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Abstract: Automated planning is a well-established field of artificial intelligence (AI), with

applications in route finding, robotics and operational research, among others. The task of

developing a plan is often solved by finding a path in a graph representing the search domain;

a robust plan consists of numerous paths that can be chosen if the execution of the best

(optimal) one fails. While robust planning for a single entity is rather simple, development

of a robust plan for multiple entities in a common environment can lead to combinatorial

explosion. This paper proposes a novel hybrid approach, joining heuristic search and the

wavefront algorithm to provide a plan featuring robustness in areas where it is needed, while

maintaining a low level of computational complexity.
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1. Introduction

The field of planning has received enormous attention over the last few decades. The development

of methods for domain-independent planning help to find better solutions to many real-life and abstract

problems [1]. It is hardly possible to name all possible applications for this class of methods; therefore,

research in this area is definitely justified.
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The performance of different planning methods is always dependent on the problem size. In general,

solving a planning problem for a complex problem is considered a time-consuming task. This fact causes

serious limitations in the applicability of these methods in certain classes of problems.

The class of problems considered in this paper assumes a group of entities coexisting in a common

environment. The aim is to continuously plan behaviors for all entities in order to reach the highest

possible performance of their operation. The group of entities is not homogeneous in terms of

observability and management capabilities. Some entities may follow given orders precisely; some may

merely provide information about their planned actions. The behavior of the entities is highly dynamic:

changes in the observed state occur quickly, which means that there is not enough time to execute a

complex planning algorithm between observing the change and having to provide control.

The considered class of problems is defined in an abstract way. The particular problem definition

requires providing information about the space in which the entities exist, about the possible behavior

of entities, the method of system control, the performance evaluation function, etc. There are many

real-life problems that belong to this class. Hardware entities, like mobile robots or cars [2,3], require a

method for motion coordination, which has to guarantee safety. Virtual entities, like computational tasks

executed on modern, heterogeneous HPC (high-performance computing) systems, require very efficient

methods for resource assignment.

The main contribution of this paper is an abstract description of the planning problem for autonomous

entities and a proposed method for solving it in a discrete search space. A case study is provided together

with detailed solution analysis, which proves correctness and efficiency.

The paper presents a brief state-of-the-art in order to properly position the research in the domain of

planning and multiple entity control. The following sections provide a formal definition of the problem

and possible solutions based on general-purpose planning methods: A-star and wavefront. Then, the

description of the proposed, hybrid algorithm is presented. Finally, a case study is discussed, and the

directions of further research are drawn.

2. Planning for Multiple Autonomous Beings

The domain of planning is a very broad and important area of research. Well-known solutions to

the domain-independent planning problems are based on the notion of a search space, which has to be

searched in order to find suitable solutions. The search space can represent a graph of cities and highways

(where searching is relatively simple), but also multidimensional continuous spaces representing the

locations of several moving mobile robots in time.

Two basic approaches to the problems of planning can be identified: deterministic methods for

searching the state space using a particular strategy for finding the optimal plan can be used for simple

problems [1]; for more complex problems, heuristics-based methods can be applied.

Although domain-independent planning had been researched since the 1980s [4], it is still being

actively researched [5]. As heuristic search methods are often used as the basis of state-of-the-art

planners [6], methods for constructing heuristic functions are currently one of the most-researched topics

in artificial intelligence (AI) planning [7].
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The problems considered in this paper can be addressed using both of the aforementioned

approaches to planning. However, the complexity and time constraints will typically enforce the use

of heuristics-based approaches.

Dynamic changes in the problem configuration can be addressed with approaches known as planning

under uncertainty. These methods assume that a planning entity does not possess full knowledge required

to calculate an optimal plan or that the knowledge is partially incorrect. The solutions to these problems

have to deal with the problem of uncertainty modeling. In [8], the methods for modeling uncertainty

have been categorized into four groups: conceptual models, analytical models, AI-based models and

simulation models. The solutions to these problems are based on probabilistic reasoning, predicting

possible situations using probability distributions.

