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Abstract: Identity authentication is the process of verifying users’ validity. Unlike classical
key-based authentications, which are built on noiseless channels, this paper introduces a
general analysis and design framework for identity authentication over noisy channels.
Specifically, the authentication scenarios of single time and multiple times are investigated.
For each scenario, the lower bound on the opponent’s success probability is derived, and it
is smaller than the classical identity authentication’s. In addition, it can remain the same,
even if the secret key is reused. Remarkably, the Cartesian authentication code proves to be
helpful for hiding the secret key to maximize the secrecy performance. Finally, we show a
potential application of this authentication technique.
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1. Introduction

Identity authentication (also known as identification or entity authentication) verifies users’ identities
to prevent potential losses caused by fraudsters [1,2]. The failure to properly authenticate users will
result in serious damage, since the opponent can forge the valid identity to do anything [3].

The most common identity authentication is the challenge-response authentication [1]. As is
illustrated in Figure 1, Alice and Bob share a secret key K for identity authentication. In case of
potential frauds, Alice initiates a challenge X when an access request is received (even if with the
identity declaration). Upon receiving the challenge X , the access requester shall make a response Y .
The correctness of Y can be verified by the secret key K. If Y is correct, it demonstrates that the access
requester matches the declared identity; otherwise, the access request will be rejected.

Alice Bob

I am Bob!

Challenge Message

Response Message

X

Y

Figure 1. The challenge-response authentication model.

In conventional investigations (e.g., [4–6]), the channels are assumed to be noiseless, because the
authentication model is designed on top of the channel coding, which converts the physical noisy
channels into noiseless ones. Following this, as is depicted in Figure 2, an attacker, Eve, can completely
eavesdrop on the authentication between the legitimate users Alice and Bob and then initiates an
impersonation attack by forging a response message Y ′ before Bob replies. Eve’s attack is successful
if Alice accepts Y ′ as a correct response message (i.e., Y ′ = Y ). We use P to denote the success
probability of this attack; then, we have P ≥ 2−I(K;X,Y ) (the rigorous proof will be given in Section 3.1).
One can easily find out that this lower bound reduces to P ≥ 2−H(K) when H(K|X, Y ) = 0, since
I(K;X, Y ) = H(K) − H(K|X, Y ). In this case, all information of the secret key is used to protect
Eve’s attack one time. That is, the secret key K needs to be changed in every round of authentication,
because Eve is aware of K after eavesdropping on X and Y .

Bob

Eve

Alice

Figure 2. The challenge-response authentication over noiseless channels.

Unfortunately, the open-air nature of wireless communications makes it difficult to distribute, refresh
and revoke the secret key K, especially in ad hoc networks [7]. Therefore, reusing the same secret
key to authenticate several times is considered in practice. In this scenario, the success probability
of Eve’s attack in the i-th (1 ≤ i ≤ n, where n represents to use the same secret key n-times)
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round of authentication is lower bounded by P ≥ 2−I(K;Xn,Y n)/n (the rigorous proof will be given
in Section 4.1), where Xn and Y n respectively denote the n-length sequences of X and Y . This lower
bound suggests that after eavesdropping on several rounds of authentication, Eve can be aware of almost
all of the information about the secret key K. Then, she can initiate an attack successfully with a high
probability. That is, reusing the secret key will cause the secret key’s information leakage. However,
recent research [8,9] about the message authentication (also known as data-origin authentication, which
validates a message’s integrity and originator [1,2,10,11]) showed that channel noise can help prevent
the secret key’s information leakage based on Wyner’s wiretap channel.

According to the results of Wyner’s wiretap channel [12], perfectly secure transmission of a message
is possible by using a codebook whose codeword rate is higher than the channel capacity between
the source and the opponent. In this way, [8] introduced noisy channels into the classical Simmons’s
authentication model. By jointly designing the channel and authentication coding, Eve’s success
probability can reduce from P ≥ 2−H(K)/2 to P = 2−H(K), since the secret key can be hidden from
her by channel noise. Furthermore, our previous work [9] introduced noisy channels into the systematic
authentication code and proved that it is more robust and flexible than Simmons’s authentication to
protect against Eve’s attacks.

There are two primary differences between message authentication and identity authentication [1,2]:
(1) message authentication might not happen in real time, but identity authentication does; and
(2) message authentication simply authenticates one message, and the process needs to be repeated for
each new message. However, identity authentication authenticates the claimant for the entire duration
of a session. Unlike the previous works [8,9], which focused on the message authentication over noisy
channels, this paper develops the classical identity authentication over noisy channels and makes the
following contributions.

(1) We present a general analysis and design framework of the challenge-response authentication,
and investigate the authentication scenarios of single time and multiple times. For each scenario, we
respectively derive an information-theoretic lower bound on the opponent’s success probability in the
classical model and our new one. This shows that after introducing channel noise into the classical
authentication model, the opponent’s success probability is significantly reduced.

