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Abstract: Image splicing is a common operation in image forgery. Different techniques of 

image splicing detection have been utilized to regain people’s trust. This study introduces a 

texture enhancement technique involving the use of fractional differential masks based on 

the Machado entropy. The masks slide over the tampered image, and each pixel of the 

tampered image is convolved with the fractional mask weight window on eight directions. 

Consequently, the fractional differential texture descriptors are extracted using the gray-level 

co-occurrence matrix for image splicing detection. The support vector machine is used as a 

classifier that distinguishes between authentic and spliced images. Results prove that the 

achieved improvements of the proposed algorithm are compatible with other splicing 

detection methods. 
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1. Introduction 

The detection of possible image manipulation is an important challenge in digital image forensics. 

Digital image forensics primarily aims to detect and analyze facts concealed behind a digital image. 

Image manipulation or tampering may be performed through image splicing, retouching, healing, 

copying-moving, and blurring. Image splicing refers to the creation of a new image by combining two 

or more parts of a number of photographs. The spliced images can deceive human eyes and can be used 

for malicious purposes [1]. In general, image forensic approaches can be categorized into two main 

groups: active and passive (blind) [2]. In active approaches, additional information is inserted into the 

image before it is distributed. Digital watermarking is a prevalent active detection method [3]. 

Meanwhile, passive approaches modify the statistical features of images during image tampering [2]. 

Many passive approaches have been proposed for image tampering [4]. One of the proposals involve 

establishing a natural image model for splicing detection by applying statistical feature extraction 

methods, including moments of characteristic functions of wavelet sub-bands and the Markov transition 

probabilities of the difference between 2D arrays and 2D arrays of multi-size block discrete cosine 

transform (MBDCT). Their results presented a promising improvement on image splicing detection 

accuracy. The approach achieved 91.8% detection accuracy on the dataset presented in [5]. In [6], a 

splicing detection method was developed by merging Markov features applied in [7] and discrete-cosine 

transform (DCT) features. Their detection method achieved an accuracy rate of 91.5% with the use of 

the 109-D feature vector. Moghaddasi et al. [8] proposed an approach based on statistical features 

obtained from the run-length method and on image edge statistics from the blind image splicing detection 

method. This approach achieved 88.28% detection accuracy on CASIA and DVMM image datasets.  

He et al. [9] developed a detection algorithm based on the approximate run length. Their results showed 

a moderate detection accuracy rate (75% vs. 69%) but with a shorter time than that of the original 

algorithm (6-D vs. 12-D). These studies suggest that the types of features extracted from images serve 

an important function in detecting and classifying authentic and spliced images. In this study, we 

developed a new fractional differential approach for texture feature descriptors by focusing on the types 

of texture parameters used for detection. 

Fractional calculus is widely applied in physical and engineering sciences. Fractional differentiation 

is also excellent in describing the general properties of various materials and processes. Studies over the 

past 50 years have developed various operators of fractional calculus, such as Grünwald–Letnikov, 

Erdélyi–Kober, Caputo, Weyl–Riesz, and Riemann–Liouville [10–12]. Fractional calculus has received 

significant attention in image processing, particularly texture enhancement and denoising [13–18]. 

Texture is an important feature of natural images, and texture parameters are simply mathematical 

representations of image features, which can be classified as smooth, rough, or grainy [19]. The 

fractional approach preserves low-frequency features in smooth areas and enhances texture details in 

areas where gray level does not clearly change [17]. Texture features represent high-level information 

that can be used to describe the objects and structure of images. 

In this study, we develop new fractional differential texture descriptors based on the Machado 

entropy. The descriptors are extracted using the gray-level co-occurrence matrix (GLCM) for image 

splicing detection. 
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The remainder of this paper is organized as follows. Section 2 presents fractional entropy. Section 3 

shows the theoretical analysis for the construction of fractional masks. Section 4 exhibits the dimension 

reduction method. Section 5 reports the obtained experimental results. Section 6 presents our conclusion. 

2. Fractional Entropy 

Information theory, which was established by Claude Shannon in 1948, has been employed in 

numerous scientific fields and has been utilized in signal and image processing. 

At present, information theory is generalized in view of fractional calculus and has gained new 

applications in engineering and physics [19–23]. Machado has recently introduced a novel formula for 

entropy by utilizing fractional calculus as follows [23]: S஑	(P) = ∑ ቄ ି௉೔షഀ୻(ఈାଵ) [ln ௜ܲ + ߰(1) − ߰(1 − ቅ[(ߙ ௜ܲ, 
where Pi is the probability of occurrence, and Γ(.) and ψ(.) refer to the gamma and digamma functions, 
respectively. 

