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ψ(k)− ψ(N) ' E [log (pX (Xi))] + E
[
log
(
cdD

d
Xi,k

)]
= −H(Xi) + E [log (Vi)]

(12)

and:
H (Xi) ' ψ(N)− ψ(k) + E

[
log
(
cdD

d
Xi,k

)]
. (13)

Finally, by using the law of large numbers, when N is large, we get:

H (Xi) ' ψ(N)− ψ(k) +
1

N

N∑
i=1

log (vi)

= ◊�H (X)KL,

(14)

where vi is the realization of the random (hyper-)volume Vi = cdD
d
xi,k

.
Moreover, as observed in [24], it is possible to make the number of neighbors k depend on i by

substituting the mean 1
N

∑N
i=1 ψ(ki) for the constant ψ(k) in Equation (14), so that ◊�H (X)KL becomes:◊�H (X)KL = ψ(N) +

1

N

N∑
i=1

(log (vi)− ψ(ki)). (15)

2.1.3. Singh’s Entropy Estimator

The question of k-NN entropy estimation is also discussed by Singh et al. in [36], where another
estimator, denoted by ◊�H(X)S hereafter, is proposed (Box 2© in Figure 1):◊�H(X)S = log(N) +

1

N

N∑
i=1

log (vi)− ψ(k). (16)

Using the approximation ψ(N) ≈ log(N) for large values of N , the estimator given by Equation (16)
is close to that defined by Equation (10). This estimator was derived by Singh et al. in [36] through the
four following steps:

(1) Introduce the classical entropy estimator structure:◊�H(X) , − 1

N

N∑
i=1

log ÿ�pX (Xi) =
1

N

N∑
i=1

Ti, (17)

where: ◊�pX(xi) ,
k

Nvi
. (18)

(2) Assuming that the random variables Ti, i = 1, . . . , N are identically distributed, so that
E
[◊�H(X)

]
= E (T1) (note that E (T1) depends on N , even if the notation does not make that

explicit), compute the asymptotic value of E (T1) (when N is large) by firstly computing its
asymptotic cumulative probability distribution function and the corresponding probability density
pT1 , and finally, compute the expectation E (T1) =

∫
R tpT1(t)dt.
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(3) It appears that E (T1) = E
[◊�H(X)

]
= H(X) + B where B is a constant, which is identified with

the bias.

(4) Subtract this bias from ◊�H(X) to get ◊�H(X)S = ◊�H(X)−B and the formula given in Equation (16).

Note that the cancellation of the asymptotic bias does not imply that the bias obtained with a finite
value of N is also exactly canceled. In Appendix C, we explain the origin of the bias for the entropy
estimator given in Equation (17).

Observe also that, as for the Kozachenko–Leonenko estimator, it is possible to adapt Equation (16) if
we want to consider a number of neighbors ki depending on i. Equation (16) must then be replaced by:◊�H(X)S = log(N) +

1

N

N∑
i=1

(log (vi)− ψ(ki)). (19)

2.2. Standard Transfer Entropy Estimator

Estimating entropies separately in Equations (8) and (9) leads to individual bias values. Now, it is
possible to cancel out (at least partially) the bias considering the algebraic sums (Equations (8) and (9)).
To help in this cancellation, on the basis of Kozachenko–Leonenko entropy estimator, Kraskov et al.
proposed to retain the same (hyper-)ball radius for each of the different spaces instead of using the same
number k for both joint space SX,Y and marginal spaces (SX and SY spaces) [24,37], leading to the
following MI estimator (Box 11© in Figure 1):

ÎK = ψ(k) + ψ(N)− 1

N

N∑
i=1

[ψ(nX,i + 1) + ψ(nY,i + 1)], (20)

where nX,i and nY,i denote the number of points that strictly fall into the resulting distance in the
lower-dimensional spaces SX and SY , respectively.

Applying the same strategy to estimate TE, the number of neighbors in the joint space SXp,X−,Y − is
first fixed, then for each i, the resulting distance εi , d(xpi ,x

−
i ,y
−
i ),k is projected into the other three lower

dimensional spaces, leading to the standard TE estimator [25,27,28] (implementation available in the
TRENTOOL toolbox, Version 3.0, Box 10© in Figure 1):Ÿ�TEY→XSA = ψ(k) +

1

N

N∑
i=1

[
ψ(nX−,i + 1)− ψ(n(X−,Y −),i + 1)− ψ(n(Xp,X−),i + 1)

]
, (21)

where nX−,i, n(X−,Y −),i and n(Xp,X−),i denote the number of points that fall into the distance εi from x−i ,(
x−i , y

−
i

)
and

(
xpi , x

−
i

)
in the lower dimensional spaces SX− , SX−,Y − and SXp,X− , respectively. This

estimator is marked as the “standard algorithm” in the experimental part.
Note that a generalization of Equation (21) was proposed in [28] to extend this formula to the

estimation of entropy combinations other than MI and TE.
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3. From a Square to a Rectangular Neighboring Region for Entropy Estimation

In [24], to estimate MI, as illustrated in Figure 2, Kraskov et al. discussed two different techniques
to build the neighboring region to compute ⁄�I (X;Y ): in the standard technique (square ABCD in
Figure 2a,b), the region determined by the first k nearest neighbors is a (hyper-)cube and leads to
Equation (20), and in the second technique (rectangle A′B′C ′D′ in Figure 2a,b), the region determined
by the first k nearest neighbors is a (hyper-)rectangle. Note that the TE estimator mentioned in the
previous section (Equation (21)) is based on the first situation (square ABCD in Figure 2a or 2b). The
introduction of the second technique by Kraskov et al. was to circumvent the fact that Equation (15) was
not applied rigorously to obtain the terms ψ(nX,i+1) or ψ(nY,i+1) in Equation (20). As a matter of fact,
for one of these terms, no point xi (or yi) falls exactly on the border of the (hyper-)cube Dxi (or Dyi)
obtained by the distance projection from the SX,Y space. As clearly illustrated in Figure 2 (rectangle
A′B′C ′D′ in Figure 2a,b), the second strategy prevents that issue, since the border of the (hyper-)cube
(in this case, an interval of R) after projection from SX,Y space to SX space (or SY space) contains
one point. When the dimensions of SX and SY are larger than one, this strategy leads to building an
(hyper-)rectangle equal to the product of two (hyper-)cubes, one of them in SX and the other one in
SY . If the maximum distance of the k-th NN in SX,Y is obtained in one of the directions in SX , this
maximum distance, after multiplying by two, fixes the size of the (hyper-)cube in SX . To obtain the
size of the second (hyper-)cube (in SY ), the k neighbors in SX,Y are first projected on SY , and then, the
largest of the distances calculated from these projections fixes the size of this second (hyper-)cube.
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A B
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
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y x 

A B

CD

B

C 

A

D 

(b)