(2) We find out that the Cartesian authentication code satisfies the optimal strategy to maximize the
security performance. Then, with a slight improvement of the classical authentication, the security
performance can be dramatically promoted.

(3) In the multiple-time authentication scenario, with the Cartesian authentication code, we show that
the noise spreading over two separate channels can together hide the secret key from the opponent. In
this way, the opponent’s success probability can be effectively reduced.

(4) We show the potential applications of our work in wireless communications, such as cooperating
with the secret key agreement from wireless channels [13,14] to prevent the information leakage of both
the original and fresh secret key.

The rest of this paper is organized as follows. Section 2 provides various aspects of our authentication
scheme in the given scenarios. Sections 3 and 4 compare the security performance between the classical
challenge-response authentication and our proposed authentication in the authentication scenarios of
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single time and multiple times, respectively. Section 5 introduces a potential application of our work.
Section 6 concludes the paper.

Notation: Throughout this paper, the random variables are denoted by upper case letters (e.g.,X), and
the corresponding finite alphabets are denoted by calligraphic letters (e.g., X ). The n-length sequence
of X is denoted by Xn (e.g., Xn = X1, X2, ..., Xn).

2. Proposed Authentication Scheme

2.1. Scenario

This paper considers the scenario depicted in Figure 3, where Alice, Bob and Eve share a wireless
noisy medium. Alice is a critical node that has sensitive information. Suppose that Bob has the legitimate
rights to access Alice, while Eve is a malicious attacker who covets Bob’s authority. Additionally,
Alice and Bob are assumed to be honest with each other. In this context, Bob and Alice agree on the
challenge-response authentication scheme that allows Alice to verify whether the access requester is
valid or not.

Bob

Eve

Alice

Figure 3. The challenge-response authentication over noisy channels.

2.2. Channel Model

Wyner’s wiretap channel [12] is introduced in our scenario. The wiretap channel is defined by two
discrete memoryless channels X → (Y ,Z), where X is the input alphabet of the transmitter and Y and
Z are the output alphabets at the legitimate receiver and the wiretapper, respectively. It is proven in [15]
that the secrecy capacity is given by:

Cs = max
U→X→(Y Z)

[I(U ;Y )− I(U ;Z)]+ (1)

where U is an auxiliary random variable [16] satisfying the Markov chain U → X → (Y Z).
According to the following Definition 1, if a wiretap channel is less noisy, there must exist a U

satisfying I(U ;Y ) ≥ I(U ;Z), then the secrecy capacity is positive. Actually, the selection U = X is
optimal for the entire rate-equivocation region [15,16], which results in:

Cs = max[I(X;Y )− I(X;Z)]. (2)

Definition 1 ([15,16]). A wiretap channel X → (Y ,Z) is less noisy if the main channel X → Y is
less noisy than the wiretapper’s channel X → Z , i.e., for all possible U → X → (Y, Z), I(U ;Y ) ≥
I(U ;Z).
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In Figure 3, we assume that the channels between every two nodes among Alice, Bob and Eve are
noisy, except that the one-way channel Eve → Alice is noiseless. This Eve’s advantage does not
incur any loss of generality, since a stronger opponent can lead to more general bounds. Then, it is
able to construct two wiretap channels Alice → (Bob,Eve) and Bob → (Alice, Eve). Moreover, we
firstly assume that they are both less noisy (the case that one of them is not less noisy is considered
in Section 4.3), so the secrecy capacity of these two wiretap channels is positive. Then, there must
exist a codebook (whose codeword rate is higher than the channel capacity between the source and the
opponent) satisfying that Alice and Bob can obtain perfect transmitted messages, while Eve only receives
completely equivocal observations [8,12,17].

Take the wiretap channel Alice → (Bob,Eve) in Figure 3 for example, I(X;Y ) and I(X; X̂)

respectively denote the codeword rate of channels Alice → Bob and Alice → Eve. When this wiretap
channel is less noisy, we have I(X;Y ) ≥ I(X; X̂). Then, by a codebook whose codeword rate is
R ≤ I(X;Y ), Bob can perfectly receive Alice’s message X , while Eve obtains an observation X̂ with
the equivocation Re = R − I(X; X̂). According to Equation (2), we have Cs = maxRe. Additionally,
there are several technologies (e.g., beamforming and artificial noise [18–20]) to ensure that a wiretap
channel is less noisy (i.e., Cs > 0). Thus, we can make the above assumption.

2.3. Authentication Model

Alice and Bob share a secret key K for authentication. The secret key K is only known to Alice and
Bob, and it has been allocated beforehand. Let X ,K and Y respectively denote the finite alphabets of the
challenge message, the secret key and the response message. The challenge message X and the secret
key K are statistically independent, and they are uniformly distributed on X and K, respectively.

Similar to the classical model (as is illustrated in Figure 1), in case of Eve’s attack, when Alice
receives an access request with an identity declaration (maybe true or false), she sends a challenge
message X to the access requester. In this way, the access requester shall correctly make a response:

Y = f(X,K) (3)

where f(·) encapsulates any prospective coding or modulation. Additionally, splitting code is not
considered in this paper, i.e., H(Y |X,K) = 0.