Methods for managing entity groups are also receiving attention in contemporary research. Many

different management methods have been applied to specific problems concerning mobile robots

management. Some examples of the considered problems are formation control [9] and cooperative

search [10]. To overcome the problem of real-time requirements, the solutions tend to simplify the

planning algorithm or even replace it with behavioral controllers.

For very complex search spaces with dynamic changes of states and goals, good results can be

achieved by the use of agent-based approaches. In [2], software agents were used to solve the dynamic

task allocation problem for robots. Simple behaviors of autonomous agents made it possible to generate

high-quality solutions for this complex planning problem.

Different planning techniques are suited to different problems. However, most of the existing

solutions are not suitable for the class of problems considered in this paper. A very short response

time, planning problem complexity and high-quality planning results cannot be achieved by using these

state-of-the-art approaches.

3. Definition of the Planning Problem

We assume that a problem in the considered class is composed of a varying number of relatively

similar sub-problems, which share the same environment and, therefore, need a common planning

method. The sub-problems can be perceived as independent entities, each having different individual

goals. The entities coexist in the same state space with time. Each entity is in a particular state in every

moment of the considered time frame. The individual goals of each entity can be represented as a desired

state or a list of states that have to be achieved.

The environment and the entities determine specific rules of changing the state over time. The rules

can be perceived as the abilities of particular entities; therefore, they can differ between individual

entities.

The state space defines a notion of collision, which can be caused by two entities being in a particular

state at the same time. The collision does not mean that the entities are in the same state. The intuition

would rather be that the colliding entities are “too close”, according to a particular metric defined in

the space.

Each entity can be manageable or only observable. Manageable entities require planning and follow

provided plans. Observable entities provide information about aims or the current individual plan.
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Both types of entities can fail to follow the specified plans. Attempts to perform particular transitions

between states can fail or result in different transitions with a given probability, which models uncertainty

in plan execution.

The solution to the given problem is a set of plans for every manageable entity. Each plan consists of

state changes feasible for the particular entity. The set of plans cannot cause any collision and have to

handle possible failures in plan execution.

3.1. Formal Model of the Considered Problem

Let S denote a state space. Let us assume the existence of time, and let T denote the time. All

dimensions of the search space and the time are discrete, which is the assumption of the algorithm

presented in this paper.

Let us assume the existence of a finite set of entities: E. Each entity has an assigned target state

(or a set of states) it wants to reach. The aim is to change the state of all entities into the desired target

state as quickly as possible. In real-life situations, the state of an individual entity can be composed

of multiple attributes, for instance representing the location of an entity (e.g., a robot), its speed and

perhaps its battery level. For the purpose of this paper, only the components that are defined in a common

domain (e.g., the location, which can be occupied by various entities at different times) will be taken into

consideration.

For each entity e, there is a function defining its activity in the space over time:

ae : T → S ⇐⇒ ae(t) = s. (1)

It is well-defined for t ∈ (−∞, t0], where t0 is now. For t > t0, the function is not yet known.

However, for each entity, there is a function defining its feasible activities in the space over time:

fae(s) = {ae : T → S}, (2)

which returns a set of possible ae functions. The fae function represents all limitations of the entity e,

showing which states can be achieved from a given state in a given time.

The coexistence of several entities in the common state space can lead to inadmissible situations,

called collisions. A collision occurs in a particular moment of time and involves two entities. It is not

defined using the equality of ae function values in the same time: two entities may collide being in

different states (for example, if they are too close to each other). Therefore, a collision is defined using

the following, domain-dependent function:

col : E ×E × S × S → {0, 1}, (3)

which returns one when two different entities cannot be in particular states at the same time. Then, we

can define a function for detecting inadmissible situations in activity functions:

c(ae1 , ae2) =

{

1, iff ∃(t ∈ T ) : col(e1, e2, ae1(t), ae2(t)) = 1

0, otherwise
(4)
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Using these notions, a feasible plan for a time span ts = (t0, tf ) can be defined:

P = {ae1, ae2 , ..., aen} : ∀
aei ,aej∈p

t∈ts

c(aei, aej ) = 1⇐⇒ i = j, (5)

which means that a plan is a set of activity functions, one for each entity, that do not cause collisions.