Figure 2. In this two-dimensional example, k = 5. The origin of the Cartesian axis
corresponds to the current point xi. Only the five nearest neighbors of this point, i.e., the
points in the set χki , are represented. The fifth nearest neighbor is symbolized by a star. The
neighboring regions ABCD, obtained from the maximum norm around the center point, are
squares, with equal edge lengths εx = εy. Reducing one of the edge lengths, εx or εy, until
one point falls onto the border (in the present case, in the vertical direction), leads to the
minimum size rectangle A′B′C ′D′, where εx 6= εy. Two cases must be considered: (a) the
fifth neighbor is not localized on a node, but between two nodes, contrary to (b). This leads
to obtaining either two points (respectively the star and the triangle in (a)) or only one point
(the star in(b)) on the border of A′B′C ′D′. Clearly, it is theoretically possible to have more
than two points on the border ofA′B′C ′D′, but the probability of such an occurrence is equal
to zero when the probability distribution of the random points Xj is continuous.
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In the remainder of this section, for an arbitrary dimension d, we propose to apply this strategy to
estimate the entropy of a single multidimensional variable X observed in Rd. This leads to introducing
a d-dimensional (hyper-)rectangle centered on xi having a minimal volume and including the set χki
of neighbors. Hence, the rectangular neighboring is built by adjusting its size separately in each
direction in the space SX . Using this strategy, we are sure that, in any of the d directions, there is
at least one point on one of the two borders (and only one with probability one). Therefore, in this
approach, the (hyper-)rectangle, denoted by Dε1,...,εdxi

, where the sizes ε1, . . . , εd in the respective d

directions are completely specified from the neighbors set χki , is substituted for the basic (hyper-)square
Dxi

(
χki
)

= {x : ‖x− xi‖ ≤ dxi,k}. It should be mentioned that the central symmetry of the
(hyper-)rectangle around the center point allows for reducing the bias in the density estimation [38]
(cf. Equation (11) or (18)). Note that, when k < d, there must exist neighbors positioned on some vertex
or edges of the (hyper-)rectangle. With k < d, it is impossible that, for any direction, one point falls
exactly inside a face (i.e., not on its border). For example, with k = 1 and d > 1, the first neighbor
will be on a vertex, and the sizes of the edges of the reduced (hyper-)rectangle will be equal to twice the
absolute value of its coordinates, whatever the direction.

Hereafter, we propose to extend the entropy estimators by Kozachenko–Leonenko and Singh using
the above strategy before deriving the corresponding TE estimators and comparing their performance.

3.1. Extension of the Kozachenko–Leonenko Method

As indicated before, in [24], Kraskov et al. extended the Kozachenko–Leonenko estimator
(Equations (10) and (15)) using the rectangular neighboring strategy to derive the MI estimator. Now,
focusing on entropy estimation, after some mathematical developments (see Appendix D), we obtain
another estimator ofH(X), denoted by ◊�H(X)K (Box 6© in Figure 1),◊�H(X)K = ψ(N) +

1

N

N∑
i=1

log (vi)− ψ(k) +
d− 1

k
. (22)

Here, vi is the volume of the minimum volume (hyper-)rectangle around the point xi. Exploiting this
entropy estimator, after substitution in Equation (8), we can derive a new estimation of TE.

3.2. Extension of Singh’s Method

We propose in this section to extend Singh’s entropy estimator by using a (hyper-)rectangular domain,
as we did for the Kozachenko–Leonenko estimator extension introduced in the preceding section.
Considering a d-dimensional random vector X ∈ Rd continuously distributed according to a probability
density function pX , we aim at estimating the entropyH(X) from the observation of a pX distributed IID
random sequence Xi, i = 1, . . . , N . For any specific data point xi and a fixed number k (1 ≤ k ≤ N ),
the minimum (hyper-)rectangle (rectangle A′B′C ′D′ in Figure 2) is fixed, and we denote this region
by Dε1,...,εdxi

and its volume by vi. Let us denote ξi (1 ≤ ξi ≤ min(k, d)) the number of points on the
border of the (hyper-)rectangle that we consider as a realization of a random variable Ξi. In the situation
described in Figure 2a,b, ξi = 2 and ξi = 1, respectively. According to [39] (Chapter 6, page 269),
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if Dxi
(
χki
)

corresponds to a ball (for a given norm) of volume vi, an unbiased estimator of pX(xi) is
given by: ◊�pX(xi) =

k − 1

Nvi
, i = 1, 2, . . . , N. (23)

This implies that the classical estimator ◊�pX(xi) = k
Nvi

is biased and that presumably log
(

k
Nvi

)
is also

a biased estimation of log (pX(xi)) for N large, as shown in [39].
Now, in the case Dxi

(
χki
)

is the minimal (i.e., with minimal (hyper-)volume) (hyper-)rectangle
Dε1,...,εdxi

, including χki , more than one point can belong to the border, and a more general estimator

p̃X(xi) of pX(xi) can be a priori considered:

p̃X(xi) =
k̃i
Nvi

, (24)

where k̃i is some given function of k and ξi. The corresponding estimation ofH(X) is then:◊�H(X) = − 1

N

N∑
i=1

˜log (pX(xi)) =
1

N

N∑
i=1

ti, (25)

with:

ti = log

(
Nvi

k̃i

)
, i = 1, 2, . . . , N, (26)

ti being realizations of random variables Ti and k̃i being realizations of random variables K̃i. We have:

∀i = 1, . . . , N : E
[◊�H(X)

]
= E (Ti) = E (T1) . (27)

Our goal is to derive E
[◊�H(X)

]
− H(X) = E (T1) − H(X) for N large to correct the

asymptotic bias of ◊�H(X), according to Steps (1) to (3), explained in Section 2.1.3. To this
end, we must consider an asymptotic approximation of the conditional probability distribution
P (T1 ≤ r|X1 = x1,Ξ1 = ξ1) before computing the asymptotic difference between the expectation
E [T1] = E [E [T1|X1 = x1,Ξ1 = ξ1]] and the true entropyH(X).

Let us consider the random Lebesgue measure V1 of the random minimal (hyper-)rectangle Dε1,...,εdx1

((ε1, . . . , εd) denotes the random vector for which (ε1, . . . , εd) ∈ Rd is a realization) and the relation
T1 = log

(
NV1
K̃1

)
. For any r > 0, we have:

P (T1 > r|X1 = x1,Ξ1 = ξ1) = P
(

log

(
NV1

K̃1

)
> r|X1 = x1,Ξ1 = ξ1

)
= P (V1 > vr|X1 = x1,Ξ1 = ξ1) ,

(28)

where vr = er k̃1
N

, since, conditionally to Ξ1 = ξ1, we have K̃1 = k̃1.
In Appendix E, we prove the following property.