Upon receiving a response message Ỹ , which may come from either Bob or Eve, Alice firstly
generates the correct response message Y by the secret key K she owns, then compares it with Ỹ . If
Ỹ = Y , this demonstrates that the access requester matches the declared identity; otherwise, the access
request will be rejected.

Eve listens to the authentication between Alice and Bob. Since the wiretap channels are less noisy,
by an appropriate codebook [21–24], Bob and Alice perfectly receive X and Y respectively, while Eve
only obtains equivocal observations of X and Y , which are denoted by X̂ and Ŷ .

Since Bob owns the secret key K, he is able to give response Y correctly whenever he wants to
access Alice. That is, the authentication model can ensure the accessibility of a legitimate user. Eve, a
potential attacker, also wants to access Alice. However, she is not aware of the secret key K a priori.
Therefore, she listens to the authentications between Alice and Bob, observes X̂ and Ŷ and tries to
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extract the information about the secret key K from the observations. Then, she requires access to Alice
by disguising herself as Bob, which is known as the impersonation attack. Without loss of generality, we
assume that Eve has infinite computation power and knows the authentication scheme.

This paper focuses on the success probability of the impersonation attack. Specifically, we hope to
minimize Eve’s success probability.

3. Single-Time Authentication

3.1. Noiseless Channels Model

The classical challenge-response authentication model assumes that channels are noiseless, because
the authentication model is designed after the channel coding converts the noisy channels into noiseless
ones. In this way, Eve can eavesdrop on the complete challenge message X to impersonate Bob’s
response. We denote the success probability of Eve’s impersonation attack as P . In the single-time
authentication (e.g., the initial authentication), it has been shown that:

P =
∑
x∈X

p(x) max
y∈Y

p(y|x). (4)

To simplify the analysis, we have the following lemma.

Lemma 1. In the classical authentication model, Eve’s success probability is lower bounded by:

P ≥ 2−I(K;X,Y ), (5)

with equality iff p(y|x) ∈ {c1+, 0}. Note that c1+ means a constant δ that satisfies 0 < δ ≤ 1 and the same
hereinafter.

Proof. This result is derived because:

− logP =− log
∑
x∈X

p(x) max
y∈Y

p(y|x)

(a)

≤ −
∑
x∈X

p(x) log max
y∈Y

p(y|x)

=−
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log max
y′∈Y

p(y′|x)

(b)

≤ −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

=H(Y |X)

(6)

and:

I(K;X, Y ) =H(X, Y )−H(X, Y |K)

=H(X) +H(Y |X)−H(X|K)−H(Y |K,X)

(c)
=H(Y |X).

(7)
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In Equation (6), inequality (a) comes from Jensen’s inequality, and (a) with equality iff max
y∈Y

p(y|x)

are equal for all x ∈ X ; (b) with equality iff there exists a subset of Y to satisfy p(y|x) = δ(x)

(0 < δ(·) ≤ 1). Thus, Equation (5) with equality iff p(y|x) ∈ {δ, 0} (0 < δ ≤ 1).
In Equation (7), equality (c) holds because the secret key K and the challenge message

X are statistically independent (i.e., H(X) = H(X|K)), and the splitting code is not
considered (i.e., H(Y |K,X) = 0).

3.2. Noisy Channels Model

Consider the noisy channels. Since the wiretap channels are less noisy, Eve only obtains an equivocal
observation of the challenge message, which is denoted by X̂ . We denote the success probability of
Eve’s impersonation attack as P̄ . Following the same steps as those used in Equation (6), P̄ is lower
bounded by:

P̄ ≥ 2−H(Y |X̂) (8)

and P̄ achieves its lower bound iff p(y|x̂) ∈ {c1+, 0}.
To simplify the analysis, we draw the following lemma to show our scheme’s advantage to protect

against Eve’s attack.

Lemma 2. In our new authentication model, Eve’s success probability is lower bounded by:

P̄ ≥ 2−I(K;X,Y )−H(X|X̂)+H(X|X̂,Y ). (9)

Proof. Please refer to Appendix A for technical details.

According to Lemma 1 and Lemma 2, we have the following Theorem 1 and Example 1 to show the
optimal strategy of our new scheme to protect against Eve’s attack. We firstly declare the concepts of the
Cartesian authentication code and the systematic Cartesian authentication code (the simplest Cartesian
authentication code) and then present the theorem and the example.

Definition 2 ([25,26]). If the authentication code satisfies that given any message y, there exists a unique
source state x, such that y = f(x, e) for every encoding rules e contained in y, i.e., the authentication
code satisfies H(X|Y ) = 0, then the code is called a Cartesian authentication code.

Definition 3 ([27,28]). If the Cartesian authentication code satisfies that the message y is formed by its
source state x and an authenticator t (e.g., y = (x, t) = (x, g(x, e)) where e represents the encoding
rule), then the code is called a systematic Cartesian authentication code.