In this study, we use the Machado entropy for texture enhancement to increase the quality of images 

before feature extraction. Accordingly, Pi is the probability distribution of the image pixel’s intensity. 

3. Construction of Fractional Masks 

We build the generalized fractional mask (ф) by using the following generalized fractional differential 

operator [24]: 
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where μ = 0 (2) is reduced to the Riemann–Liouville differential operator. However, in the context of 

image processing, Equation (2) is applied uniformly in the entire digital image. Therefore, the equation 

should be in two directions of x and y. 
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The non-zero fractional differential coefficients (߶) are: 
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By convoluting iϕ  with Sα (Pi), we obtain  

1 1 1 1 1 1( ), , ( )n n nS P S Pα αφ φ− − −Φ = ∗ … Φ = ∗  (4)

3.1. Texture Feature Extraction 

The 2D fractional mask coefficients of all images can be obtained in the following eight directions: 

0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. This algorithm primarily aims to split the image into 

nonoverlapping blocks and to apply (4) with optimal different values of α and µ to extract the texture 

features. The pseudo-code for the proposed algorithm is shown in Algorithm 1.  

Algorithm 1. Pseudo-code for the proposed algorithm. 

// Input 

// I: an Input image 

// α, µ are fractional parameters of the proposed masks  

// Output: 

// T: Texture features 

1. Construct 2D fractional mask coefficients in the following eight directions: 0°, 45°, 90°, 135°, 
180°, 225°, 270°, and 315°. 

2. Split output image into blocks equal to fractional mask window size. 

3. For each block, compute the output image’s block in which each pixel of the image’s block is 
convolved with the fractional masks on eight directions. 

4. For each output block, compute the gray-level co-occurrence matrix: Contrast; Homogeneity; 
Energy, and Entropy [25]. 

Save the texture features vector T for all image blocks as the final texture features. 

The logic behind texture enhancement based on fractional differential operators is that the 

nonlinearity of fractional differential operators maintains high-frequency marginal features in areas 

where gray-level changes are considerable and enhances low-frequency details in areas where gray-level 
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changes are insignificant. However, image frequencies determine the changes in gray values with 

distance. Thus, we utilize fractional calculus to enhance image texture. 

In this study, we applied the GLCM to extract the texture features from each image block after using 

fractional texture enhancement based on fractional differential masks. GLCM is a statistical method used 

to calculate the image textural characteristics by modeling the texture as a 2D gray-level variation [17]. 

4. Dimension Reduction Method 

Dimension reduction decreases feature dimensionality by eliminating redundant features and 

maintaining important dimensions in the feature vector. Humans and machine learning methods cannot 

easily interpret high-dimensional data. A specific instance of an object is represented by rows in a feature 

matrix, and the number of features exponentially increases the computational time. Thus, decreasing 

information enhances method analysis and improves the training and testing phases during  

classification [26]. Given that high correlations are found among the extracted features, kernel principal 

component analysis (PCA) is applied to reduce the correlations by eliminating information redundancies 

from the features. Figure 1 shows the standard deviation distribution of the features extracted from  

gray-scale images before and after applying kernel PCA. The standard deviation quantifies the dispersion 

of data from the mean. In this case, a high standard deviation implies a high correlation between the 

features. Figure 1 shows that the original features highly correlated and that their standard deviations 

were distributed over a wide range in 1764-D. By contrast, the standard deviations were greatly reduced 

after applying kernel PCA on the original features. The features were highly uncorrelated after applying 

kernel PCA. 

 

Figure 1. Standard deviation distributions of extracted features. Rows indicate the standard 

deviation distributions of features extracted from gray-scale images. The first column indicates 

the original features. The second column shows the features after applying kernel PCA. 

5. Experimental Results and Discussion 

This section demonstrates that the proposed algorithm using fractional masks has better capability 

than traditional approaches for texture feature descriptors. Performance tests for the proposed algorithm 

were implemented using MATLAB 2013b on Windows 7. 
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The performance of the proposed approach was studied using the image dataset provided by DVMM, 

Columbia University [27]. The dataset was designed to evaluate the blind image splicing detection 

system. A total of 1845 gray scale images (933 authentic and 912 spliced images) with sizes of 128 

pixels × 128 pixels were obtained. Some examples of DVMM image dataset are shown in Figure 2. 

 

Figure 2. Samples of DVMM image dataset. 

The fractional differential masks are considered to operate using 3 × 3 processing window masks. 