Property 1. For N large,

P (T1 > r|X1 = x1,Ξ1 = ξ1) '
k−ξ1∑
i=0

(
N − ξ1 − 1

i

)
(pX(x1)vr)

i(1− pX(x1)vr)
N−ξ1−1−i. (29)



Entropy 2015, 17 4184

The Poisson approximation (when N → ∞ and vr → 0) of the binomial distribution summed in
Equation (29) leads to a parameter λ = (N − ξ1 − 1) pX(x1)vr. As N is large compared to ξ1 + 1, we
obtain from Equation (26):

λ ' k̃1e
rpX(x1), (30)

and we get the approximation:

lim
N→∞

P (T1 > r|X1 = x1,Ξ1 = ξ1) '
k−ξ1∑
i=0

[
k̃1e

rpX(x1)
]i

i!
e−k̃1e

rpX(x1). (31)

Since P(T1 ≤ r|X1 = x1,Ξ1 = ξ1) = 1 − P(T1 > r|X1 = x1,Ξ1 = ξ1), we can get the
density function of T1, noted gT1(r), by derivingP (T1 ≤ r|X1 = x1,Ξ1 = ξ1). After some mathematical
developments (see Appendix F), we obtain:

gT1(r) = P ′(T1 ≤ r|X1 = x1,Ξ1 = ξ1)

= −P ′(T1 > r|X1 = x1,Ξ1 = ξ1)

=

[
k̃1e

rpX(x1)
](k−ξ1+1)

(k − ξ1)!
e−k̃1e

rpX(x1)

, r ∈ R, (32)

and consequently (see Appendix G for details),

lim
N→∞

E [T1|X1 = x1,Ξ1 = ξ1] =

∫ ∞
−∞

r

[
k̃1e

rpX(x1)
](k−ξ1+1)

(k − ξ1)!
e−k̃1e

rpX(x1)dr

= ψ(k − ξ1 + 1)− log
(
k̃1

)
− log (pX(x1)) .

(33)

Therefore, with the definition of differential entropyH(X1) = E[− log (pX(X1))], we have:

lim
N→∞

E [T1] = lim
N→∞

E [E [T1|X1,Ξ1]] = E
[
ψ(k − Ξ1 + 1)− log

(
K̃1

)]
+H(X1). (34)

Thus, the estimator expressed by Equation (25) is asymptotically biased. Therefore, we consider
a modified version, denoted by ◊�H(X)NS , obtained by subtracting an estimation of the bias

E
[
ψ(k − Ξ1 + 1)− log

(
K̃1

)]
given by the empirical mean 1

N

∑N
i=1 ψ(k− ξi + 1) + 1

N

∑N
i=1 log

(
k̃i

)
(according to the large numbers law), and we obtain, finally (Box 5© in Figure 1):◊�H(X)NS =

1

N

N∑
i=1

ti −
1

N

N∑
i=1

ψ(k − ξi + 1) +
1

N

N∑
i=1

log
(
k̃i

)
=

1

N

N∑
i=1

log

(
Nvi

k̃i

)
− 1

N

N∑
i=1

ψ(k − ξi + 1) +
1

N

N∑
i=1

log
(
k̃i

)
= log(N) +

1

N

N∑
i=1

log (vi)−
1

N

N∑
i=1

ψ(k − ξi + 1).

(35)

In comparison with the development of Equation (22), we followed here the same methodology,
except we take into account (through a conditioning technique) the influence of the number of points on
the border.
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We observe that, after cancellation of the asymptotic bias, the choice of the function of k and ξi to
define k̃i in Equation (24) does not have any influence on the final result. In this way, we obtain an
expression for ◊�H(X)NS , which simply takes into account the values ξi that could a priori influence the
entropy estimation.

Note that, as for the original Kozachenko–Leonenko (Equation (10)) and Singh (Equation (16))
entropy estimators, both new estimation functions (Equations (22) and (35)) hold for any value of k,
such that k � N , and we do not have to choose a fixed k while estimating entropy in lower dimensional
spaces. Therefore, under the framework proposed in [24], we built two different TE estimators using
Equations (22) and (35), respectively.

3.3. Computation of the Border Points Number and of the (Hyper-)Rectangle Sizes

We explain more precisely hereafter how to determine the numbers of points ξi on the border. Let
us denote xji ∈ Rd, j = 1, . . . , k, the k nearest neighbors of xi ∈ Rd, and let us consider the d × k

array Di, such that for any (p, j) ∈ {1, . . . , d} × {1, . . . , k}, Di(p, j) =
∣∣xji (p)− xi(p)∣∣ is the distance

(in R) between the p-th component xji (p) of xji and the p-th component xi(p) of xi. For each p, let
us introduce Ji(p) ∈ {1, . . . , k} defined by Di(p, Ji(p)) = max (Di(p, 1), . . . , Di(p, k)) and which is
the value of the column index of Di for which the distance Di(p, j) is maximum in the row number p.
Now, if there exists more than one index Ji(p) that fulfills this equality, we select arbitrarily the lowest
one, hence avoiding the max(·) function to be multi-valued. The MATLAB implementation of the max

function selects such a unique index value. Then, let us introduce the d× k Boolean array Bi defined by
Bi(p, j) = 1 if j = Ji(p) and Bi(p, j) = 0, otherwise. Then:

(1) The d sizes εp, p = 1, . . . , d of the (hyper-)rectangle Dε1,...,εdxi
are equal respectively to

εp = 2Di(p, Ji(p)), p = 1, . . . , d.

(2) We can define ξi as the number of non-null column vectors in Bi. For example, if the k-th nearest
neighbor xki is such that ∀j 6= k, ∀p = 1, . . . , d :

∣∣xji (p)− xi(p)∣∣ < ∣∣xki (p)− xi(p)∣∣, i.e., when
the k-th nearest neighbor is systematically the farthest from the central point xi for each of the d
directions, then all of the entries in the last column of Bi are equal to one, while all other entries
are equal to zero: we have only one column including values different from zero and, so, only one
point on the border (ξi = 1), which generalizes the case depicted in Figure 2b for d = 2.

N.B.: this determination of ξi may be incorrect when there exists a direction p, such that the number of
indices j for which Di(p, j) reaches the maximal value is larger than one: the value of ξi obtained with
our procedure can then be underestimated. However, we can argue that, theoretically, this case occurs
with a probability equal to zero (because the observations are continuously distributed in the probability)
and, so, it can be a priori discarded. Now, in practice, the measured quantification errors and the round
off errors are unavoidable, and this probability will differ from zero (although remaining small when the
aforesaid errors are small): theoretically distinct values Di(p, j) on the row p of Di may be erroneously
confounded after quantification and rounding. However, the max(·) function then selects on row p only
one value for Ji(p) and, so, acts as an error correcting procedure. The fact that the maximum distance
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in the concerned p directions can then be allocated to the wrong neighbor index has no consequence for
the correct determination of ξi.

4. New Estimators of Transfer Entropy

From an observed realization
(
xpi , x

−
i , y

−
i

)
∈ SXp,X−,Y − , i = 1, 2, . . . , N of the IID random sequence(

Xp
i , X

−
i , Y

−
i

)
, i = 1, 2, . . . , N and a number k of neighbors, the procedure could be summarized as

follows (distances are from the maximum norm):

(1) similarly to the MILCA [31] and TRENTOOL toolboxes [34], normalize, for each i, the vectors
xpi , x

−
i and y−i ;

(2) in joint space SXp,X−,Y − , for each point
(
xpi , x

−
i , y

−
i

)
, calculate the distance d(xpi ,x

−
i ,y
−
i ),k between(

xpi , x
−
i , y

−
i

)
and its k-th neighbor, then construct the (hyper-)rectangle with sizes ε1, . . . , εd (d

is the dimension of the vectors
(
xpi , x

−
i , y

−
i

)
), for which the (hyper-)volume is v(Xp,X−,Y −),i =

ε1 × . . .× εd and the border contains ξ(Xp,X−,Y −),i points;

(3) for each point (xpi , x
−
i ) in subspace SXp,X− , count the number k(Xp,X−),i of points falling within

the distance d(xpi ,x
−
i ,y
−
i ),k, then find the smallest (hyper-)rectangle that contains all of these points

and for which v(Xp,X−),i and ξ(Xp,X−),i are respectively the volume and the number of points on
the border; repeat the same procedure in subspaces SX−,Y − and SX− .