Theorem 1. In our new authentication model, to promote the security performance maximally, the
optimal strategy for f(·) is the Cartesian authentication code.

Proof. The authentication’s security performance is indicated by the achievable lower bound on Eve’s
success probability [4,5,8]. The lower the achievable bound is, the more secure the authentication is.
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Thus, according to Equation (5) and Equation (9), we use P to represent the achievable lower bound of
P (in Equation (5)) and denote the promoted performance as:

∆P = (− log P̄ )− (− logP )

(d)

≤ H(X|X̂)−H(X|X̂, Y )

(e)

≤ H(X)−H(X|Y )

(f)

≤ H(X)

(10)

where inequality (d) comes from Equation (9); inequality (e) holds since:

H(X|X̂)−H(X|X̂, Y ) = H(X|X̂)−
(
H(X, X̂|Y )−H(X̂|Y )

)
= H(X|X̂)−

(
H(X|Y ) +H(X̂|X, Y )−H(X̂|Y )

)
= H(X̂|Y )−H(X|Y )

(11)

and H(X̂|Y ) increases with the increase of X̂’s equivocation; and inequality (f) follows from
H(X|Y ) ≥ 0.

Obviously, in Equation (10), (f) with equality iff the Cartesian authentication code is used (i.e.,
H(X|Y ) = 0). Moreover, since X̂’s maximum equivocation is H(X), (e) with equality iff H(X|X̂) =

H(X), i.e., p(x|x̂) = 1/|X | because x is uniformly chosen from X . In addition, with the Cartesian
authentication code, we have p(y|x) ∈ {1/|K|, 0} because k is uniformly chosen fromK. Thus, we have:

p(y|x̂)=
∑
x∈X

p(y|x)p(x|x̂)

∈

{
1

|K|
∑
x∈X

p(x|x̂), 0

}

=

{
1

|X |
, 0

}
.

(12)

Then, according to the conditions for quality of Equation (5) (in Lemma 1) and Equation (9) (the same
with Equation (8)’s), P and P̄ can simultaneously achieve their lower bounds. Therefore, we have
equality in (d).

Then, we can draw Theorem 1 becauseH(X|Y ) = 0 is a sufficient and necessary condition to achieve
∆P = H(K).

Remark 1. Theorem 1 demonstrates that a slight improvement (e.g., Example 1) can significantly
promote the security performance. Specifically, since the wiretap channel Alice → (Bob,Eve) is less
noisy (i.e., the secrecy capacity is positive), Eve only obtains an equivocal challenge message X̂ . When
using the Cartesian authentication code, the response message Y contains all of the information of the
challenge message X . Then, the transmitting process of the challenge message X is equal to a secret
key agreement, which generates H(X|X̂) new secret key information.

Example 1. In practical classical authentication, the response message Y is a short data block, which
comes from the challenge message X and the secret key K, i.e., Y = f(X,K) where f(·) encapsulates
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a compressive function. However, in our new authentication model, if we improve the response message
to Y = (X, g(X,K)) (i.e., the systematic Cartesian authentication code, where g(·) is the compressive
function in f(·)), Eve’s success probability will reduce to:

P̄ ≥ 2−I(K;X,Y )−H(X|X̂) (13)

according to Equation (9).

4. Multiple-Time Authentication

In practical networks, the secret key K is reused to authenticate Bob’s identity for several rounds. In
each round, Eve can choose to initiate an attack. She attacks in the i-th round authentication based on the
information of the previous i− 1 rounds of authentication. The attack is successful if her fake response
message passes Alice’s authentication.

4.1. Noiseless Channels Model

Compared with the single-time authentication, Eve obtains additional i − 1 challenge messages and
response messages. We use Pi to denote the success probability of Eve’s attack in the i-th round of
authentication. Following from the same steps as those used in the proof of Lemma 1, the lower bound
on Pi is derived as:

Pi ≥ 2−I(K;Xi,Yi|Xi−1,Y i−1), (14)

with equality iff p(yi|xi, yi−1) ∈ {c1+, 0}.
Since (X i−1, Y i−1) → K → (Xi, Yi) forms a Markov chain, we have I(K;Xi, Yi|X i−1, Y i−1) ≤

I(K;Xi, Yi). Obviously, reusing the secret key K results in the increase of Eve’s success probability.
Moreover, Eve will choose the attack that maximizes her success probability, i.e.,

P = max{P1, P2, ..., Pn}. (15)

Consequently, we have the following lemma.

Lemma 3. In the classical authentication model, Eve’s success probability is lower bounded by:

P ≥ 2−I(K;Xn,Y n)/n (16)

where n represents that the secret key is used n times.

Proof. This result is derived due to:

−
n∑

i=1

logPi ≤
n∑

i=1

I(K;Xi, Yi|X i−1, Y i−1)

= I(K;Xn, Y n),

(17)



Entropy 2015, 17 4949

and the maximum must be greater than or equal to the average, i.e.,

max {logP1, logP2, ..., logPn} ≥
1

n

n∑
i=1

logPi

≥− 1

n
I(K;Xn, Y n).

