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Abstract: The classic principal components analysis (PCA), kernel PCA (KPCA) and 

linear discriminant analysis (LDA) feature extraction methods evaluate the importance of 

components according to their covariance contribution, not considering the entropy 

contribution, which is important supplementary information for the covariance. To further 

improve the covariance-based methods such as PCA (or KPCA), this paper firstly proposed 

an entropy matrix to load the uncertainty information of random variables similar to the 

covariance matrix loading the variation information in PCA. Then an entropy-difference 

matrix was used as a weighting matrix for transforming the original training images. This 

entropy-difference weighting (EW) matrix not only made good use of the local information 

of the training samples, contrast to the global method of PCA, but also considered the 

category information similar to LDA idea. Then the EW method was integrated with PCA 

(or KPCA), to form new feature extracting method. The new method was used for face 

recognition with the nearest neighbor classifier. The experimental results based on the ORL 

and Yale databases showed that the proposed method with proper threshold parameters 

reached higher recognition rates than the usual PCA (or KPCA) methods. 

Keywords: entropy matrix; entropy-difference weighting; principal components analysis; 

kernel principal components analysis; face recognition 
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1. Introduction 

The new generation of personal authentication technologies based on individual biological 

characteristics is the core of various applications of the real or the virtual society. Face recognition is 

the most natural mode of identification. Unlike other modalities like fingerprints, palmprints and iris 

scans, the face is a passive biometric whose frontal and profile views can be captured from a distance 

without an active participation of the user. This advantage makes it useful for security and surveillance 

tasks, so face recognition has become a hot topic and also one of the most challenging research topics 

in recent years (see [1–3]). 

Face recognition based on principal component analysis (PCA) is a basic and classical method (see [4]). 

The PCA method computes the covariance matrix of the training images and calculates the eigenvalues 

and eigenvectors of this matrix. Then the components that correspond to the top few largest 

eigenvalues (equal to the corresponding variances) are retained to achieve the purpose of data 

dimensionality reduction (see [4–6]). Finally certain classifiers such as the nearest neighbor algorithm 

(see [7]) are used to recognize the query face images. Many important face recognition methods such 

as kernel PCA (KPCA) and linear discriminate analysis (LDA) are derivatives or transformations of 

PCA (see [8–12]). 

In the PCA method, the total information in the training samples is evaluated by the total variance. 

The remaining components keep most of the variance, that is, most of the information. To the best of 

our knowledge, besides the variance, the information can also be computed by entropy, which is an 

important complement of the variance. The variance evaluates the degree of dispersion of a variable, while 

the entropy evaluates the uncertainty of its distribution. We note that the entropy-based feature extraction 

methods are not as popular as the conventional methods like PCA and LDA. Till now, some new entropy 

information theoretic methods for feature extraction have been developed. One research area is to discuss 

new entropy functions, new computational algorithms or new entropy estimation techniques in feature 

extraction such as in the works of Mamta and Hanmandlu [3,13] and Hacine-Gharbi et al. [14]. 

Another research area is to combine entropy features with other face recognition methods. For 

example, Cament et al. [15] combined entropy-like weighted Gabor features with the local 

normalization of Gabor features. Marsico et al. [16] used Gallery entropy for template selection in face 

biometric identification systems. Chai et al. [17] first divided a face image into a few regular blocks of 

a given size, then explored the information entropy on image patches to automatically learn the 

number of sets in which each region should be divided. Besides, some recent research has also made use 

of entropy in PCA such as [18], where the authors presented a new rotational-invariant PCA based on 

maximum correntropy criterion and a half-quadratic optimization algorithm is adopted to compute the 

correntropy objective. However we notice that all these research projects do not define an entropy 

matrix to load the entropy information, just like the covariance matrix loading the variance 

information. 

If a dimension reduction method can make good use of both the variance information and the 

entropy information, and extract features representing most of the two kinds of information, it is 

expected to be an ideal recognition method. In this paper, based on the traditional definition of 

entropy, Shannon entropy, we try to find new feature extraction method. We construct a new entropy 

matrix to load the entropy information, similar to the covariance matrix loading the variance 
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information. Then we integrate the entropy information and the variance information by using the 

proposed entropy matrix and PCA or its extension methods. Note that PCA is a global statistical facial 

recognition method, whose significant disadvantage is to treat all features equally. In fact, different 

elements (pixels) in a face image matrix play different roles for face recognition. Another disadvantage 

of PCA is that it does not use some useful classification information in face recognition, so based on 

the above basic entropy matrix, we first construct a weighting entropy matrix to transform the original 

facial images, whose aim is to treat the important local features differently and fully use the 

classification information. Then PCA can be performed on the transformed facial images to make full 

use of the entropy information and variance information. Our proposed method contains two stages 

where the first stage uses the local features measured by the entropy information matrix and the second 

one is correlated to the global features measured by the covariance information matrix. As far as we 

know, although some literature in the pattern recognition field has discussed entropy-weighted 

methods and the fusion of local and global features, our proposed method for the construction of the 

entropy matrix and the novel entropy-difference weighting (EW) matrix are new research ideas. 