From Equation (22) (modified to k not constant for SX− , SXp,X− and SX−,Y −), the final TE estimator
can be written as (Box 8© in Figure 1):Ÿ�TEY→Xp1 =

1

N

N∑
i=1

log
v(Xp,X−),i · v(X−,Y −),i

v(Xp,X−,Y −),i · vX−,i

+
1

N

N∑
i=1

(
ψ(k) + ψ(kX−,i)− ψ(k(Xp,X−),i)− ψ(k(X−,Y −),i)

+
dXp + dX− − 1

k(Xp,X−),i

+
dX− + dY − − 1

k(X−,Y −),i

− dXp + dX− + dY − − 1

k
− dX− − 1

kX−,i

)
,

(36)

where dXp = dim (SXp) , dX− = dim (SX−) , dY − = dim (SY −), and with Equation (35), it yields to
(Box 7© in Figure 1):Ÿ�TEY→Xp2 =

1

N

N∑
i=1

log
v(Xp,X−),i · v(X−,Y −),i

v(Xp,X−,Y −),i · vX−,i

+
1

N

N∑
i=1

(
ψ(k − ξ(Xp,X−,Y −),i + 1) + ψ(kX−,i − ξX−,i + 1)− ψ(k(Xp,X−),i

− ξ(Xp,X−),i + 1)− ψ(k(X−,Y −),i − ξ(X−,Y −),i + 1)

)
.

(37)

In Equations (36) and (37), the volumes v(Xp,X−),i, v(X−,Y −),i, v(Xp,X−,Y −),i, vX−,i are obtained by
computing, for each of them, the product of the edges lengths of the (hyper-)rectangle, i.e., the product
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of d edges lengths, d being respectively equal to dXp +dX− , dX−+dY − , dXp +dX−+dY − and dX− . In a
given subspace and for a given direction, the edge length is equal to twice the largest distance between the
corresponding coordinate of the reference point (at the center) and each of the corresponding coordinates
of the k nearest neighbors. Hence a generic formula is vU =

∏dim(U)
j=1 εUj , where U is one of the symbols

(Xp, X−), (X−, Y −), (Xp, X−, Y −) and X− and the εUj are the edge lengths of the (hyper-)rectangle.
The new TE estimator Ÿ�TEY→Xp1 (Box 8© in Figure 1) can be compared with the extension

of Ÿ�TEY→XSA, the TE estimator proposed in [27] (implemented in the JIDT toolbox [30]). This
extension [27], included in Figure 1 (Box 9©), is denoted here by Ÿ�TEY→XEA. The main difference
with our Ÿ�TEY→Xp1 estimator is that our algorithm uses a different length for each sub-dimension within
a variable, rather than one length for all sub-dimensions within the variable (which is the approach of
the extended algorithm). We introduced this approach to make the tightest possible (hyper-)rectangle
around the k nearest neighbors. Ÿ�TEY→XEA is expressed as follows:Ÿ�TEY→XEA =

1

N

N∑
i=1

(ψ(k)− 2

k
+ ψ(lX−,i)− ψ(l(Xp,X−),i)

+
1

l(Xp,X−),i

− ψ(l(X−,Y −),i) +
1

l(X−,Y −),i

).

(38)

In the experimental part, this estimator is marked as the “extended algorithm”. It differs from
Equation (36) in two ways. Firstly, the first summation on the right hand-side of Equation (36) does
not exist. Secondly, compared with Equation (36), the numbers of neighbors kX−,i, k(Xp,X−),i and
k(X−,Y −),i included in the rectangular boxes, as explained in Section 3.1, are replaced respectively with
lX−,i, l(Xp,X−),i and l(X−,Y −),i, which are obtained differently. More precisely, Step (2) in the above
algorithm becomes:

(2’) For each point (xpi , x
−
i ) in subspace SXp,X− , l(Xp,X−),i is the number of points

falling within a (hyper-)rectangle equal to the Cartesian product of two (hyper-)cubes,
the first one in SXp and the second one in SX− , whose edge lengths are equal,
respectively, to dmax

xpi
= 2 × max

{
‖xpk − x

p
i ‖ : (xp, x−, y−)k ∈ χk(xp,x−,y−)i

}
and

dmax
x−i

= 2 × max
{∥∥x−k − x−i ∥∥ : (xp, x−, y−)k ∈ χk(xp,x−,y−)i

}
, i.e., l(Xp,X−),i =

card
{(
xpj , x

−
i

)
: j ∈ {{1, . . . , N} − {i}} &

∥∥xpj − xpi∥∥ ≤ dmax
xpi

&
∥∥x−j − x−i ∥∥ ≤ dmax

x−i

}
.

Denote by v(Xp,X−),i the volume of this (hyper-)rectangle. Repeat the same procedure in
subspaces SX−,Y − and SX− .

Note that the important difference between the construction of the neighborhoods used in Ÿ�TEY→XEA

and in Ÿ�TEY→Xp1 is that, for the first case, the minimum neighborhood, including the k neighbors, is
constrained to be a Cartesian product of (hyper-)cubes and, in the second case, this neighborhood is a
(hyper-)rectangle whose edge lengths can be completely different.

5. Experimental Results

In the experiments, we tested both Gaussian IID and Gaussian AR models to compare and validate
the performance of the TE estimators proposed in the previous section. For a complete comparison,



Entropy 2015, 17 4188

beyond the theoretical value of TE, we also computed the Granger causality index as a reference (as
indicated previously, in the case of Gaussian signals TE and Granger causality index are equivalent up to
a factor of two; see Appendix H). In each following figure, GCi/2 corresponds to the Granger causality
index divided by two; TE estimated by the free TRENTOOL toolbox (corresponding to Equation (21)) is
marked as the standard algorithm; that estimated by JIDT (corresponding to Equation (38)) is marked as
the extended algorithm; TEp1 is the TE estimator given by Equation (36); and TEp2 is the TE estimator
given by Equation (37). For all of the following results, the statistical means and the standard deviations
of the different estimators have been estimated using an averaging on 200 trials.