(18)

Remark 2. This lower bound demonstrates that if Eve initiates an attack at any round i (1 ≤ i ≤ n), no
authentication strategy can prevent her from being successful with probability at least 2−I(K;Xn,Y n)/n. A
secret key K is used optimally when all of these success probabilities are (roughly) equal [5,6]. Thus,
in an optimal scheme, the secret key is split into n nearly equal parts, each of which is allocated to
protect against an attack at the i-th round of authentication. Then, after eavesdropping on n rounds of
authentication, Eve may be aware of almost all of the information about the secret key and able to attack
successfully with a high probability.

4.2. Noisy Channels Model

Consider the noisy channels. Since the wiretap channels are less noisy, Eve obtains i − 1 rounds of
equivocal challenge messages X̂ i−1 and response messages Ŷ i−1 and an equivocal challenge message
X̂i in the i-th round. We use P̄i to denote the success probability of Eve’s attack in the i-th round of
authentication. Following the same steps as those used in Equation (6), the lower bounded on P̄i is
derived as:

P̄i ≥ 2−H(Yi|X̂i,X̂
i−1,Ŷ i−1), (19)

with equality iff p(yi|x̂i−1, ŷi−1, xi) ∈ {c1+, 0}. Further, we have the following lemma.

Lemma 4. In our new authentication model, Eve’s success probability at the i-th round of authentication
is lower bounded by:

−log P̄i≤I(K;Xi, Yi|X i−1, Y i−1)−H(Xi|X̂i, Yi, X̂
i−1, Ŷ i−1)

+H(Xi|X̂i) + I(X i−1, Y i−1;Xi, Yi|X̂ i−1, Ŷ i−1).
(20)

Proof. Please refer to Appendix B for technical details.

According to Equation (14) and Equation (20), in multiple-time authentication, we still can deduce
that the Cartesian authentication code is optimal to promote the security performance (i.e., Theorem 1).
By the following Theorem 2, we demonstrate this inference in Remark 4.

Theorem 2. If there are no information leaks to Eve in the wiretap channels (i.e., I(Xi; X̂i) = 0 and
I(Yi; Ŷi) = 0), Eve’s success probability is lower bounded by:

P̄ ≥ 2−H(Y ). (21)

Proof. As is explained in Section 2.2, since the wiretap channels Alice → (Bob,Eve) and Bob →
(Alice, Eve) are less noisy, there must exist a codebook, such that the transmitted messages can be
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perfectly obtained by Alice and Bob, but completely hidden from Eve [8,12,17], i.e., I(Xi; X̂i) = 0 and
I(Yi; Ŷi) = 0. Then, Equation (20) becomes:

− log P̄i ≤I(K;Xi, Yi|X i−1, Y i−1)+H(Xi)+I(Y i−1;Xi, Yi|X i−1)−H(Xi|Yi)
=I(K;Xi, Yi|X i−1, Y i−1)+H(Xi)+H(Xi,Yi)−H(Xi,Yi|X i−1,Y i−1)

−H(Xi|Yi)
=−H(Xi, Yi|K,X i−1, Y i−1)+H(Xi)+H(Xi,Yi)−H(Xi|Yi)
=−H(Xi, Yi|K)+H(Xi)+H(Xi,Yi)−H(Xi|Yi)
=H(Xi,Yi)−H(Xi|Yi)
=H(Yi).

(22)

Since X and K are respectively uniformly distributed on X and K, we have H(Yi) = H(Y ). Then,
similar to the proof of Lemma 3, we have:

− log P̄ ≤ −1

i

i∑
n=1

log P̄i ≤ H(Y ). (23)

Remark 3. In the classical authentication model, after Eve eavesdrops on several rounds of
authentication, the knowledge of the challenge messages and response messages enable the information
of the secret key to be determined (i.e., Lemma 3). In contrast, in our new authentication model, Eve’s
success probability can remain the same even if she continues eavesdropping (i.e., Theorem 2).

Remark 4. H(X, Y ) is constant, since X and K are uniformly distributed, and:

H(X, Y ) = H(Y ) +H(X|Y )

≥ H(Y ).
(24)

Then, with the Cartesian authentication code, P̄ ’s lower bound reduces to:

P̄ ≥ 2−H(X,Y ). (25)

4.3. Single-Wiretap Channel and Double-Wiretap Channels

As is depicted in Figure 3, the channels Bob → Alice and Alice → Bob are approximately the
same if the response message is replied to in the coherence time, but the channels Bob → Eve and
Alice → Eve are not equivalent. Therefore, it is possible that only one wiretap channel in Figure 3
satisfies the less noisy wiretap channel (i.e., Cs > 0). If a wiretap channel is not less noisy, it cannot
ensure that Equation (1) remains positive under the optimal selection U = X for less noisy wiretap
channels [16]. Without loss of generality, if a wiretap channel in Figure 3 is not less noisy, we assume
that Eve can obtain what legitimate users receive.