The uncertainty of the successful execution of specified plans, which was mentioned before, can be

modeled using the following exception function:

ex(ae) = {(a
′

e, p), ...}, (6)

which returns a set of possible modified activity functions with assigned probability. This function can

be used for calculating the collision probability for a feasible plan. One way of solving the given problem

would be to accept plans with the collision probability below a certain factor; however, this would result

in highly inefficient plans. Different approaches will be presented in the next section.

4. A-Star and Wavefront Algorithms for Multi-Entity Planning

The problem of planning actions for multiple entities coexisting in a common environment, which

has been defined in the previous section, can be solved with well-known, general-purpose planning

algorithms. However, the algorithms must be adapted to the specific requirements of the problem. This

section provides a detailed description of two such algorithms (A-star and wavefront), preceded by

the general intuition on the subject of multi-entity planning, as opposed to classical planning for a

single entity.

4.1. Important Assumptions

Planning actions for a single entity e ∈ E can be achieved by direct use of general-purpose planning

methods. A plan P = {ae1, ae2 , ..., aen} for a set of n entities can be created by simply executing the

algorithm n times. Such an approach is simple to implement and efficient to execute; however, the plan

created this way is not guaranteed to be feasible. One can imagine various ways of modifying created

activity functions, which can lead to feasibility. Unfortunately, it is very hard to ensure the optimality

and completeness of such approaches in the general case.

These issues can be overcome by adopting the planning algorithm for the problem of simultaneous

planning for all considered entities. This requires redefining the search space and possible transitions

between states. In the considered problem, the state s ∈ S represents the state of an individual entity. For

the purpose of planning, these states will be merged into collective states using the activity function ae.

Each collective state s′ is a collection of state components for all entities at a given time t. For n entities,

we have:

S ′ = {s′ :
n
⋃

i=1

aei(t)} (7)

Assuming that the original state s was represented by k values (dimensions), each collective state s′

consists of n·k components. Possible collective states encompass all combinations of individual entities’

states, excluding the states for which the collision function evaluatesto one. Such an approach creates
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a single, collective state space that does not contain any forbidden states. Any plan created in such a

space will be feasible. In the following sections, the collective states and the collective state space will

be considered.

4.2. The Complexity of Multi-Dimensional Planning

Together with the number of considered entities, the number of state space dimensions increases,

while the number of acceptable state transitions slightly decreases, assuming that no two entities can

occupy the same location. They both influence the number of state transitions. It needs to be pointed

out that suppression of state transition due to reduced acceptable state transitions is much weaker than

their growth due to the increasing number of entities, resulting in an increase of dimensions. That is why

planning complexity remains proportional to the number of state space dimensions.

Let us use a simple example assuming a two-dimensional state space represented as a square grid

7 × 7 with a single entity. There are 7 × 7 = 49 states, which are locations that the entity occupies, its

coordinates being (x, y). Let us assume that the entity can move in four ways, thus executing activity

functions transiting it according to the von Neumann neighborhood: north, south, east, west. Having two

entities on a plane, being a two-dimensional space, yields a four-dimensional state space. A single state

is expressed as a quadruple: (x1, y1, x2, y2), while (x1, y1) and (x2, y2) remain the entities’ locations on

the plane. There is an occupation constraint introduced: no two or more entities can occupy the same

location on the plane. This reduces the number of transitions in the state space applying: (x1, y1) 6=

(x2, y2). Assuming that the plane is a grid, 7 × 7, there are (7 × 7)× (7 × 7) = 2401 states. However,

compensating for the occupation constraint, it is actually: (7× 7)× (7× 7− 1) = 2352.

There have been some efforts carried out regarding state space reduction, e.g., using preferences [11].

Depending on particular cases, the reduction can be substantial; however, introducing another entity

or factor of uncertainty can trigger the growth of the state space beyond the capabilities of the

reduction process. There is also ongoing research regarding efficient graph processing solutions that

take distributed and parallel processing into consideration [12].

4.3. Multi-Entity A-Star

The A-star algorithm [13] is a heuristic search algorithm, which allows one to find the optimal path

from a start state to the end state. The path should be understood as a sequence of state changes.