5.1. Gaussian IID Random Processes

The first model we tested, named Model 1, is formulated as follows:

Xt = aYt + bZt +Wt, Wt ∈ R, Y ∈ RdY , Z ∈ RdZ , (39)

where Yt ∼ N (0, CY ), Zt ∼ N (0, CZ), Wt ∼ N (0, σ2
W ), the three processes Y , Z, and W being

mutually independent. The triplet (Xt, Yt, Zt) corresponds to the triplet
(
Xp
i , X

−
i , Y

−
i

)
introduced

previously. CU is a Toeplitz matrix with the first line equal to [1, α, . . . , αdU−1]. For the matrix CY ,
we chose α = 0.5, and for CZ , α = 0.2. The standard deviation σW was set to 0.5. The vectors a
and b were such that a = 0.1 ∗ [1, 2, . . . , dY ] and b = 0.1 ∗ [dZ , dZ − 1, . . . , 1]. With this model, we
aimed at estimating H(X|Y ) − H(X|Y, Z) to test if the knowledge of signals Y and Z could improve
the prediction of X compared to only the knowledge of Y .
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Figure 3. Information transfer from Z to X (Model 1) estimated for two different
dimensions with k = 8. The figure displays the mean values and the standard deviations:
(a) dY = dZ = 3; (b) dY = dZ = 8.

Results are reported in Figure 3 where the dimensions dY and dZ are identical. We observe that, for a
low dimension and a sufficient number of neighbors (Figure 3a), all TE estimators tend all the more to the
theoretical value (around 0.26) that the length of the signals is large, the best estimation being obtained
by the two new estimators. Compared to Granger causality, these estimators display a greater bias, but a
lower variance. Due to the “curse of dimensionality”, with an increasing dimension (see Figure 3b), it
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becomes much more difficult to obtain an accurate estimation of TE. For a high dimension, all estimators
reveal a non-negligible bias, even if the two new estimators still behave better than the two reference ones
(standard and extended algorithms).

5.2. Vectorial AR Models

In the second experiment, two AR models integrating either two or three signals have been tested.
The first vectorial AR model (named Model 2) we tested was as follows:{

xt = 0.45
√

2xt−1 − 0.9xt−2 − 0.6yt−2 + ex,t

yt = 0.6xt−2 − 0.175
√

2yt−1 + 0.55
√

2yt−2 + ey,t.
(40)

The second vectorial AR model (named Model 3) was given by:
xt = −0.25xt−2 − 0.35yt−2 + 0.35zt−2 + ex,t

yt = −0.5xt−1 + 0.25yt−1 − 0.5zt−3 + ey,t

zt = −0.6xt−2 − 0.7yt−2 − 0.2zt−2 + ez,t.

(41)

For both models, ex, ey and ez denote realizations of independent white Gaussian noises with zero
mean and a variance of 0.1. As previously, we display in the following figures not only the theoretical
value of TE, but also the Granger causality index for comparison. In this experiment, the prediction
orders m and n were equal to the corresponding regression orders of the AR models. For example, when
estimating TEY→X , we set m = 2, n = 2, and

(
Xp
i , X

−
i , Y

−
i

)
corresponds to

(
Xi+1, X

(2)
i , Y

(2)
i

)
.

For Figures 4 and 5, the number k of neighbors was fixed to eight, whereas, in Figure 6, this number
was set to four and three (respectively Figures 6a,b) to show the influence of this parameter. Figures 4
and 6 are related to Model 2, and Figure 5 is related to Model 3.
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Figure 4. Information transfer (Model 2), mean values and standard deviations, k = 8.
(a) From X to Y ; (b) from Y to X .

As previously, for large values of k (cf. Figures 4 and 5), we observe that the four TE estimators
converge towards the theoretical value. This result is all the more true when the signal length increases.
As expected in such linear models, Granger causality outperforms the TE estimators at the expense
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of a slightly larger variance. Contrary to Granger causality, TE estimators are clearly more impacted
by the signal length, even if their standard deviations remain lower. Here, again, when comparing the
different TE estimators, it appears that the two new estimators achieve improved behavior compared to
the standard and extended algorithms for large k.
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Figure 5. Information transfer (Model 3), mean values and standard deviations, k = 8.
(a) From X to Y ; (b) from Y to X; (c) from X to Z; (d) from Z to X; (e) from Y to Z;
(f) from Z to Y .
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Figure 6. Information transfer fromX to Y (Model 2), mean values and standard deviations:
(a) k = 4; (b) k = 3.

In the scope of k-NN algorithms, the choice of k must be a tradeoff between the estimation of bias
and variance. Globally, when the value of k decreases, the bias decreases for the standard and extended
algorithms and for the new estimator TEp1. Now, for the second proposed estimator TEp2, it is much
more sensitive to the number of neighbors (as can be seen when comparing Figures 4 and 6). As shown
in Figures 3 to 5, the results obtained using TEp2 and TEp1 are quite comparable when the value of k is
large (k = 8). Now, when the number of neighbors decreases, the second estimator we proposed, TEp2,
is much less reliable than all of the other ones (Figure 6). Concerning the variance, it remains relatively
stable when the number of neighbors falls from eight to three, and in this case, the extended algorithm,
which displays a slightly lower bias, may be preferred.

When using k = 8, a possible interpretation of getting a lower bias with our algorithms could be that,
once we are looking at a large enough number of k nearest neighbors, there is enough opportunity for
the use of different lengths on the sub-dimensions of the (hyper-)rectangle to make a difference to the
results, whereas with k = 3, there is less opportunity.

To investigate the impact on the dispersion (estimation error standard deviation) of (i) the estimation
method and (ii) the number of neighbors, we display in Figures 7a,b the boxplots of the absolute
values of the centered estimation errors (AVCE) corresponding to experiments reported in Figures 4a
and 6b for a 1024-point signal length. These results show that neither the value of k, nor the tested TE
estimator dramatically influence the dispersions. More precisely, we used a hypothesis testing procedure
(two-sample Kolmogorov–Smirnov goodness-of-fit hypothesis, KSTEST2 in MATLAB) to test if two
samples (each with 200 trials) of AVCE are drawn from the same underlying continuous population or
not. The tested hypothesis corresponds to non-identical distributions and is denoted H = 1, and H = 0

corresponds to the rejection of this hypothesis. The confidence level was set to 0.05.

(1) Influence of the method:

(a) Test between the standard algorithm and TEp1 in Figure 7a: H = 0, p-value = 0.69 →
no influence

(b) Test between the extended algorithm and TEp1 in Figure 7a: H = 0, p-value = 0.91 →
no influence
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(c) Test between the standard algorithm and TEp1 in Figure 7b: H = 0, p-value = 0.081 →
no influence

(d) Test between the extended algorithm and TEp1 in Figure 7b: H = 1, p-value = 0.018 →
influence exists.

(2) Influence of the neighbors’ number k:

(a) Test between k = 8 (Figure 7a) and k = 3 (Figure 7b) for the standard algorithm: H = 0,
p-value = 0.97→ no influence

(b) Test between k = 8 (Figure 7a) and k = 3 (Figure 7b) for TEp1: H = 0, p-value = 0.97→
no influence.

For these six tested cases, the only case where a difference between distributions (and so, between the
dispersions) corresponds to a different distribution is when comparing the extended algorithm and TEp1

in Figure 7b.
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Figure 7. Box plots of the centered errors obtained with the five methods for Model 2,
X → Y : (a) k = 8 (corresponding to Figure 4a); (b) k = 3 (corresponding to Figure 6b).