As is shown in Table 1, to show the distinctions, we use P̄i(X̂
i, Ŷ i−1) instead of P̄i to denote the

success probability of Eve’s attack when the wiretap channels Bob → (Alice, Eve) and Alice →
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(Bob,Eve) are both less noisy. Furthermore, similar to the analysis in the proof of Theorem 1,
we introduce ∆P̄i(X̂

i, Ŷ i−1) to denote the promoted performance in the corresponding wiretap
channels, i.e.,

∆P̄i(X̂
i, Ŷ i−1)=

(
− log P̄i(X̂

i, Ŷ i−1)
)
−
(
− logPi(X

i, Y i−1)
)

(26)

where P̄i(X̂
i, Ŷ i−1) and Pi(X

i, Y i−1) respectively represent the achievable lower bounds on
P̄i(X̂

i, Ŷ i−1) and Pi(X
i, Y i−1).

Table 1. Terminologies of Eve’s success probability and the promoted performance.

Alice→ (Bob,Eve) Bob→ (Alice, Eve) Eve’s success probability The promoted performance

Cs > 0 Cs > 0 P̄i(X̂
i, Ŷ i−1) ∆P̄i(X̂

i, Ŷ i−1)

Cs > 0 Cs = 0 P̄i(X̂
i, Y i−1) ∆P̄i(X̂

i, Y i−1)

Cs = 0 Cs > 0 P̄i(X
i, Ŷ i−1) ∆P̄i(X

i, Ŷ i−1)

In the same way, we respectively use P̄i(X̂
i, Y i−1) and P̄i(X

i, Ŷ i−1) to represent Eve’s success
probability when only the Alice→ (Bob,Eve) channel is less noisy and only the Bob→ (Alice, Eve)

channel is less noisy. In addition, we introduce ∆P̄i(X̂
i, Y i−1) and ∆P̄i(X

i, Ŷ i−1) to respectively
denote the promoted performance in the corresponding wiretap channels (note that ∆P̄i(X̂

i, Y i−1) and
∆P̄i(X

i, Ŷ i−1) are two special cases of ∆P̄i(X̂
i, Ŷ i−1)), i.e.,

∆P̄i(X̂
i, Y i−1)=

(
−log P̄i(X̂

i, Y i−1)
)
−
(
− logPi(X

i, Y i−1)
)
,

∆P̄i(X
i, Ŷ i−1)=

(
−log P̄i(X

i, Ŷ i−1)
)
−
(
− logPi(X

i, Y i−1)
) (27)

where P̄i(X̂
i, Y i−1) and P̄i(X

i, Ŷ i−1) respectively represent the achievable lower bounds on
P̄i(X̂

i, Y i−1) and P̄i(X
i, Ŷ i−1).

Then, according to Equation (20), we respectively have:

∆P̄i(X̂
i, Ŷ i−1)=H(Xi|X̂i)+I(X i−1, Y i−1;Xi, Yi|X̂ i−1, Ŷ i−1)−H(Xi|X̂ i, Yi, Ŷ

i−1), (28a)

∆P̄i(X̂
i, Y i−1) = H(Xi|X̂i)−H(Xi|X̂ i, Y i−1), (28b)

∆P̄i(X
i, Ŷ i−1) = I(Y i−1;Xi, Yi|X i−1, Ŷ i−1). (28c)

Furthermore, with the Cartesian authentication code, we respectively have:

∆P̄i(X̂
i, Ŷ i−1)=H(Xi|X̂i)+I(X i−1, Y i−1;Xi, Yi|X̂ i−1, Ŷ i−1), (29a)

∆P̄i(X̂
i, Y i−1) = H(Xi|X̂i), (29b)

∆P̄i(X
i, Ŷ i−1) = I(Y i−1;Xi, Yi|X i−1, Ŷ i−1). (29c)

To simplify the analysis, we draw the following Theorem 3 to show our scheme’s advantage to protect
against Eve’s attack.

Theorem 3. With the Cartesian authentication code, we have:

∆P̄i(X̂
i, Ŷ i−1) ≥ ∆P̄i(X̂

i, Y i−1) + ∆P̄i(X
i, Ŷ i−1). (30)
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Proof. Specifically, when i = 1, X i−1, X̂ i−1, Y i−1 and Ŷ i−1 do not exist. At this time, Equation (29a)
is same with Equation (29b), and Equation (29c) is equal to zero. Hence, Equation (30) is satisfied.

