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Abstract: A scoring rule is a device for evaluation of forecasts that are given in terms of 

the probability of an event. In this article we will restrict our attention to binary forecasts.  

We may think of a scoring rule as a penalty attached to a forecast after the event has been 

observed. Thus a relatively small penalty will accrue if a high probability forecast that an 

event will occur is followed by occurrence of the event. On the other hand, a relatively  

large penalty will accrue if this forecast is followed by non-occurrence of the event. 

Meteorologists have been foremost in developing scoring rules for the evaluation of 

probabilistic forecasts. Here we use a published meteorological data set to illustrate 

diagrammatically the Brier score and the divergence score, and their statistical 

decompositions, as examples of Bregman divergences. In writing this article, we have in 

mind environmental scientists and modellers for whom meteorological factors are 

important drivers of biological, physical and chemical processes of interest. In this context, 

we briefly draw attention to the potential for probabilistic forecasting of the within-season 

component of nitrous oxide emissions from agricultural soils. 

Keywords: scoring rule; binary forecast; Brier score; divergence score; Bregman 

divergence; N2O emissions models 
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1. Introduction 

A probabilistic forecast provides a forecast probability p that an event will subsequently occur. 

Probabilistic forecasts are used extensively in meteorology, so it is there that we will look for example 

scenarios and data. Now, qualitatively, a forecast of “rain tomorrow” with probability p = 0.7 means 

that on the basis of the forecast scheme, rain is rather more likely than not. Of course, we require 

definitions of “rain” and “tomorrow” in order to be able to properly interpret the forecast, but let us 

assume these are available. Then, given these definitions, we are able, subsequent to the forecast, to 

make an observation of whether or not there was rainfall in sufficient quantity to be designated “rain” 

during the hours designated “tomorrow”. If we view the event as binary, the outcome is either true (it 

rained) or false (it did not rain). Suppose it rained. From the point of view of forecast evaluation, it 

would be natural to give a better rating to a preceding forecast—as above—that rain was rather more 

likely than not (p = 0.7), than one that rain was less likely (i.e., a smaller p). Quantitative methods for 

the calculation of such ratings in the context of forecast evaluation are called scoring rules [1]. This 

article discusses scoring rules for probabilistic forecasts. We will restrict our attention to the evaluation 

of forecasts for events with binary outcomes. Note that meteorologists often refer to forecast 

evaluation as forecast verification (e.g., [2]). 

It is convenient to think of a scoring rule as a means of attaching a penalty score to a forecast; the 

better the forecast, the smaller the penalty (e.g., [3]). Returning to the example of a forecast of rain 

tomorrow with probability p = 0.7, the Brier score [4] is (1 − p)2 = 0.09 if rain is subsequently 

observed and (0 − p)2 = 0.49 if not. The logarithmic score (an early discussion is given in [5]) is 
( )pln−  = 0.36 if rain is subsequently observed, and ( )p−− 1ln  = 1.20 if not (we will use natural 

logarithms throughout). In practice, meteorologists are usually interested in the evaluation of a forecast 

scheme based on the average score for a data set comprising a sequence of forecasts and the 

corresponding observations. The Brier score and the logarithmic score apply different penalties; most 

notably, the logarithmic score attaches larger penalties than does the Brier score to forecasts for which 

p is close to 0 or 1 when the outcome viewed as unlikely on the basis of the forecast turns out 

subsequently to be the case. However, both scoring rules are “strictly proper” [6,7]. 

In the case of binary events, strictly proper scoring rules allow a statistical decomposition of the 

overall score into terms that further characterize a forecast [8]. Murphy [9] provided a statistical 

decomposition of the Brier score into three components, which he termed uncertainty, reliability and 

resolution (see also [10]). Weijs et al. [11,12] provided a further analysis of the logarithmic score, 

resulting in the divergence score and its statistical decomposition into the equivalent three components. 

The cited articles discuss uncertainty, reliability and resolution in detail. 

Gneiting and Katzfuss [13] provide an analytical overview of probabilistic forecasting. One way  

of looking at the present article is as a complement to recent analytical innovations in forecast  

evaluation [11,12]. Using Bregman divergences, we provide a new calculation template for analysis of 

the Brier score and the divergence score, and new explanatory diagrams. Our objective in so doing is 

to provide an analysis with a straightforward diagrammatic interpretation as a basis for the evaluation 

of probabilistic forecasts in environmental applications where meteorological factors are important 

drivers of biological, physical and chemical processes of interest. 
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The present article is set out as follows. We introduce an example meteorological data set that is 

available in the public domain, and review the original analysis based on the Brier score. Following a 

brief discussion of the use of zero and one as probability forecasts, there is further analysis of both the 

Brier score and the divergence score for this data set. We then introduce our approach to the Brier 

score and the divergence score based on Bregman divergences, and provide examples of the 

calculations of the scores and their statistical decompositions. In a final discussion, we briefly mention 

the potential application of probabilistic forecasting to modelling of N2O emissions from agricultural 

soils at the within-season time-scale. 