6. Discussion and Summary

In the computation of k-NN based estimators, the most time-consuming part is the procedure of
nearest neighbor searching. Compared to Equations (10) and (16), Equations (22) and (35) involve
supplementary information, such as the maximum distance of the first k-th nearest neighbor in
each dimension and the number of points on the border. However, most currently used neighbor
searching algorithms, such as k-d tree (k-dimensional tree) and ATRIA (A TRiangle Inequality based
Algorithm) [40], provide not only information on the k-th neighbor, but also on the first (k − 1) nearest
neighbors. Therefore, in terms of computation cost, there is no significant difference among the three
TE estimators (Boxes 7©, 8©, 9©, 10© in Figure 1).

In this contribution, we discussed TE estimation based on k-NN techniques. The estimation of TE
is always an important issue, especially in neuroscience, where getting large amounts of stationary
data is problematic. The widely-used k-NN technique has been proven to be a good choice for the
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estimation of information theoretical measurement. In this work, we first investigated the estimation
of Shannon entropy based on the k-NN technique involving a rectangular neighboring region and
introduced two different k-NN entropy estimators. We derived mathematically these new entropy
estimators by extending the results and methodology developed in [24] and [36]. Given the new
entropy estimators, two novel TE estimators have been proposed, implying no extra computation cost
compared to existing similar k-NN algorithm. To validate the performance of these estimators, we
considered different simulated models and compared the new estimators with the two TE estimators
available in the free TRENTOOL and JIDT toolboxes, respectively, and which are extensions of
two Kraskov–Stögbauer–Grassberger (KSG) MI estimators, based respectively on (hyper-)cubic and
(hyper-)rectangular neighborhoods.

Under the Gaussian assumption, experimental results showed the effectiveness of the new estimators
under the IID assumption, as well as for time-correlated AR signals in comparison with the standard
KSG algorithm estimator. This conclusion still holds when comparing the new algorithms with the
extended KSG estimator. Globally, all TE estimators satisfactorily converge to the theoretical TE value,
i.e., to half the value of the Granger causality, while the newly proposed TE estimators showed lower
bias for k sufficiently large (in comparison with the reference TE estimators) with comparable variances
estimation errors.

As the variance remains relatively stable when the number of neighbors falls from eight to three, in
this case, the extended algorithm, which displays a slightly lower bias, may be preferred.

Now, one of the new TE estimators suffered from noticeable error when the number of neighbors
was small. Some experiments allowed us to verify that this issue already exists when estimating the
entropy of a random vector: when the number of neighbors k falls below the dimension d, then the bias
drastically increases. More details on this phenomenon are given in Appendix I.

As expected, experiments with Model 1 showed that all three TE estimators under examination
suffered from the “curse of dimensionality”, which made it difficult to obtain accurate estimation of
TE with high dimension data. In this contribution, we do not present the preliminary results that we
obtained when simulating a nonlinear version of Model 1, for which the three variables Xt, Yt and Zt
were scalar and their joint law was non-Gaussian, because a random nonlinear transformation was used
to compute Xt from Yt, Zt. For this model, we computed the theoretical TE (numerically, with good
precision) and tuned the parameters to obtain a strong coupling between Xt and Zt. The theoretical
Granger causality index was equal to zero. We observed the same issue as that pointed out in [41], i.e.,
a very slow convergence of the estimator when the number of observations increases, and noticed that
the four estimators Ÿ�TEY→XSA, Ÿ�TEY→XEA, Ÿ�TEY→Xp1 and Ÿ�TEY→Xp2, revealed very close performance.
In this difficult case, our two methods do not outperform the existing ones. Probably, for this type of
strong coupling, further improvement must be considered at the expense of an increasing computational
complexity, as that proposed in [41].

This work is a first step in a more general context of connectivity investigation for neurophysiological
activities obtained either from nonlinear physiological models or from clinical recordings. In this
context, partial TE has also to be considered, and future work would address a comparison of the
techniques presented in this contribution in terms of bias and variance. Moreover, considering the
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practical importance to know statistical distributions of the different TE estimators for independent
channels, this point should be also addressed.

Author Contributions

All authors have read and approved the final manuscript.

Appendix

A. Mathematical Expression of Transfer Entropy for Continuous Probability Distributions

Here, we consider that the joint probability measure PXp
i ,X

−
i ,Y

−
i

is absolutely continuous (with respect
to the Lebesgue measure in Rm+n+1 denoted by µm+n+1) with the corresponding density:

pXp
i ,X

−
i ,Y

−
i

(
xpi , x

−
i , y

−
i

)
=

dPXp
i ,X

−
i ,Y

−
i

(
xpi , x

−
i , y

−
i

)
dµn+m+1

(
xpi , x

−
i , y

−
i

) . (42)

Then, we are sure that the two following conditional densities probability functions exist:

pXp
i |X

−
i

(
xpi |x−i

)
=

dPXp
i |X

−
i

(
xpi |x−i

)
dµ1 (xpi )

pXp
i |X

−
i ,Y

−
i

(
xpi |x−i , y−i

)
=

dPXp
i |X

−
i ,Y

−
i

(
xpi |x−i , y−i

)
dµ1 (xpi )

.

(43)

and Equation (3) yields to:

TEY→X,i =

∫
Rm+n+1

pXp,X−i ,Y
−
i

(
xpi , x

−
i , y

−
i

)
log

[
pXp|X−i ,Y

−
i

(
xpi |x−i , y−i

)
pXp|X−i

(
xpi |x−i

) ]
dxpidx

−
i y
−
i

=

∫
Rm+n+1

pXp,X−i ,Y
−
i

(
xpi , x

−
i , y

−
i

)
log

[
pXp,X−i ,Y

−
i

(
xpi , x

−
i , y

−
i

)
pX−i

(
x−i
)

pX−i ,Y
−
i

(
x−i , y

−
i

)
pXp,X−i

(
xpi , x

−
i

)] dxpidx
−
i y
−
i .

(44)
Equation (44) can be rewritten:

TEY→X,i = −E
[
log
(
pX−i ,Y

−
i

(
X−i , Y

−
i

))]
− E

[
log
(
pXp

i ,X
−
i

(
Xp
i , X

−
i

))]
+ E

[
log
(
pXp

i ,X
−
i ,Y

−
i

(
Xp
i , X

−
i , Y

−
i

))]
+ E

[
log
(
pX−i

(
X−i
))]

.
(45)

B. Basic Structure of TE Estimators

From Equation (8), assuming that X and Y are jointly strongly ergodic leads to:

TEY→X = lim
N→∞

1

N

∑
i=1,...,N

[
− log

(
pX−i ,Y

−
i

(
X−i , Y

−
i

))
− log

(
pXp

i ,X
−
i

(
Xp
i , X

−
i

))
+ log

(
pXp

i ,X
−
i ,Y

−
i

(
Xp
i , X

−
i , Y

−
i

))
+ log

(
pX−i

(
X−i
))]

,

(46)
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where the convergence holds with probability one. Hence, as a function of an observed occurrence
(xi, yi), i = 1, . . . , N , of (Xi, Yi), i = 1, . . . , N , a standard estimation Ÿ�TEY→X of TEY→X is given by:Ÿ�TEY→X = ¤�H (X−, Y −) + ¤�H (Xp, X−)− ¤�H (Xp, X−, Y −)−Ÿ�H (X−)

= − 1

N

N∑
n=1

¤�log (pU1 (u1n))− 1

N

N∑
n=1

¤�log (pU2 (u2n)) +
1

N

N∑
n=1

¤�log (pU3 (u3n))

+
1

N

N∑
n=1

¤�log (pU4 (u4n)),

(47)

where U1, U2, U3 and U4 stand respectively for (X−, Y −), (Xp, X−), (Xp, X−, Y −) and X−.