When i ≥ 2, we have:

∆P̄i(X̂
i, Ŷ i−1)−∆P̄i(X̂

i, Y i−1)−∆P̄i(X
i, Ŷ i−1)

=H(Xi|X̂i) + I(X i−1, Y i−1;Xi, Yi|X̂ i−1, Ŷ i−1)

−H(Xi|X̂i)− I(Y i−1;Xi, Yi|X i−1, Ŷ i−1)

=H(X i−1, Y i−1|X̂ i−1, Ŷ i−1)−H(X i−1, Y i−1|Xi, Yi, X̂
i−1, Ŷ i−1)

− I(Y i−1;Xi, Yi|X i−1, Ŷ i−1)

=H(X i−1|X̂ i−1, Ŷ i−1) +H(Y i−1|X i−1, X̂ i−1, Ŷ i−1)

−H(X i−1|Xi, Yi, X̂
i−1, Ŷ i−1)−H(Y i−1|Xi, Yi, X

i−1, X̂ i−1, Ŷ i−1)

− I(Y i−1;Xi, Yi|X i−1, Ŷ i−1)

=H(X i−1|X̂ i−1, Ŷ i−1) +H(Y i−1|X i−1, Ŷ i−1)−H(X i−1|Xi, Yi, X̂
i−1, Ŷ i−1)

−H(Y i−1|Xi, Yi, X
i−1, Ŷ i−1)− I(Y i−1;Xi, Yi|X i−1, Ŷ i−1)

=H(X i−1|X̂ i−1, Ŷ i−1)−H(X i−1|Xi, Yi, X̂
i−1, Ŷ i−1)

≥0.

(31)

Then, Equation (30) is proven.

Additionally, without the Cartesian authentication code, Equation (30) does not certainly hold.
Because according to Equation (28) and Equation (31), we have:

∆P̄i(X̂
i, Ŷ i−1)−∆P̄i(X̂

i, Y i−1)−∆P̄i(X
i, Ŷ i−1)

=
(
H(X i−1|X̂ i−1, Ŷ i−1)−H(X i−1|Xi, Yi, X̂

i−1, Ŷ i−1)
)

−
(
H(Xi|X̂ i, Yi, Ŷ

i−1)−H(Xi|X̂ i, Y i−1)
) (32)

where H(X i−1|X̂ i−1, Ŷ i−1) − H(X i−1|Xi, Yi, X̂
i−1, Ŷ i−1) ≥ 0 and H(Xi|X̂ i, Yi, Ŷ

i−1) −
H(Xi|X̂ i, Y i−1) ≥ 0.

Remark 5. Theorem 3 demonstrates that with the Cartesian authentication code, the noise of two
separate wiretap channels can together hide the secret key information from Eve. Therefore, though the
secret key information is all contained in the response message Y , by securely transmitting the challenge
message X , we can further reduce Eve’s success probability from P ≥ 2−H(Y ) to P ≥ 2−H(X,Y ) (i.e.,
Remark 4).

5. Application

Since the physical channels are noisy and the challenge-response authentication is widely applied
in existing communication systems, our authentication scheme has significant potential foreground.
By our work, the existing systems can be smoothly upgraded with great promotion of the security
performance. In the sequel, we present an application of protecting the secret key agreement in wireless
communications by an improved authentication scheme (i.e., Example 1).
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Since wireless channels are reciprocal in space and varied in time [7], extracting secret keys
through channel characteristics is considered as one of the most developed solutions for the secret key
renewal [13,14]. As is depicted in Figure 4a, Alice wants to negotiate secret keys with her legitimate
user Bob. If Alice and Bob exchange a sequence of known pilots in the coherence time ∆t, they can have
almost the same channel characteristic to generate the same secret key [13,14]. Unfortunately, this secret
key agreement may incur the following risks, which can be prevented by our new authentication model.

Figure 4. (a) Example of the secret key agreement from wireless channels. (b) The secret
key agreement is protected by the challenge-response authentication. (c) The secret key
agreement is improved by our proposed authentication model.

Firstly, when there exists potential opponents (e.g., Eve proactively responds to the pilot sequence
before Bob sends anything), the secret key agreement should be protected by the identity authentication
(e.g., as is depicted in Figure 4b, the secret key agreement is protected by the challenge-response
authentication).
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Secondly, the amount of new secret key information generated once is too little to replace the original
one. Thus, by the classical challenge-response authentication, several times of secret key agreement
will cause the information leakage of the original secret key. Under this circumstance, Eve’s success
probability will increase before the renewal of the original secret key. However, in our new authentication
model, Eve’s success probability is significantly reduced and can remain the same even if the secret key
is reused (i.e., Equation (21)). Then, the original secret key’s renewal can be ensured to be completed
with high security performance.

Thirdly, without loss of generality, the pilot sequence is public. Then, Eve can respectively have the
channel characteristics of Alice → Eve and Bob → Eve. Moreover, if she is aware of the distribution
of the scatters in the environment, she can estimate the channel characteristics of Alice ↔ Bob with
high probability [29–31]. Then, she can filch the new secret keys. However, as is depicted in Figure 4c,
if we use the challenge message X to replace the public pilot sequence for Alice’s channel estimation,
the information leakage of the new secret key can be effectively reduced.

Actually, the improved secret key agreement (i.e., Figure 4c) is similar to Example 1. Then, according
to Equations (5) and (13), Eve’s success probability of obtaining the new secret key will reduce to
2−H(X|X̂) times of its original when the wiretap channel Alice→ (Bob,Eve) is less noisy.