Let us assume a state space, containing a finite set of n states. As outlined in Section 4.1, collective

states will be used for planning purposes. Therefore, while the basic idea of A-star remains unchanged,

the number of states grows significantly, as each consists of a much larger number of dimensions.

In each step of the generated plan, an action must be performed, which means that a state has to be

changed into another state, at defined costs.

The state space can be viewed as a directed, weighted graph G. Put formally, a graph G is a tuple:

G = (V,E, c), (8)

where:

• V = {v1, v2, . . . , vn} is a set of vertices,
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• E = {e1, e2, . . . , em} is a set of edges, each indicating a pair of vertices v ∈ V : ei = (vj , vk),

• c : E → R
+ ∪ {0} is a function that assigns a weight to every edge e ∈ E.

This definition (using unique edge identifiers) allows the situation where we have more than one edge

between two vertices, which can be important for some planning domains.

The state space representation in a graph G is as follows:

• states are represented by vertices v ∈ V (each state has n ∗ k components),

• actions are represented by edges e ∈ E: if an action of changing state from state vj to state vk is

possible, ei = (vj , vk) ∈ E.

In the case of the considered multi-entity planning problem, each step of the generated plan will

represent actions performed by all of the entities in a single time step. Therefore, in this case, we can

assume that c : E → 1. This means that all actions performed by all entities in a single time step are

equally expensive and that the algorithm will find the sequence of the entities’ moves that will guide

them all to the destination states in the shortest possible time. This also means that even when an entity

remains in the same state during an action, the cost remains constant: time is passing.

Some dynamic subsets of S are defined for the purpose of performing the search:

• F denotes the fringe, i.e., the set of vertices, which are the possible candidates for the next move;

• V denotes the set of vertices, which have already been visited.

Additionally, we shall define two sequences:

• PE is a sequence of edges, indicating the optimal path from start to goal;

• PV is a sequence of vertices corresponding to PE .

A sequence of edges is less ambiguous than a sequence of vertices for the cases where two edges ei

and ej may join the same vertices.

The description of the algorithm is as follows. The problem is defined by selecting the start state, vs,

and the goal state, vg. The initial state contains the states of all entities at the beginning, and the goal

state is composed of the desired location of each entity.

The goal is to find the least expensive path from vs to vg, i.e., a sequence of edges e ∈ E for which
∑

c(e) is the smallest. In practice, the resulting path in fact contains the paths of individual entities to

their respective goals.

Each subsequent step is decided upon by selecting the next node (v ∈ F ) using an evaluation function

f(v). The strategy is to choose the state where the sum of the cost of achieving it (g(v)) and the estimated

cost of getting from that node to the goal node (h(v), called the heuristic) is the lowest. Function π :

V → E ∪ {0} will be used to record the edge connecting the node to its predecessor in the optimal path.

The algorithm is as follows:

(1) Initially assume: V ← ∅, F ← {vs}, g(vs) = 0.

(2) Choose the node v′ ∈ F to be expanded:

argmin
v′

f(v′) = g(v′) + h(v′) (9)

where g(v′) is the already known cost of achieving v′ from vs, and h(v′) is the value of the heuristic

(estimate cost of getting from v′ to vg).
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(3) If v′ = vg, go to Step 5.

Otherwise, expand node v′. ∀v′′ ∈ V : e′′ = (v′, v′′) ∈ E,′ , v′′ /∈ V , and do the following:

• calculate the value of function g: g(v′′) = g(v′) + c(e′′),

• add v′′ to the fringe: F = F ∪ {v′′}.

(4) Remove v′ from the fringe after expansion and move it to the visited set:

F = F \ {v′}, V = V ∪ {v′}. (10)

(5) Reconstruct the optimal path:

(a) Let ep = π(vg).

(b) Let PE = (′, ),PV = (′, ) (empty sequences).

(c) Append ep to the beginning of PE : PE = (ep,PE).

Append pv to the beginning of PV : PV = (vp,PV).

(d) Let vπ = v : π(vp) = (v, vp).

(e) Let ep = π(vπ).

(f) If ep 6= 0, go to Step 5c.