C. The Bias of Singh’s Estimator

Let us consider the equalities E (T1) = −E
[
log
(

̂pX (X1)
)]

= −E
[
log
(

k
NV1

)]
where V1 is the

random volume for which v1 is an outcome. Conditionally to X1 = x1, if we have k
NV1

pr−−−→
N→∞

pX (x1)

(convergence in probability), then E (T1/X1 = x1) −−−→
N→∞

− log (pX (x1)), and by deconditioning, we

obtain E (T1) −−−→
N→∞

−E (log (pX (X1))) = H(X). Therefore, if k
NV1

pr−−−→
N→∞

pX (x1), the estimation

of H(X) is asymptotically unbiased. Here, this convergence in probability does not hold, even if
we assume that E

(
k

NV1

)
−−−→
N→∞

pX (x1) (one order mean convergence), because we do not have

var
(

k
NV1

)
−−−→
N→∞

0. The ratio k
NV1

remains fluctuating when N → ∞, because the ratio
√

var(V1)

E(V1)

does not tend to zero, even if V1 tends to be smaller: when N increases, the neighborhoods become
smaller and smaller, but continue to ‘fluctuate’. This explains informally (see [37] for a more detailed
analysis) why the naive estimator given by Equation (17) is not asymptotically unbiased. It is interesting
to note that the Kozachenko–Leonenko entropy estimator avoids this problem, and so it does not need
any bias subtraction.

D. Derivation of Equation (22)

As illustrated in Figure 2, for d = 2, there are two cases to be distinguished: (1) εx and εy are
determined by the same point; (2) εx and εy are determined by distinct points.

Considering the probability density qi,k (εx, εy) , (εx, εy) ∈ R2 of the pair of random sizes (εx, εy)

(along x and y, respectively), we can extend it to the case d > 2. Hence, let us denote by qdxi,k (ε1, . . . , εd),
(ε1, . . . , εd) ∈ Rd the probability density (conditional to Xi = xi) of the d-dimensional random vector
whose d components are respectively the d random sizes of the (hyper-)rectangle built from the random k

nearest neighbors, and denote by hxi (ε1, . . . , εd) =
∫
u∈Dε1,...,εd

xi
dPX (u) the probability mass (conditional

to Xi = xi) of the random (hyper-)rectangle Dε1,...,εdxi
. In [24], the equality E [log (hxi (Dxi,k))] =

ψ(k)− ψ(N) obtained for an (hyper-)cube is extended for the case d > 2 to:

E [log (hxi (ε1, . . . , εd))] = ψ(k)− d− 1

k
− ψ(N). (48)

Therefore, if pX is approximately constant on Dε1,...,εdxi
, we have:

hxi (ε1, . . . , εd) ' vipX (xi) , (49)
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where vi =
∫
Dε1,...,εd

xi
dµd(ξ) is the volume of the (hyper-)rectangle, and we obtain:

log pX(xi) ≈ ψ(k)− ψ(N)− d− 1

k
− log (vi) . (50)

Finally, by taking the experimental mean of the right term in Equation (50), we obtain an estimation
of the expectation E [log pX(X)], i.e.,:◊�H(X) = −ψ(k) + ψ(N) +

d− 1

k
+

1

N

N∑
i=1

log (vi) . (51)

E. Proof of Property 1

Let us introduce the (hyper-)rectangle Dε
′
1,...,ε

′
d

x1 centered on x1 for which the random sizes along the

d directions are defined by (ε′1, . . . , ε
′
d) = (ε1, . . . , εd) ×

(
vr

ε1×...×εd

)1/d

, so that Dε
′
1,...,ε

′
d

x1 and Dε1,...,εdx1
are

homothetic and Dε
′
1,...,ε

′
d

x1 has a (hyper-)volume constrained to the value vr. We have:∫
x∈Dε1,...,εd

x1

dµd(x) > vr ⇔ D
ε′1,...,ε

′
d

x1 ⊂ Dε1,...,εdx1
⇔ card

{
xj : xj ∈ D

ε′1,...,ε
′
d

x1

}
≤ k − ξ1, (52)

where the first equivalence (the inclusion is a strict inclusion) is clearly implied by the construction of
Dε
′
1,...,ε

′
d

x1 and the second equivalence expresses the fact that the (hyper-)volume of Dε1,...,εdx1
is larger than

vr if and only if the normalized domain Dε
′
1,...,ε

′
d

x1 does not contain more than (k − ξ1) points xj (as ξ1

of them are on the border of Dε1,...,εdx1
, which is necessarily not included in Dε

′
1,...,ε

′
d

x1 ). These equivalences
imply the equalities between conditional probability values:

P (T1 > r|X1 = x1,Ξ1 = ξ1) = P
(

log

(
NV1

K̃1

)
> r|X1 = x1,Ξ1 = ξ1

)
= P (V1 > vr|X1 = x1,Ξ1 = ξ1)

= P
(
card

{
Xj : Xj ∈ D

ε′1,...,ε
′
d

x1

}
≤ k − ξ1

)
.

(53)

Only (N − 1 − ξ1) events
{
Xj : Xj ∈ D

ε′1,...,ε
′
d

x1

}
are to be considered, because the variable X1 and

the ξ1 variable(s) on the border of Dε1,...,εdx1
must be discarded. Moreover, these events are independent.

Hence, the probability value in (53) can be developed as follows:

P (T1 > r|X1 = x1,Ξ1 = ξ1) '
k−ξ1∑
i=0

(
N − ξ1 − 1

i

)(
P
(
X ∈ Dε

′
1,...,ε

′
d

x1

))i
(

1− P
(
X ∈ Dε

′
1,...,ε

′
d

x1

))N−ξ1−1−i
.