6. Conclusion

In this paper, we have built the challenge-response authentication model over noisy channels. Towards
this end, we have respectively derived the information-theoretic lower bounds on the opponent’s success
probability in the authentication scenarios of single time and multiple times. In comparison with the
classical authentication model, analysis results have shown that our new authentication model is more
secure. Remarkably, it has been proven that the Cartesian authentication code can maximize the security
performance. In addition, with the Cartesian authentication code, it has been proven that the noise
spreading over two separate wiretap channels can together hide the secret key. Finally, we have proposed
an improved challenge-response authentication and applied it to the secret key agreement from wireless
channels. Thus, we have established the utility of channel noise in identity authentication applications.
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Appendix

A. Proof of Lemma 2

We have the facts that:

I(K; X̂, Y ) =H(X̂, Y )−H(X̂, Y |K)

=H(X̂) +H(Y |X̂)−H(X̂|K)−H(Y |K, X̂)

(g)
=H(Y |X̂)−H(Y |K, X̂)

(h)
=H(Y |X̂)−H(X|X̂) +H(X|K, X̂, Y )

(33)

and:

I(K; X̂, Y ) =H(K)−H(K|X̂, Y )

(i)
=H(K)−H(K|X, Y )−H(X|X̂, Y )+H(X|K, X̂, Y )

(j)
=I(K;X, Y )−H(X|X̂, Y ) +H(X|K, X̂, Y ).

(34)

Hence, according to the equality (h) in Equation (33) and the equality (j) in Equation (34), we have:

P̄ ≥ 2−H(Y |X̂) = 2−I(K;X,Y )−H(X|X̂)+H(X|X̂,Y ). (35)

The derivation reasons of Equation (33) and Equation (34) are listed in the following.
In Equation (33), equality (g) holds due to the fact that K and X̂ are statistically independent.

Equality (h) comes from:

H(Y,X|K, X̂) =H(Y |K, X̂) +H(X|X̂, Y,K)

=H(X|K, X̂) +H(Y |X, X̂,K)
(k)
= H(X|X̂)

(36)

where equality (k) follows from the Markov chain K → X̂ → X and H(Y |X,K) = 0.
In Equation (34), equality (i) comes from:

H(K,X|X̂, Y ) =H(K|X̂, Y ) +H(X|X̂, Y,K)

=H(X|X̂, Y ) +H(K|X, Y )
(37)

and equality (j) follows from I(K;X, Y ) = H(K)−H(K|X, Y ).
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B. Proof of Lemma 4

Firstly, following the same steps as those used in the proof of Lemma 2, we have:

− log P̄i ≤H(Yi|X̂i, X̂
i−1, Ŷ i−1)

=I(K;Xi, Yi|X̂ i−1, Ŷ i−1) +H(Xi|X̂i)

−H(Xi|X̂i, Yi, X̂
i−1, Ŷ i−1).

(38)

Furthermore, we have:

I(K;Xi, Yi|X̂ i−1, Ŷ i−1) =H(K|X̂ i−1, Ŷ i−1)−H(K|Xi, Yi, X̂
i−1, Ŷ i−1)

(l)
=H(K|X i−1, Y i−1) +H(X i−1, Y i−1|X̂ i−1, Ŷ i−1)

−H(X i−1, Y i−1|X̂ i−1, Ŷ i−1, K)

−H(K|Xi, Yi, X
i−1, Y i−1)

−H(X i−1, Y i−1|Xi, Yi, X̂
i−1, Ŷ i−1)

+H(X i−1, Y i−1|X̂ i−1, Ŷ i−1, K)

=I(K;Xi, Yi|X i−1, Y i−1)+I(X i−1, Y i−1;Xi, Yi|X̂ i−1, Ŷ i−1)

(39)

where equality (l) comes from:

H(K|X̂ i−1, Ŷ i−1) =H(K,X i−1, Y i−1|X̂ i−1, Ŷ i−1)−H(X i−1, Y i−1|K, X̂ i−1, Ŷ i−1)

=H(K|X i−1, Y i−1) +H(X i−1, Y i−1|X̂ i−1, Ŷ i−1)

−H(X i−1, Y i−1|K, X̂ i−1, Ŷ i−1)

(40)

and:

H(K|Xi, Yi, X̂
i−1, Ŷ i−1) =H(K,X i−1,Y i−1|Xi, Yi, X̂

i−1, Ŷ i−1)−H(X i−1,Y i−1|K, X̂ i−1, Ŷ i−1)

=H(X i−1, Y i−1|Xi, Yi, X̂
i−1, Ŷ i−1) +H(K|X i−1, Y i−1, Xi, Yi)

−H(X i−1, Y i−1|K, X̂ i−1, Ŷ i−1).

(41)

Thus, Equation (20) is derived by putting Equation (39) into Equation (38).
This completes our proof.
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