The paper is organized as follows: Section 2 defines a new entropy matrix and the corresponding 

EW matrix for transforming the original training samples. Section 3 proposes a combination method of 

EW matrix and the linear PCA method. Also the combination of the nonlinear KPCA with the 

proposed EW method is introduced for improving the recognition effects. Section 4 gives the 

experimental results. Section 5 summarizes the whole paper and the concluding remarks. 

2. A New Entropy Matrix and the Entropy-Difference Weighting (EW) Matrix 

2.1. General Data Division Method for Small Sample Size Problems and Shannon Entropy Matrix 

For a certain random variable X  whose possible values are { }MXX ,,X 21 , Shannon entropy H  is 

given by the formula:  

( ) ( ) ( )
=

−=
M

1

logXH
i

ibi XpXp , (1)

where ( )iXp  is the probability of iX  and b  is usually set to 2. The possible range of information 

entropy is MblogH0 ≤≤ , where the left equal sign holds ( 0H = ) corresponding to the minimum 

uncertainty if and only if the probability of a certain value of the random variable is equal to 1 and the 

probabilities of the other values are all equal to 0, and the right equal sign holds ( MblogH = ) if and 

only if ( ) ( ) ( )MXp=== 21 XpXp  which implies the maximum uncertainty of the random variable. 

Suppose a m n×  image matrix nmijxx ×= )( . This paper uses information entropy (Shannon) to 

measure the uncertainty information for each ijx , mi ≤≤1 , nj ≤≤1 . For the training images, we 

divide the possible range of each ijx  ( mi ≤≤1 , nj ≤≤1 ) into several sections, i.e., data division, 

which is necessary when the size of the training samples is not large enough to cover all the possible 

values of ijx . For example, there are only 10 images for each subject in the ORL facial database and 

11 images for each subject in the Yale one, but for these gray face images, the possible values of each 

ijx  are integers ranging from 0 to 255. In this case, directly computing the entropy without dividing 
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the data will greatly affect the reliability of the results due to the sparse problem. Specifically, 
corresponding to nmijxx ×= )( , we define a m n×  matrix 

nmijaa ×= )( , where: 
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( 1 , 2 , , )it i q=   is the threshold which need to be predetermined and ia )1( qi ≤≤  is a symbol 

representing the i th section, whose specific numerical value does not matter. For facial gray images, 
255,00 == qtt , )1,,2,1( −= qiti   are integers in (0, 255). Note that besides gray images, this data 

division method can be extended to the generally case when ijx  ( mi ≤≤1 , nj ≤≤1 ) is continuous. 

We mainly discuss the estimation of entropy for each ijx  ( mi ≤≤1 , nj ≤≤1 ) in face application. 

If the training samples X  contain N  subjects, i.e., { }Nxxx ,,,X 21 = , where kx  is a m n×  matrix 

whose ( )j,i  element is ijkx , , each kx  can be transformed to an identification matrix according to 

Equation (2). Denote the entropy matrix for the training sample { }Nxxx ,,,X 21 =  as ( )ij m n
E e

×
= . 

Denote the frequency of ),,2,1( qkak =  in N  training samples by ),,2,1( qkNk = , NN
q

k
i =

=1

. 

According to Equation (1), it is easy to give an estimation of ije , say ijê : 
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ij logˆ
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=

−= , ( mi ≤≤1 , nj ≤≤1 ) (3)

Sometimes, only a threshold is needed to divide all the matrix elements into two parts, i.e., 2M = . 

Let 2=b  in this binary process, we have: 

12logˆ0 2 =≤≤ ije  (4)

So it is possible for the entropy to be used as the traditional weighting coefficient since it varies in the 

interval [0, 1]. This idea is important in the following research. Generally for any 2M ≥  we can set 
Mb =  to make 1logb =M  and 1ˆ0 ≤≤ ije , ( mi ≤≤1 , nj ≤≤1 ). Besides this treatment, recent 

references such as Heo and Gader [19] show an important idea of weighting without the sum-to-one 

constraint, which relaxes constraint of the one generally required for weighting methods having the 

sum-to-one constraint. The relaxed constraint makes it possible to accommodate measures that do not 
satisfy the sum-to-one constraint if 1logb >M . 

2.2. Specific Data Division Techniques in Treating Face Images 

For face recognition, the specific data division techniques to be used need to be discussed. 