(54)

If pX(x1) is approximately constant on Dε
′
1,...,ε

′
d

x1 , we have P
(
X ∈ Dε

′
1,...,ε

′
d

x1

)
' pX(x1)vr (note that

the randomness of (ε′1, . . . , ε
′
d) does not influence this approximation as the (hyper-)volume of Dε

′
1,...,ε

′
d

x1

is imposed to be equal to vr). Finally, we can write:

P (T1 > r|X1 = x1,Ξ1 = ξ1) '
k−ξ1∑
i=0

(
N − ξ1 − 1

i

)
(pX(x1)vr)

i(1− pX(x1)vr)
N−ξ1−1−i. (55)
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F. Derivation of Equation (32)

With P(T1 ≤ r|X1 = x1,Ξ1 = ξ1) = 1 − P(T1 > r|X1 = x1,Ξ1 = ξ1), we take the derivative of
P(T1 ≤ r|X1 = x1,Ξ1 = ξ1) to get the conditional density function of T1:

P ′(T1 ≤ r|X1 = x1,Ξ1 = ξ1)

= −P ′(T1 > r|X1 = x1,Ξ1 = ξ1)

= −

[
k−ξ1∑
i=0

[k̃1pX(x1)er]
i

i!
e−k̃1pX(x1)er

]′

= −
k−ξ1∑
i=0

([
[k̃1pX(x1)er]

i

i!

]′
e−k̃1pX(x1)er +

[k̃1pX(x1)er]
i

i!

[
e−k̃1pX(x1)er

]′)

= −
k−ξ1∑
i=0

(
i[k̃1pX(x1)er]

i−1
(k̃1pX(x1)er)

i!
e−k̃1pX(x1)er +

[k̃1pX(x1)er]i

i!
e−k̃1pX(x1)er(−k̃1pX(x1)er)

)

= −
k−ξ1∑
i=0

e−k̃1pX(x1)er

(
[k̃1pX(x1)er]

i

(i− 1)!
− [k̃1pX(x1)er]

i+1

i!

)
.

(56)
Defining:

a(i) =
[k̃1pX(x1)er]i

(i− 1)!
and a(0) = 0, (57)

we have:

P ′(T1 ≤ r) = −
k−ξ1∑
i=0

e−k̃1pX(x1)er (a(i)− a(i+ 1))

= −e−k̃1pX(x1)er (a(0)− a(k − ξ1 + 1))

= e−k̃1pX(x1)era(k − ξ1 + 1)

=

[
k̃1pX(x1)er

](k−ξ1+1)

(k − ξ1)!
e−k̃1pX(x1)er .

(58)

G. Derivation of Equation (33)

lim
n→∞

E (T1|X1 = x1) =

∫ ∞
−∞

r
[k̃1pX(x1)er]

(k−ξ1+1)

(k − ξ1)!
e−k̃1pX(x1)erdr

=

∫ ∞
0

[
log(z)− log

(
k̃1

)
− log pX(x1)

] zk−ξ1

(k − ξ1)!
e−zdz

=
1

Γ(k − ξ1 + 1)

∫ ∞
0

[
log(z)zk−ξ1e−z

]
dz − log

(
k̃1

)
− log pX(x1)

=
1

Γ(k − ξ1 + 1)

∫ ∞
0

[
log(z)z(k−ξ1+1)−1e−z

]
dz − log

(
k̃1

)
− log pX(x1)

=
Γ′(k − ξ1 + 1)

Γ(k − ξ1 + 1)
− log

(
k̃1

)
− log pX(x1)

= ψ(k − ξ1 + 1)− log
(
k̃1

)
− log pX(x1).

(59)
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H. Transfer Entropy and Granger Causality

TE can be considered as a measurement of the degree to which the history Y − of the process
Y disambiguates the future Xp of X beyond the degree to how its history X− disambiguates this
future [22]. It is an information theoretic implementation of Wiener’s principle of observational
causality. Hence, TE reveals a natural relation to Granger causality. As is well known, Granger causality
emphasizes the concept of reduction of the mean square error of the linear prediction ofXp

i when adding
Y −i to X−i by introducing the Granger causality index:

GCY→X = log

 var
(
lpeXp

i |X
−
i

)
var
(
lpeXp

i |X
−
i ,Y

−
i

)
 , (60)

where lpeXp
i |U is the error when predicting linearly Xp

i from U . TE is framed in terms of the
reduction of the Shannon uncertainty (entropy) of the predictive probability distribution. When the
probability distribution of

(
Xp
i , X

−
i , Y

−
i

)
is assumed to be Gaussian, TE and Granger causality are

entirely equivalent, up to a factor of two [42]:

TEY→X =
1

2
GCY→X . (61)

Consequently, in the Gaussian case, TE can be easily computed from a statistical second order
characterization of

(
Xp
i , X

−
i , Y

−
i

)
. This Gaussian assumption obviously holds when the processes Y

and X are jointly normally distributed and, more particularly, when they correspond to a Gaussian
autoregressive (AR) bivariate process. In [42], Barnett et al. discussed the relation between these two
causality measures, and this work bridged information-theoretic methods and autoregressive ones.

I. Comparison between Entropy Estimators

Figure 8 displays the values of entropy for a Gaussian d-dimensional vector as a function of the
number of neighbors k, for d = 3 in Figure 8a and d = 8 in Figure 8b, obtained with different estimators.
The theoretical entropy value is compared with its estimation from the Kozachenko–Leonenko reference
estimator (Equation (10), red circles), its extension (Equation (22), black stars) and the extension of
Singh’s estimator (Equation (35), blue squares). It appears clearly that, for the extended Singh’s
estimator, the bias (true value minus estimated value) increases drastically when the number of
neighbors decreases under a threshold slightly lower than the dimension d of the vector. This allows
us to interpret some apparently surprising results obtained with this estimator in the estimation of
TE, as reported in Figure 6b. TE estimation is a sum of four separate vector entropy estimations,Ÿ�TEY→X = ¤�H (X−, Y −) + ¤�H (Xp, X−)− ¤�H (Xp, X−, Y −)−Ÿ�H (X−). Here, the dimensions of the four
vectors are d (X−, Y −) = m + n = 4, d (Xp, X−) = 1 + m = 3, d (Xp, X−, Y −) = 1 + m + n = 5,
d (X−) = m = 2, respectively. Note that, if we denote by XM2 and YM2 the two components in
Model 2, the general notation (Xp, X−, Y −) corresponds to

(
Y p
M2, Y

−
M2, X

−
M2

)
, because in Figure 6b,

the analyzed direction is X → Y and not the reverse. We see that, when considering the estimation
of H (Xp, X−, Y −), we have d = 5 and k = 3, which is the imposed neighbors number in the
global space. Consequently, from the results shown in Figure 8, we can expect that in Model 2, the
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quantity H (Xp, X−, Y −) will be drastically underestimated. For the other components ¤�H (X−, Y −),¤�H (Xp, X−), Ÿ�H (X−), the numbers of neighbors to consider are generally larger than three (as a
consequence of Kraskov’s technique, which introduces projected distances) and d ≤ 5, so that we do
not expect any underestimation of these terms. Therefore, globally, when summing the four entropy
estimations, the resulting positive bias observed in Figure 6b is understandable.
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Figure 8. Comparison between four entropy estimators: (a) d = 3; (b) d = 8. The
covariance matrix of the signals is a Toeplitz matrix with first line β[0:d−1], where β = 0.5.
“Curve 1” stands for the true value; “Curve 2”, “Curve 3” and “Curve 4” correspond to the
values of entropy obtained using respectively Equations (10), (22) and (35).
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