Otherwise, STOP.

For the A-star algorithm to be complete and optimal, the heuristic function h must be admissible

and consistent [14]. For a heuristic function to be admissible, it must be optimistic, i.e., it must never

overestimate the cost of getting from a certain node to the goal node. For it to be consistent, if the

estimated cost of getting to the goal from a certain node n′ and its successor n′′ ((n′, n′′) ∈ E) is not

greater than the sum of the cost of getting from n′ to n′′ and the estimated cost of getting from n′′ to

the goal:

h(n′) ≤ c(n′, n′′) + h(n′′). (11)

For instance, an intuitively admissible and consistent heuristic for a problem where each entity state

is two-dimensional and represents the location of an entity on a planar surface is a multi-dimensional

variation of the straight-line distance (SLD) heuristic, i.e.,

h =

n
∑

i=1

√

(gxi − xi)2 + (gyi − yi)2. (12)

The presented multi-entity A-star algorithm can be used as an efficient method for finding optimal

plans for multiple entities coexisting in a common environment. However, the algorithm is not suitable

for addressing the problem of plan execution uncertainty. The class of problems considered in this paper

includes different levels of entities’ autonomy, predictability and controllability. Therefore, deterministic

execution of the calculated, optimal plan cannot be assumed.

One obvious solution to the situation of plan execution error would be to run the planning algorithm

once more with the modified initial state of all entities. However, this approach is not possible in the

considered problem: the time required for the planning algorithm to finish is too long. To solve the issue

of execution unpredictability, a different approach to the planning problem must be involved.
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4.4. Multi-Entity Wavefront

The proposed approach to the problem of controlling the entities when they fail to execute a given

plan is to prepare alternate solutions in advance. A robust planning algorithm for the considered problem

should assume the possibility of execution failure and create a multi-variant plan that covers exceptional

situations. The wavefront algorithm can be used to provide such a multi-variant plan.

The wavefront algorithm allows one to find the shortest (least expensive) path in a graph from any

starting point to a given goal. There are two steps to the algorithm:

(1) vertex labeling;

(2) selecting a path.

The labeling provides a guideline to select the shortest path.

Let us assume a search space given by a graph, which is invariant to multi-dimensional or collective

issues mentioned earlier:

S = (V,E, c, g) (13)

where V is a set of vertices, E is a set of edges, such as E = (a, b) : a, b ∈ V , c : E → R
+ ∪ {0} is a

function that assigns a weight to every edge e ∈ E and g is a labeling function: g : V → N. There is

an initial labeling ∀x ∈ V : g(x) = 0. The first step of the algorithm relabels the vertices. The process

starts with the goal vertex g, which is relabeled g(g) = 1. It continues applying breadth-first search to

the vertices that have not been labeled with a positive value. At the first step p = g, C becomes a set of

subsequent vertices to label:

C = {k : (k, p) ∈ E, g(k) = 0} (14)

then the labeling is carried out:

g(k) = g(p) + c((k, p)) : ∀k ∈ C (15)

where c((k, p)) is a transition cost assigned to the edge corresponding to an activity. The above process is

repeated for each element in C, and it subsequently continues as long as there are any vertices to relabel.

This labeling provides a gradient map used in the subsequent step.

The second step of the algorithm, which is selecting a path, begins with an arbitrarily-chosen starting

vertex s and continues according to descending values of function g at subsequent vertices, being a

gradient descent. The path P is given as an ordered set of vertices:

P = (v1, v2, . . . , vn) (16)

such as:

∀i = 1 . . . (n− 1) : (vi, vi+1) ∈ E, (17)

where:

vi+1 : ∀(vi, x) ∈ E : g(x) ≥ g(vi+1). (18)

One of the most important features of the wavefront algorithm is that it provides a gradient map,

which is a result of the vertex labeling process, which allows one to find an optimal path from any state
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to the goal by simply descending the gradient. This fact allows one to react immediately in any possible

situation that can occur in the controlled group of entities.

Traversing the entire state space while labeling might be not feasible: it is too time-consuming or

complex. Thus, a hybrid approach is proposed here. The motivation for it is best presented with an

example, which is planning for multiple agents, as shown in the next section.