According to Equation (4), if we divide all the matrix elements into two parts, i.e., only a threshold is 

needed, the entropy can be used as a basis of the traditional weighting coefficient since it is in the 

range of [0, 1]. This data division is reasonable here due to the fact that for the gray facial images 

whose features are in [0, 255], the vast majority of small changes in the gray scale is used to show 3D 



Entropy 2015, 17 4668 

 

 

facial contour visual effects, which are generally of no use in facial recognition and could be marked 

into one classification. Other big features which play great role in recognition can be marked into the 

other classification. This binary treatment also possesses the advantage of simplicity in calculation. 

The remaining work is to choose a threshold value t  to transform all the elements for m n×  image 

matrix into either 1 or 0 to form a new identification matrix. In the practice, we can search values from 

0 to 255 to find the best t  for the best recognition rate. It is easy to see that different type of facial 

images can have different t  value. 
Denote { }Nbbb ,,B 21=  be the identification matrixes, where kb  is a m n×  matrix whose ( )j,i  

element is: 

( )njmiNk
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Here ijkb ,  is a specific form of Equation (2). Then we have: 
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= − , (6)

where v  is 1 or 0, ( )ijp v  denote the probability of v  in the ( )j,i  element among the matrix set. 

Practically ( )ijp v  can be estimated by the corresponding frequency as Equation (7): 
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2.3. Entropy-Difference Weighting (EW) Matrix 

Just as the covariance matrix loads the information of the training sample, which can be used to 

carry out the eigendecomposition to extract the principle components, the proposed entropy matrix can 

load the information of the distribution uncertainty of the training sample. Proper usage of this entropy 

matrix can help extract good features of the training samples. For example, an entropy-matrix-based 

component analysis is a further prospective study which may produce meaningful results. However, in 

this paper, we try to combine the covariance information and the entropy information of the training 

samples so as to extract the more valuable features than just using one of them such as PCA. 

For facial images without too much interference by some outer factors, after doing many 

experiments on different facial databases we find a conclusion that after data division, the within-class 

uncertainty of ija  ( mi ≤≤1 , nj ≤≤1 ) is often small while the between-class uncertainty is often 

large if each classification is reasonable classified. This conclusion is similar to the idea of Fisher’s 

linear discriminant analysis LDA (see [11,12]) of finding an optimal projection maintaining the largest 

discrete distance between classes and the smallest discrete distance within classes. Therefore, it is 
reasonable to compute a total entropy matrix to evaluate the overall uncertainty of nmijaa ×= )( . Also 

an entropy matrix for each classification is computed to evaluate the within-class uncertainty of 

nmijaa ×= )( , whose elements are expected to be considerably small. Then the average within-class 
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entropy matrix is computed, whose elements are all also considerably small. The difference of the total 

entropy matrix and the average within-class entropy matrix, which is called an entropy-difference 
matrix in this paper, can reflect the importance of each element of nmijxx ×= )(  in pattern recognition. 

The mathematical formulae are as follows: 

Suppose there are l  classes in the total facial images. Denote ( )ij m n
E e

×
= , ( )

nmijss eE
×

= , , ( )ls ,,2,1 = , 

where ijse ,  is the ( )ji,  entropy element of the s th class and ( )
nmijeE

×
= , where 

=

=
l

s
ijsij e

l
e

1
,

1 , be the total 

entropy matrix, the within-class entropy matrix of the s th class ( )ls ,,2,1 =  and the average within-class 

entropy matrix among l  classes, respectively. Define: 

( ) EEwW
nmij −==

×
 (8)

be an entropy-difference matrix loading the information of how important each ijx  ( mi ≤≤1 , 

nj ≤≤1 ) is as far as its entropy is concerned. Similar to the famous Fisher criterion, the relationship 

between ijw  and ija  is as follows: 

 A large ijw  implies a large total entropy ije  and a small within-class entropy ije  according to 

Equation (8), that is, a small within-class uncertainty and a large between-class uncertainty of 

ija  among training samples.  

 A small ijw  mostly shows large elements in both E  and E  or small elements in both E  and 

E , that is, a ija  whose within-class uncertainty and between-class uncertainty are both small, 

or both large in training samples.  

Based on the above criterion, we can use W  as a weighting matrix to re-evaluate the original m n×  

image matrix nmijxx ×= )( , so W  is called the EW matrix in this paper. We believe that an element 

ijw  in W  is large implies that ijx  is an important element since it is useful for classification and 

recognition. At the same time, a small element ijw  in W  means the corresponding ijx  is an 

interference feature or redundant feature which needed to be given a small weight since it is of no use 

for recognition.  
Denote ( )Nyyy ,,,Y 21 =  be the transformed samples of ( )Nxxx ,,,X 21 =  by the  

entropy-difference matrix, where ky  is also a m n×  matrix. We have: 

( )NkWxy kk ,,2,1  == , (9)

that is, ky  is the Hadamard product (also known as the Schur product) of matrices kx  and W . The 

processes of both Equations (8) and (9) are an entropy-difference matrix weighting method for the 

original data matrix, which is called an EW method in this paper. After this weighting process, some 

covariance analysis methods such as PCA can be performed to extract the important features for 

pattern recognition. Then, according to Equations (8) and (9), we get the coefficient matrix W  and use 

it to transform the input facial image matrix. To sum up, the main step of EW method for treating face 

images is as follows. 
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(1) For each facial image matrix, by using a threshold value to transform its elements into 1 or 0, 

we get a new identification matrix. 