The two fractional parameters in our algorithm are α and µ. We applied the commonly used 10-fold 

cross validation to display the pattern of splicing detection rate with respect to different values of α. The 

features for all images within the dataset were randomly partitioned into 10 equal-sized groups. A single 

group was used for testing, and the remaining nine groups were used for training. After training and 

testing, the average detection accuracy was reported for each value of α. Figure 3 displays the pattern of 

splicing detection rate depending on the values of α, ranging from 0.1 to 1, when µ = 1 on the basis of 

DVMM image dataset. A small α value indicates a small detection rate of the tampered images, whereas 

a large α value corresponds to a dramatic decrease in detection rate. Therefore, we selected the optimal 

value of α = 0.20 (Figure 3). 

 

Figure 3. Selection of α value. 

5.1. Classification 

The Support Vector Machine (SVM) was the classifier applied in this study. SVM is a well-known 

supervised machine learning applied in different methods, including pattern recognition. MATLAB 
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codes for SVM are accessible in [28]. LIBSVM is a known library that implements SVM. In this paper, 

LIBSVM was used under the following conditions: 

• Radial basis function is used as a kernel function 

• Grid search method is applied to obtain the best value for c and γ parameters so that the SVM 

classifier can accurately predict unknown data.  

For satisfactory results, kernel PCA was applied to reduce feature dimensionality by eliminating 

redundant features and maintaining important dimensions in the feature vector. To evaluate the effect of 

kernel PCA on the detection performance of the trained SVM classifier, the dimensionality D of the 

reduced feature vector was set to different values (10, 20, 30 … 100, 150, 200-D). Detailed results are 

provided in Tables 1 and 2. True positive and true negative represent the detection rate of the authentic 

and spliced images, respectively. Accuracy represents the average detection rate. 

Table 1. Detection accuracy of the fractional feature extraction method with the original 

dimension of 1764. 

 Dimensionality True positive (%) True negative (%) Accuracy (%) 

Number of features 1764 74.74 55.92 70.33 

Table 2. Detection accuracy of the fractional feature extraction method with kernel principal 

component analysis (PCA) in different dimensions. 

 Dimension True positive (%) True negative (%) Accuracy (%)

Features  
+  

Kernel PCA 

200 88.46 76.97 82.72 
150 88.46 84.87 86.67 
100 89.74 86.84 88.29 
90 91.03 88.82 89.92 
80 91.03 89.47 90.26 
70 88.46 90.13 89.30 
60 90.38 89.47 89.93 
50 89.74 89.47 89.61 
40 92.31 91.45 91.88 
30 91.67 90.13 90.91 
20 91.03 78.95 84.99 
10 100 0 50.65 

Table 1 illustrates the results from the original dimension of the extracted feature method with 1764-D 

obtained from the DVMM image dataset. A detection accuracy of 70.33% was achieved, proving that a 

high correlation exists among the features (Figure 1). 

Table 2 demonstrates the detection accuracy of the trained SVM classifier after applying PCA to 

reduce feature vector dimensionality. The features from 10-D to 200-D had considerably higher 

detection accuracy than those from the original (50.65%–91.88% vs. 70.33%). These results were 

anticipated from Figure 1, which indicated a low correlation among the features after kernel PCA 

application. Moreover, the highest detection rate of 91.88% was obtained from the features with 40-D. 

The number of dimensions in this study was selected experimentally. The main objective was to improve 
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accuracy with reduced dimensionality. The accuracy was higher in dimensions lower than 100-D than 

high-dimensional feature vector. Therefore, the focus was on dimensions between 10 and 100. 

The best results were obtained when the extracted features were combined with kernel PCA in 40-D, 

verifying the nonlinear nature of the extracted features. Figure 4 demonstrates the receiver operating 

characteristic curves for the image dataset. The features extracted from the original method in 1764-D 

were compared with those extracted from the merged one with kernel PCA dimension reduction 

methods. Figure 4 indicates the best effect of kernel PCA on the extracted features. 

 

Figure 4. Comparison between the features with 1764-D and features with Kernel PCA  

in 40-D. 

5.2. Comparison with Other Methods 

State-of-the-art image splicing detection methods were compared to comprehensively evaluate the 

entire algorithm. Table 3 shows the comparison between different methods with different 

dimensionalities and the proposed algorithm for the DVMM image dataset. 

Table 3. Comparison between the proposed approach and other methods. 