5. A-Star-Wavefront Hybrid Algorithm

Planning for multiple agents is not different from planning for a single agent, except that the number

of dimensions in the search space increases. There are also some side effects that need to be taken into

consideration. The one considered here regards possible collisions among agents, due to uncertainty.

These might happen if the agents are allowed to deviate from the plan; there might also be different

reasons for this situation, such as limited controllability, predictability and observability.

A wavefront-based approach seems to be the most suitable for such multi-agent planning with

uncertainty, but its time complexity renders it less applicable. On the other hand, the A-star algorithm,

having better time complexity, does not provide alternatives in the case that deviations from the plan

occur.

The proposed hybrid approach tries to combine the better time complexity of the A-star with the

robustness of the wavefront. It assumes that:

• there is a global plan provided by the A-star algorithm;

• sub-spaces of a possible collision in the search space are identified; they called

collision sub-spaces;

• for the above sub-spaces, the wavefront algorithm is used to give the optimal path to exit the

sub-space, thus to return to the original A-star-based path.

Let us have a plan PV = (v1, . . . , vn) generated by the A-star algorithm over a state space given as

G = (E, V, c), where vi ∈ V . A single vertex represents the location of all involved agents, while an

edge represents possible transition to another state, thus an allowed agent move.

There is a possibility of collision detection function cd, such as:

cd : N → S (19)

where N is a neighborhood of states, such as N = (vi+1, . . . , vi+m), such that N ⊂ PV , and S =

(VS, ES, cS, gS), being a collision sub-space, is a state sub-space for the wavefront algorithm subdivided

from G in such a way that VS ⊂ V,ES ⊂ E, cS ⊂ c. In such a case, the goal for the wavefront is vi+m,

being the last state in the neighborhood of states. There can be a set of the sub-spaces SS = {S1, . . . , So}

for a given PV identified.

As a result, if an agent deviates from the original plan and the deviation occurs in any of the

previously-identified areas covered by any S, a wavefront-generated path is used to return to the original

plan as quickly as possible.

The cd function is a heuristic. It should consider domain-specific properties of the agents, which

reflects the likelihood of collision. Increasing the cardinality of S requires more calculations, but makes

the plan more robust at the same time.
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The number of states, or transitions, if there are any unreachable states, is the core factor of

computational complexity, no matter what planning algorithm is used. The proposed hybrid approach

is a solution that balances complexity with uncertainty. The proportion is kept by the heuristic

function cd described earlier. There are two factors that influence the computational complexity of the

proposed algorithm:

(1) the number of neighborhoods (N) that might result in collisions, either among agents or obstacles:

dc;

(2) the size of the collision sub-space (S): rc.

More neighborhoods make the solution more robust, and this takes more uncertainty into account.

With larger collision sub-spaces, more significant deviations can be covered. However, the increase of

both the number of neighborhoods and their size makes it necessary to perform more computations to

synthesize the plan.

A collision neighborhood can be heuristically defined as a sequence in the plan, for which particular

agents get close to each other at a distance smaller than some given dc. The particular dc value should take

the properties of the world being modeled into consideration; these include the likelihood of slipping,

the uncertainty of agents’ behavior, their controllability, observability, autonomy, etc.

The collision sub-space size rc should take physical aspects of the agents into consideration. These

include the maximum and minimum speed and acceleration, mass, etc.

6. Experimental Results

Let us assume that the world being considered is a two-dimensional space, based on a seven by seven

grid. The agents, denoted as An, can move from one location to another only orthogonally, in accordance

to the von Neumann neighborhood, north, south, east and west, which defines their activity functions.

A single location is allowed to be occupied by no more than one agent. There are four agents initially

located in the corners (see Figure 1). Each agent’s goal is to get to the diagonally-opposite corner; A1

to (G, 7), A2 to (G, 1), A3 to (A, 1), A4 to (A, 7). The global goal is to guide all of the agents to their

goal corners.