(2) For all identification matrixes, we compute a total entropy matrix to evaluate the overall 
uncertainty of each feature ijx . 

(3) In each classification, an entropy matrix is also computed to evaluate the within class 

uncertainty. Then the average entropy matrix of different classes can be calculated. 

(4) Compute the difference of the total entropy matrix and the average classification entropy 

matrix. Use the difference matrix to transform the original image matrix. 

In Section 3, we will discuss how to combine the EW method with the PCA or KPCA methods to 

make use of both entropy information and covariance information. We find that this combination also 

has other meaningful interpretations. Note that as a weighting method, the EW matrix can take 

advantage of the training samples’ local information through entropy, so it can be fused with other 

global statistics methods such as PCA. The usual facial recognition methods based on global statistics 
often treat each feature ijx  of the training images equally. However the important features of human 

faces often concentrate on some local positions. Although the global methods can reach the global 

optimum, they fail to use the important local features and thus cannot fully improve the computational 

efficiency. For refining the local features, one possible way is to set a coefficient or weight with values 
in [0, 1] to correspond with the feature ijx  in a m n×  matrix x . Then ijx  can be transformed with the 

coefficient so as to remain or strengthen the important features and cut or weaken redundant or 

interfering features. The more important a feature is, the closer the coefficient set is to 1. The more 

redundant a feature is, the closer the coefficient set is to 0. On the other hand, a global statistical 

method such as PCA does not use the category information of the training samples to help learning 

facial features, while this category information is very important and useful for facial recognition, so in 

order to obtain the transforming coefficients for a feature and make use of the category information of 

the training images, this paper firstly uses the proposed EW method to process the original training 

facial images. We compute the entropy for each feature to symbolize the degree of its importance and 

obtain the corresponding coefficient. Using the coefficients to make linear transformation for each 

training image can reduce the noise, eliminate the interference and fully refine the classification 

information from the training images. 

3. The EW-based Principal Components Analysis (EW-PCA) Method and the EW-based Kernel 
Principal Components Analysis (EW-KPCA) Method 

3.1. The EW-based Principal Components Analysis (EW-PCA) 

The EW method can process different data matrices including facial image matrices to achieve the 

aim of preserving the important information and reducing the redundant by using entropy difference. 

As an important application, we combine the EW method with the popular PCA method to load both 

the entropy information and the covariance information to reach a better recognition effect. 
First, we introduce the main procedure of PCA. For a m n×  image matrix ( )Nkxk ,,2,1 = , it can 

be straightened to be a ( )nmDD ×=×1  column vector according to its rows. We also use kx  to 
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represent this column vector. Denote ( )( )
=

−−=
N

k

T
kk xxxx

1N

1
C  be the D D×  covariance matrix of all 

training samples, where 
=

=
N

k
kx

1N

1
x . Compute the eigenvalues and eigenvectors of C , which can be 

achieved with singular value decomposition (SVD) method or other proper methods. Then pick out the 

top d  eigenvalues according to their information contribution. The d  corresponding eigenvectors 
form a D d×  matrix 

1 2, , , dU u u u 
 =  . The eigenfaces of facial image can be obtained through 

TF U X= , where [ ]NxxxX ,,, 21 =  and F  is a d N×  matrix. 

The EW-based PCA method is as follows. Suppose ( )Nkyk ,,2,1 =  are the transformed matrixes 

from ( 1,2, , )kx X k N∈   =   according to (9). Straighten ( )Nkyk ,,2,1 =  to be the 1D ×  column 

vectors, whose covariance matrix is 
1

1 ( )( )
N

T
k k

k
C y y y y

N =
= − − ，where 

=

=
N

k
ky

1N

1
y . The eigenvectors of 

C  corresponding to the top d  eigenvalues can form a D d×  transformation matrix 

1 2[ , , , ]dU u u u=    . The eigenfaces of facial images can be obtained through Equation (10): 

TF U Y=  , (10)

where [ ]NyyyY ,,, 21 =  and F  is a d N×  matrix. We call this method as EW-PCA method, which 

is expected to obtain high recognition rates since it possesses both the global and the local advantages. 

The remaining work is to calculate the vector norm such as the Euclidean distance between the 

eigenfaces of the test image and each training image, respectively. Based on the idea of classifying the 

test image to its nearest neighbor (see [7]), we rank those distances according to the ascending order. 