Feature Extraction Methods Dimensionality TP (%) TN (%) Acc (%) 

Expanded DCT Markov [29] 
100 
50 

89.92 
89.60 

90.21 
90.45 

90.07 
90.02 

DWT Markov [29] 
100 
50 

87.58 
86.71 

85.39 
85.70 

86.50 
86.21 

Expanded DCT Markov + DWT Markov [29] 
100 
50 

93.28 
92.28 

93.83 
93.13 

93.55 
93.55 

HHT + Moments of Characteristic Functions with 
Wavelet Decomposition [30] 

110 
78 

80.03 
73.91 

80.25 
76.49 

80.15 
75.23 

Run-length and edge statistics based model [31] 
163 
139 

83.23 
83.87 

85.53 
76.97 

84.36 
80.46 

Fractional features + Kernel PCA (Proposed) 40 92.31 91.45 91.88 

Table 3 shows that the accuracy rates exhibited different trends. The best result was obtained using 

the expanded DCT Markov + DWT Markov [29], which reduced to 100-D by applying Support Vector 
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Machine Recursive Feature Extraction (SVM-RFE) (93.55%). The next highest accuracy rate was 

achieved using the proposed method (91.88%) with 40-D. Thus, the proposed algorithm performed better 

than the presented methods in the least dimension of 40-D. 

6. Conclusions 

New fractional differential texture descriptors based on the Machado entropy are proposed to detect 

spliced and tampered images. The standard DVMM image dataset was used to demonstrate the better 

performance of the proposed algorithm compared with other methods for image splicing detection. With 

our proposed algorithm, the characteristic of the image descriptors can be altered only by changing the 

fractional power value α of the proposed mask. The proposed algorithm achieved the highest accuracy 

rate of 91.88% with 40-D. Compared with the other presented methods, the proposed method had the 

least dimension of 40 with a high accuracy rate. The results demonstrated the efficacy of applying 

information theory represented by the Machado entropy in view of fractional calculus. Future work can 

compare other dimension reduction methods with the proposed algorithm. 

Acknowledgments 

The authors would like to thank the reviewers for their comments. This research is supported by 

project No. RG312-14AFR from the University of Malaya. 

Author Contributions 

All authors jointly worked on deriving the results and approving the final manuscript. 

Conflict of Interests  

The authors declare no conflict of interest. 

References 

1. He, Z.; Sun, W.; Lu, W.; Lu, H. Digital image splicing detection based on approximate run length. 

Pattern Recognit. Lett. 2011, 32, 1591–1597. 

2. Wang, W.; Dong, J.; Tan, T. A survey of passive image tampering detection. In Digital 

Watermarking, Proceedings of the 8th International Workshop on Digital Watermarking (IWDW 

2009), University of Surrey, Guildford, Surrey, UK, 24–26 August 2009; Ho, A.T.S., Shi, Y.Q., 

Kim, H.J., Barni, M., Eds.; Springer: Berlin, Germany, 2009; pp. 308–322. 

3. Zhao, X.; Li, J.; Li, S.; Wang, S. Detecting digital image splicing in chroma spaces. In Digital 

Watermarking, Proceedings of the 9th International Workshop on Digital Watermarking (IWDW 

2010), Seoul, Korea, 1–3 October 2010; Kim, H.J., Shi, Y.Q., Barni, M., Eds.; Springer: Berlin, 

Germany, 2011; pp. 12–22. 

4. Shi, Y.Q.; Chen, C.; Chen, W. A natural image model approach to splicing detection.  

In Proceedings of the 9th Workshop on Multimedia & Security, Dallas, TX, USA, 20–21 September 

2007; pp. 51–62. 



Entropy 2015, 17 4784 

 

 

5. Ng, T.-T.; Chang, S.-F.; Lin, C.-Y.; Sun, Q. Passive-blind image forensics. Multimed. Secur. 

Technol. Digital Rights 2006, 15, 383–412. 

6. Zhang, J.; Zhao, Y.; Su, Y. A new approach merging Markov and DCT features for image splicing 

detection. In Proceedings of the IEEE International Conference on Intelligent Computing and 

Intelligent Systems, Shanghai, China, 20–22 November 2009; pp. 390–394. 

7. Shi, Y.Q.; Chen, C.; Chen, W. A Markov process based approach to effective attacking jpeg 

steganography. In Information Hiding; Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P., Eds.; 

Springer: Berlin, Germany, 2007; pp. 249–264. 

8. Moghaddasi, Z.; Jalab, H.A.; Md Noor, R.; Aghabozorgi, S. Improving rlrn image splicing detection 

with the use of PCA and Kernel PCA. Sci. World J. 2014, 2014, doi:10.1155/2014/606570. 

9. He, Z.; Lu, W.; Sun, W. Improved run length based detection of digital image splicing. In  

Digital-Forensics and Watermarking, Proceedings of the 10th International Workshop, IWDW 

2011, Atlantic City, NJ, USA, 23–26 October 2011; Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Eds.; 

Springer: Berlin, Germany, 2012; pp. 349–360. 

10. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, 

Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; 

Mathematics in Science and Engineering; Academic Press: Waltham, MA, USA, 1999. 

11. Hilfer, R.; Butzer, P.; Westphal, U.; Douglas, J.; Schneider, W.; Zaslavsky, G.; Nonnemacher, T.; 

Blumen, A.; West, B. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 

Singapore, 2000. 

12. Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential 

Equations; Elsevier Science Limited: Oxfordshire, UK, 2006; Volume 204. 

13. Jalab, H.A.; Ibrahim, R.W. Fractional conway polynomials for image denoising with regularized 

fractional power parameters. J. Math. Imaging Vis. 2015, 51, 442–450. 

14. Jalab, H.A. Regularized fractional power parameters for image denoising based on convex solution 

of fractional heat equation. Abst. Appl. Anal. 2014, 2014, doi:10.1155/2014/590947. 

15. Jalab, H.A.; Ibrahim, R.W. Fractional alexander polynomials for image denoising. Signal Process. 

2015, 107, 340–354. 

16. Jalab, H.A.; Ibrahim, R.W. Denoising algorithm based on generalized fractional integral operator 

with two parameters. Discrete Dyn. Nat. Soc. 2012, 2012, doi:10.1155/2012/529849. 

17. Jalab, H.A.; Ibrahim, R.W. Texture enhancement based on the savitzky-golay fractional differential 

operator. Math. Probl. Eng. 2013, 2013, doi:10.1155/2013/149289. 

18. Jalab, H.A.; Ibrahim, R.W. Texture feature extraction based on fractional mask convolution with 

cesáro means for content-based image retrieval. In Pricai 2012: Trends in Artificial Intelligence; 

Springer: Berlin, Germany, 2012; pp. 170–179. 

19. Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: Berlin, Germany, 2009. 

20. Machado, J.T. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010, 

62, 371–378. 

21. Ibrahim, R.W. The fractional differential polynomial neural network for approximation of 

functions. Entropy 2013, 15, 4188–4198. 

22. Mathai, A.M.; Haubold, H.J. On a generalized entropy measure leading to the pathway model with 

a preliminary application to solar neutrino data. Entropy 2013, 15, 4011–4025. 



Entropy 2015, 17 4785 

 

 

23. Machado, J.T. Fractional order generalized information. Entropy 2014, 16, 2350–2361. 

24. Ibrahim, R.W. On generalized Srivastava–Owa fractional operators in the unit disk. Adv. Differ. 

Equ. 2011, 2011, 1–10. 

25. Selvarajah, S.; Kodituwakku, S. Analysis and comparison of texture features for content based 

image retrieval. Int. J. Latest Trends Comput. 2011, 2, 108–113. 

26. Anusudha, K.; Koshie, S.A.; Ganesh, S.S.; Mohanaprasad, K. Image splicing detection involving 

moment-based feature extraction and classification using artificial neural networks. Int. J. Signal 

Image Process. 2010, 1, 9–13. 

27. Ng, T.-T.; Chang, S.-F. A Data Set of Authentic and Spliced Image Blocks;  

ADVENT Technical Report, # 203-2004-3; Columbia University: New York, NY, USA, 2004. 

28. Chang, C.C.; Lin, C.J. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. 

Technol. 2011, 2, doi:10.1145/1961189.1961199. 

29. He, Z.; Lu, W.; Sun, W.; Huang, J. Digital image splicing detection based on Markov features in 

DCT and DWT domain. Pattern Recognit. 2012, 45, 4292–4299. 

30. Fu, D.; Shi, Y.Q.; Su, W. Detection of image splicing based on Hilbert–Huang transform and 

moments of characteristic functions with wavelet decomposition. In Digital Watermarking, 

Proceedings of the 5th International Workshop on Digital Watermarking (IWDW 2006), Jeju Island, 

Korea, 8–10 November 2006; Shi, Y.Q., Jeon, B., Eds.; Springer: Berlin, Germany, 2006;  

pp. 177–187. 

31. Dong, J.; Wang, W.; Tan, T.; Shi, Y.Q. Run-length and edge statistics based approach for image 

splicing detection. In Digital Watermarking, Proceedings of the 7th International Workshop on 

Digital Watermarking, Busan, Korea, 10–12 November 2008; Kim, H.J., Katzenbeisser, S.,  

Ho, A.T.S., Eds.; Springer: Berlin, Germany, 2009; pp. 76–87. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