Figure 1. Initial state of the proposed world.
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Assuming the above, a state consists of the information about agent locations; thus, it is a tuple:

s = (x1, y1, x2, y2, x3, y3, x4, y4), where (x1, y1), (x2, y2), (x3, y3), (x4, y4) correspond to locations of

agents A1, A2, A3, A4, respectively.

A good indication of the complexity of A-star-based search complexity is the number of states that

have to be considered before the goal is reached, i.e., the number of heuristic function computations

for candidate states. For the given example, assuming a von Neumann neighborhood and a straight-line

distance heuristic, the number of these operations is:

OA = 5432.

The A-star approach does not give robustness and cannot handle uncertainty.

Assuming that each agent can be at any location, having a 7 × 7 grid and applying the wavefront

algorithm, the computational complexity is proportional to the state space cardinality. It is given as:

|ST | = (7×7)4 = 5, 764, 801. Applying the world constraints (no two agents sharing the same location)

reduces the number of states slightly, having a product of arithmetic progression: |SW | = (7× 7)× (7×

7−1)×(7×7−2)×(7×7−3) = 5, 085, 024. It renders such a fully-robust plan unfeasible to calculate.

Let us assume a single collision neighborhood with dc = 2. This indicates that if an agent comes

within a distance of two of any other agent, such a state is identified as a possible collision. The path

of the four agents calculated from the A-star algorithm results in a possible collision of all agents at

N = (4, C, 5, D, 4, E, 3, D). Assuming the collision sub-space size rc = 2, the actual sub-space is

given in Figure 2. The number of planning operations OS is equal to the sub-space cardinality, and it is

expressed as:

OS = |SS| = 13× (13− 1)× (13− 2)× (13− 3) = 17, 160

The total number of operations to establish a robust plan is proportional to:

OH = OA +OS = 22, 592.

Figure 2. Possible collision subspace.

Comparing to SW , this makes the problem over 225-times smaller. As a result, there is a plan in a

multidimensional space providing optimal paths for multiple agents. The plan is multi-variant to some
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degree. While executing it, if there is any deviation from the plan within a previously-identified collision

sub-space, there are means to return to the previously-optimal path without any additional calculations.

However, this does not imply that in such a case, the plan is still optimal. If a deviation takes place

outside of the collision sub-space, there are no means to compensate; thus, proper identification of such

and their sizes is crucial.

There have been several experiments conducted, with a variable number of dimensions, regarding

different strategies for both collision sub-space identification and its size. The number of dimensions

varies from four to eight. The collision sub-spaces are identified based on their distance among entities

ranging from one to three. Additionally, such a collision space is grown by a factor of zero to three,

to increase the robustness of the plan. Depending on the particular experiment and comparing to the

wavefront, the proposed method offers a speedup of up to 225. The plan in such a case is still robust,

attaining the ability to recover if deviations happen. Comparing its performance with the A-star results

in a speedup of down to 0.24. The above numbers indicate that while the proposed robustness costs

computational time, this cost is significantly lower than it would be for the total robustness delivered by

the wavefront. This enables the proposed approach to be applicable to real-world cases.

7. Conclusions

Establishing a robust plan for multiple entities might easily lead to combinatorial explosion: it renders

the planning process infeasible, especially when time constraints have to be met. The paper proposes a

solution to this problem by providing a hybrid planing algorithm, based on a combination of the the

A-star and wavefront algorithms. A-star is used to establish a single, optimal plan in a multidimensional

space, encompassing the states of all entities. Neighborhoods of states in which a need for robustness

is anticipated are identified. At each such neighborhood, a sub-space, called the collision sub-space,

is defined. Each such sub-space is covered by the wavefront algorithm to calculate all possible plans to

return to the original path provided by A-star. Both the identification of the neighborhoods and the size of

the collision sub-space are provided based on heuristics. As a result, a partially-robust plan is established.

The proposed algorithm is verified by an example that involves planning for four independent entities

in a two-dimensional world. Computational complexity is reduced by a factor of 225, compared to the

fully-robust plan.

Further research is mainly on improving the heuristics used for the identification of collision-prone

neighborhoods and the determination of the collision sub-space sizes. Furthermore, work is being done

to adapt the algorithm to a quasi-continuous environment.
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