The minimum distance and its corresponding training category is the category that the test image 

should be judged into. 

3.2. The EW-based Kernel Principal Components Analysis (EW-KPCA) Method 

Since most practical data are nonlinear, current linear methods cannot study their latent rules. 

Kernel-based methods can deal with this problem (see [8,9]). The basic idea of kernel methods is to 
map the original nonlinear data into a high-dimensional feature space ( )Φ ⋅  to make the mapped data 

linear. Then the linear methods such as PCA can be used to extract the features from the mapped data. 
With a kernel trick of ( , ) ( ( ) ( ))K x y x y= Φ ⋅Φ  we can get the mapped covariance of samples x  and y . 
Commonly used kernels include polynomial kernel ( , ) (( ) )dK x y x y θ= ⋅ + , radial basis function kernel 

2

2( , ) exp( )
2

x y
K x y

σ
−

= − , sigmoid kernel ( , ) tanh( ( ) )K x y x yκ θ= ⋅ + , ANOVA kernel 

2

1
( , ) exp( ( ) )

n
k k d

k
K x y x yσ

=
= − −  and Laplacian kernel ( , ) exp( )

x y
K x y σ

−
= − , etc. Then a NN ×  kernel 

matrix K  can be obtained with certain kernel. 

Through the kernel trick, kernel PCA (KPCA) avoids the curse of dimensionality and greatly 

reduces the amount of computation. However, the disadvantages of KPCA method are that it still treats 

different elements in an m n×  image matrix equally, ignoring some important local features (elements) 

and abandoning the sample classification information as well, so we propose the EW-based KPCA 

(EW-KPCA) method. 
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Still denoting ( )Nk ,,2,1yk =  be the straightened 1D ×  column vectors, without loss of 

generality, we select the polynomial kernel with 2=d  and 0=θ  to compute the kernel matrix 

( )
NNijK

×
=K , that is, ( )2

ijK j
T

i yy= ， Nji ,,2,1, = . The centralized matrix (see [20]) of K  is K
~

 in 

Equation (11): 

NNNN KKKK 1111K
~ +−−= , (11) 

where 1N  is the NN ×  matrix of 1(1 )N ij N= . Calculate the eigenvalues and eigenvectors of K
~

 and 

the eigenvectors corresponding to the top q  eigenvalues can form a q N×  transformation matrix 

1 2, , , qU u u u 
 =    . The eigenfaces of facial images can be obtained through the transformation (12): 

KU T


=F , (12) 

where F  is a d N×  matrix. Finally, like the mentioned method of classifying the test image to its 

nearest neighbor, we can obtain the recognition results.  

Note that in this paper, we focus on feature extraction with our EW method and its combination 

with PCA and KPCA, so we simplify the discussion about kernels and recognition methods. Other 

research can be proposed to determine how to choose a suitable kernel for the practical data to achieve 

the best recognition rates, or how to choose a proper recognition method to adapt different applications 

for a fixed kernel, which are omitted here for clarity. 

4. Experiments and Analysis  

In this section, we demonstrate the effect of the proposed EW method with the popular ORL face 

image database (see [21]) and the Yale database (see [11]), compare PCA with EW-PCA methods 

through experiments, and KPCA with EW-KPCA as well. The ORL database contains a set of face 

images taken between April 1992 and April 1994 at the labs of Cambridge University. The size of each 

image is 92×112 pixels, with 256 gray levels (from 0 to 255) per pixel. The images are organized in 40 

directories (one for each subject), in which 35 subjects are male and five subjects are female. In each 

of these directories, there are 10 different images of that subject. For some subjects, the images were 

taken at different times, varying the lighting, facial expressions (open/closed eyes, smiling/not smiling) 

and facial details (glasses/no glasses). Face poses change to some extent. Images have some rotation 

from depth and plane. Face scale also has as much as 10% change, so ORL is an ideal experimental 

database for facial recognition. 

The Yale face database comes from Yale University and contains 165 gray scale images of 15 

individuals. There are 11 images per subject, one per different facial expression or configuration: 

center-light, with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy, surprised, 

and winking. The ORL and the Yale have different focuses, respectively. At the same time they both 

contain abundant types of changes. The tests based on these two databases can fully reflect the 

performance of different face recognition methods. Besides, according to Sections 2.1 and 2.2, the 

methods of data division, entropy matrix and EW matrix are expected to have advantages in small 

sample size databases rather than big size ones, so we here do not consider some big face databases. 

The following experiments’ running environment was a Win7 system, Intel (R) Core (TM) 2 Duo CPU 

1.60 GHz, Ram 2.00 GB, MATLAB R2009a version. 
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4.1. Experiments of EW Method 

The EW results based on the ORL facial database are shown in Figures 1 and 2. In Figure 1, the 

threshold value t  is set to be 52. The determination of t  is by searching the values in [0, 1] through 

many experiments to get an approximately best value. Further discussion about how to choose or tune 

this parameter is provided in Section 5. Figure 1a shows the original images and Figure 1b are the 

images ideally processed by the EW method. As can be seen in Figure 1a, there were changes of 

lightening, expression, pose and rotation angle, and the overall changes cover a wide range. In the 

images processed by EW (Figure 1b), we can see that the light changes were basically eliminated. In 

the areas containing rich features such as the eyes, the nose, the mouth, the ears and the face contour, 

the critical features had been remained, which showed a small lighter area in the images. Other 

features were weakened to some extent, which showed a darker area in the images. Through the EW 

method, we obtained an ideal local feature retention effect in Figure 1b.  

 

Figure 1. The comparison of the original ORL images and the images ideally processed by 

EW method. (a) the original ORL images; (b) the processed images by EW ( 52=t ). 

In the ORL facial database, since images of different subjects approximately satisfy the condition of 

balanced illumination levels, the approximately optimal threshold values t  for different subjects are 

approximately the same, say 52=t . Further, our multiple experiments showed that besides the optimal 

t , EW with a rough or approximate threshold may also achieve a relatively good local feature retention 

effect, so in Figure 2, besides 52=t , we also tried the values around it such as t = 42 and t = 62.  

Figure 2b–d shows the different effects for local feature retention, generally speaking, these effects 

were apparent indicting that the EW method was robust to a certain extent as far as the threshold value 

was concerned. On the other hand, compared to Figure 2c, Figure 2b seemed not to fully to extract 

features, while Figure 2d seemed to extract too many local features which were not beneficial for 

classification and recognition.  

The EW processed results of Yale face database were shown in Figures 3 and 4. In Figure 3, the 

threshold 24t = . In Figure 3a, the original images contained changes of the light, the expression, the 

background in different light environment as well as the change of wearing glasses or not. All images 

were frontal perspectives, but the variation of the lightening and expression was very rich. In Figure 3b, 

after the ideal EW treatment with threshold value 24t = , the changes of the background under different 

light conditions and the influence of wearing glasses were successfully eliminated. Similar to the effects of 
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the ORL database, through the EW method, the critical features of the feature- rich areas are retained, so 

we obtained an ideal local feature retention effect. 

 

Figure 2. The comparison of the originally ORL images and the processed images by EW 

method with different threshold values. (a) the original ORL images; (b) the processed 

images by EW ( 52=t ); (c) the processed images by EW ( 42=t ); (d) the processed 

images by EW ( 62=t ). 

 

Figure 3. The comparison of the originally Yale images and the images ideally processed 

by EW method. (a) the original Yale images; (b) the processed images by EW ( 24=t ). 

In the Yale facial database, similar to the conclusions with the ORL database, the optimal threshold 

values t  for different subjects are approximately the same, say 24t = . For another subject of the Yale, 

besides the approximately optimal threshold 24t = , different EW effects with nearby threshold values 

such as 14t =  and 34t = were also calculated in Figure 4. Figure 4a is the original images.  

Figure 4b–d show the different local feature retention effects. Compared to Figure 4c, Figure 4b 
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appears to be less well characterized, while Figure 4d seems to extract too many local features which 

were not conducive to identification. Although there were differences in the EM local retention effects 

when the thresholds varied in a reasonable range, on the whole these differences of the EW feature 

retention effects was reasonably small which indicted the robustness of the proposed method to a 

certain degree. 

 

Figure 4. The comparison of the originally Yale images and the images processed by EW 

method. (a) the original Yale images; (b) the processed images by EW ( 14=t ); (c) the 

processed images by EW ( 24=t ); (d) the processed images by EW ( 34=t ). 

4.2. The Comparison between PCA and EW-PCA Experiments 

We used a closed-form solution by supposing the query (or the test) images must belong to a certain 

classification (or subject) in a predetermined facial set. In order to obtain more objective and accurate 

experimental results, the test samples were randomly selected from the total set. Each experiment was 

repeated 50 times and their average value was taken as the final result. Especially, our experiments 

were carried out according to the following three programs: 

• Program 1: For each subject, randomly select one image as the test image, and the remaining 

ones are used as the training images. This program was aimed at assessing face recognition 

methods under ideal testing circumstances. 

• Program 2: For each subject, randomly select half of the images as the test images, and the 

remainder as the training images. This program was designed to assess the face recognition 

methods in a general testing circumstance. 
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• Program 3: For each subject, randomly select one image as the training image, and the 

remaining ones as the test images. This program was designed to assess the face recognition 

methods under a challenging testing circumstance.  

We used the ORL database and the Yale database, respectively, to compare the recognition rates of 

EW-PCA and PCA, in which we selected the nearest neighbor classification rule (see [7]) as the 

classifier by calculating the Euclidean distance between the test image and each training image and 

classify the test image to its nearest classification. The experimental results are summarized in  

Figures 5–10. Figures 5–7 were all results of ORL by comparing PCA, EW-PCA with 42t = , EW-PCA 

with 52t =  and EW-PCA with 62t = , where the approximately optimal threshold value 52t = . The 

only difference among Figures 5–7 was that they used Program 1, Program 2 and Program 3, 

respectively, with other settings the same. Here 42t =  and 62t =  were used to demonstrate how the 

difference was when the threshold varied in a small range on the basis of 52t = .  

 

Figure 5. Comparison of EW-PCA and PCA with ORL and Program 1. 

 

Figure 6. Comparison of EW-PCA and PCA with ORL and Program 2. 
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Figure 7. Comparison of EW-PCA and PCA with ORL and Program 3. 

 

Figure 8. Comparison of EW-PCA and PCA with Yale and Program 1. 

 

Figure 9. Comparison of EW-PCA and PCA with Yale and Program 2. 
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Figure 10. Comparison of EW-PCA and PCA with Yale and Program 3. 

Generally, we focused on the comparison of PCA and EW-PCA with 52t = , the approximately 

optimal threshold value. It can be seen from Figure 5 that the highest recognition rates were basically 

close in the red fold line and the dark fold line, the former was a little higher than the latter, but if the 

selected eigenvalues were relatively small, for example, just keeping two eigenvalues, the recognition 

rate of EW-PCA with 52t =  was obviously better than that of PCA. In Figure 6 and Figure 7, the 

overall recognition rates of the red fold line were significantly superior to those of the dark fold line, 

especially for Figure 7, under the challenging circumstance, the advantage of the EW-PCA with 52t =  

relative to PCA was much more obvious than that of Figure 5 and Figure 6. 

Figures 8–10 used Yale to compare EW-PCA and PCA with Program 1, Program 2 and Program 3, 

respectively, other settings being the same. In Figures 8–10 we demonstrated the recognition rates of 

PCA, EW-PCA with 41=t , EW-PCA with 24=t  and EW-PCA with 34=t , where the 

approximately optimal threshold value 24=t . It can be seen from Figures 8–10 that no matter which 

program is used, the recognition rates of the proposed EW-PCA with 24=t  were higher than those of 

the PCA. The fewer the number of selected eigenvalues was, the more obvious the advantage of the 

EW-PCA with an appropriate threshold. 

In Figures 8–10, besides the approximately optimal threshold value, EW-PCA with other threshold 

values around it also reached higher recognition rates than PCA under Program 2 and Program 3, 

which meant that under a general testing circumstance (Program 2) or a challenging testing 

circumstance (Program 3) our proposed EW-PCA method was a good and robust feature extraction 

method. It was easily seen that from Program 1 to Program 3, i.e., with the increasing difficulty of 

testing circumstance, the advantage of EW-PCA method was more and more obvious. 

4.3. The Experimental Comparison between KPCA and EW-KPCA  

Based on the ORL, we used Program 1, Program 2 and Program 3, respectively, to carry out the 

experiments and compare the recognition rates of KPCA and EW-KPCA with other conditions the 

same. Without loss of the generality, we chose the polynomial kernel with 2=d  and 0=θ  for 

simplicity.  
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Figure 11. The comparison of EW-KPCA and KPCA with ORL and Program 1. 

 

Figure 12. The comparison of EW-KPCA and KPCA with ORL and Program 2. 

 

Figure 13. The comparison of EW-KPCA and KPCA with ORL and Program 3. 
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The experiments are summarized as Figures 11–14, where the approximately optimal threshold 

value of EW-KPCA was the same one of 67=t , and the results of threshold values around 67=t , i.e., 

57=t  and 77=t  were also given. Just like the excellent recognition effect of EW-PCA, Figures 11–14 

show that the overall recognition rates of EW-KPCA with 67=t were higher than KPCA, especially 

under the challenging circumstances of Program 3 and with a few remaining eigenvalues. EW-KPCA 

also showed the robustness when the threshold value varied in a reasonable range, say i.e., 57=t  and 

77=t . This robustness especially lied in Program 3, where the recognition rates of all EW-PCA were 

consistently higher than KPCA. The same conclusion could be drawn with the Yale database, whose 

experiments were omitted here for brevity. 

4.4. The Experimental Comparison between EW-PCA and Linear Discriminant Analysis (LDA)  

Since the proposed EW-PCA used the information of classes to construct the weight matrix, another 

meaningful research task is to compare EW-PCA with certain methods considering both the 

covariance information and the classification information. It is well known that the famous LDA 

method (see [11,12]) can be viewed as the transformation and extension of PCA by using the 

information of classes. LDA is closely related to PCA in that they both look for linear combinations of 

variables which best explain the data (see [22,23]), but the main purpose of this linear feature 

combination for LDA is to separates two or more classes of the objects. LDA aims to find the 

discriminative vector optw  satisfying 
wSw

wSw
w

W
T

B
T

w
opt maxarg= , where BS  and WS  are between-class 

covariance matrix and within-class covariance matrix, respectively.  

We compared EW-PCA with LDA using the ORL database. The experimental results suggested that 

if a selected threshold value was suitable, the optimal recognition rate of EW-PCA was a little higher 

than the optimal recognition rate of LDA. For example, when we selected the threshold value 60t =  

for EW-PCA method, under Program 1 the optimal recognition rate for EW-PCA was 96.2% while 

that of LDA was 96.1%, under Program 2 the optimal recognition rate for EW-PCA was 91.8% while 

that of LDA was 91.5%. Here the optimal recognition rate was figured out by comparing different 

numbers of eigenvalues. Due to the fact the focus of the paper was to propose a new idea about fusing 

entropy matrix and covariance matrix, more specific experimental results about comparison between 

EW-PCA and LDA were omitted here. 

5. Conclusions and Discussion 

For the training samples, on the basis of data division, this paper defined an entropy matrix to load the 

uncertainty information. Then this paper proposed an entropy-difference matrix to reflect the classification 

information evaluated by the total entropy and the within-class entropy, so an EW method was proposed 

to make use of the local important features whose idea was similar to the famous Fisher discriminate 

criteria. Then the EW method was combined with the traditional methods such as PCA or KPCA, the 

goal of which was not only integrating the local and global features, but also to integrate the entropy 

information and covariance information. Especially for face recognition, binary processing for data 

division was used on the image matrix data, which gave a simple and efficient method for computing 

entropy, and consequently made the combination of the information of entropy and variance efficient. 
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A significant conclusion about information entropy across classes was that an element ijx  in a m n×  

image matrix nmijxx ×= )(  was important if its within-class entropy was small and between-class 

entropy was large. 

As an extension study of our proposed EW method, we compared the PCA method to the EW-PCA 

method and compared the KPCA method to the EW-KPCA method, respectively. The experiments 

based on the ORL and the Yale databases showed that our proposed EW-PCA method and EW-KPCA 

method outperformed the PCA method and KPCA method, respectively. This paper choose two 

databases (the ORL and the YALE) which are not big in size, because we want to demonstrate the 
advantages of data division when computing the entropy matrix ( )ij m n

E e
×

=  for small size databases. 

Theoretically speaking, we can directly calculate the entropy matrix without data division when sample 

size is large enough. 
The EW-based methods overcome the disadvantages of the general global methods which treat the 

feature of each dimension of the training images equally and do not use the category information of the 

training images to help studying facial features. The EW-PCA and EW-KPCA procedures are clear 

and complete, while the determination of the threshold parameters is an incipient research topic. The 

determination of t  presented in this paper searches for the approximately best value in [0, 1] through 

many experiments. Further research could involve finding efficient searching and iterative algorithms 

to obtain this threshold value, where an adaptive way may be a good way. In addition, researchers may 

select threshold value according to some prior knowledge, simplifying the complex of acquisition 

process. Besides, our multiple experiments show that EW-PCA with a rough or approximate threshold 

may also be superior to PCA to a certain extent. 

The proposed method is more suitable for processing frontal facial images, where the recognition 

rates of our EW methods is significantly better than the methods not using EW. If the angle of view or 

expression changes, the recognition effects using the EW method is not so obvious, so we need to pay 

more attention to this method in application. In addition, the EW method can also be combined with 

other face recognition methods such as the two-dimensional PCA method, to further improve the 

corresponding algorithm. Through the effective recognition rates for different methods of EW-PCA 

and EW-KPCA, we see that the EW-based method is the essential part of the whole algorithm which 

improves the efficiency of the algorithm. 
In this paper, the EW coefficient matrix ( )

nmijwW
×

=  was calculated by the difference of the total 

entropy matrix and the average within-class entropy matrix, i.e., EEW −= . For other applications, 

researchers can also consider the ratio of the total entropy matrix and the average within-class entropy 

matrix as the definition of the new entropy-based coefficient matrix, which is an interesting project for 

future study.  

It is worth noting that besides the above EW facial recognition method, our entropy-based matrix 

( )ij m n
E e

×
=  can also be applied to other areas of pattern recognition or data reduction as an original 

information matrix, which is likely to form new entropy-based recognition methods. In general 

application, it is possible for Mb ≠  or 2M >  in the expression ( ) ( ) ( )
=

=
M

1

logXH
i

ibi XpXp , to meet 
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the need of multiple data rather than binomial data. The entropy-based supervised or semi-supervised 

methods can also be put in various applications. 
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