2. Methods 

2.1. Data, Terminology, Notation 

In the interests of producing an analysis that allows a straightforward diagrammatic representation, 

we will restrict our attention here to binary outcomes. We discuss the evaluation of probability 

forecasts using a data set that is in the public domain. The full data set comprises 24-h and 48-h 

forecasts for probability of daily precipitation in the city of Tampere in south-central Finland, as made 

by the Finnish Meteorological Institute during 2003; together with the corresponding daily rainfall 

records [14]. Our analysis here is based on the 24-h rainfall forecasts. The forecasts given in [14] were 

made for three rainfall categories, but here, as in the original analysis, the two higher-rainfall 

categories were combined in order to produce a binary forecast: probability of no-rain (≤0.2 mm 

rainfall) and probability of rain (otherwise). The observations were recorded as mm precipitation but 

for the purpose of forecast evaluation (again as in the original analysis) the observed rainfall data were 

combined into the same two categories as the forecasts: observation of no-rain (≤0.2 mm rainfall) and 

observation of rain (otherwise). After excluding days for which data were missing, the full record 

comprised N = 346 probability forecasts (denoted pt) and the corresponding observations (ot), t = 1, …, 

N, with ot = 0 for observation of no-rain and ot = 1 for observation of rain. 

The Brier score for an individual forecast is ( )2
tt po −  and the overall Brier score for a data set 

comprising a series of forecasts and the corresponding observations is the average of the individual 

scores: ( )
=

−⋅=
N

t
tt po

N
BS

1

21
. This is the definition given in the original data analysis, retained for 

consistency. For the original data analysis the probability forecasts utilized eleven “allowed 

probability” forecast categories: for k = 1,…,11; pk = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 

(pk denotes the forecast probability of rain in category k, thus the forecast probability of no-rain is its 

complement 1 − pk). The number of observations in each category is denoted nk and the number of 

observations of rain in each category is denoted ok. The average frequency of rain observations in 
category k is ko  = ok/nk. Also Nn

k k = , Oo
k k = , and the overall average frequency of rain 

observations is NOo = . The components of the decomposition of the Brier score are as follows: 

reliability, RELBS = ( ) −⋅⋅
k kkk pon

N
21

; resolution, RESBS = ( ) −⋅⋅
k kk oon

N
21

; uncertainty, 

UNCBS = ( )oo −⋅ 1  (which is the Bernoulli variance); and then BS = RELBS – RESBS + UNCBS. For the 

original data set, we calculate the Brier score: BS = 0.1445 (all calculations are shown correct to 4 
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d.p.). The components of the decomposition of the Brier score are: reliability, RELBS = 0.0254; 

resolution, RESBS = 0.0602; uncertainty UNCBS = 0.1793. As required, RELBS – RESBS + UNCBS = BS 

and the summary of results provided along with the original data set [14] is thus reproduced. 

2.2. Probability Forecasts of Zero and One 

In the original data set, the probability forecasts include pk = 0 (for category k = 1) and pk = 1  

(for category k = 11); in words, respectively, “it is certain there will be no rain tomorrow” and “it is 

certain there will be rain tomorrow”. Such forecasts can present problems from the point of view of 

evaluation. Whereas probability forecasts 0 < pk < 1 explicitly leave open the chance that an erroneous 

forecast may be made, probability forecasts pk = 0 and pk = 1 do not. The question that then arises is 

how to evaluate a forecast that was made with certainty but then proves to have been erroneous. This is 

not a hypothetical issue, as can be seen in the original data set. For category k = 1 (pk = 0), we note that 

1 out of the 46 forecasts made with certainty was erroneous, while for category k = 11 (pk = 1), we note 

that 2 out of 13 forecasts made with certainty were erroneous [14]. If such an outcome were to occur 

when the logarithmic (or divergence) score was in use, an indefinitely large penalty score would apply. 

In routine practice our preference is to avoid the use of probability forecasts pk = 0 and pk = 1 (as a rule 

of thumb: only use a probability forecast of zero or one when there is absolute certainty of the 

outcome). There is a price to be paid for taking this point of view, which we discuss later. 

Notwithstanding, for further analysis in the present article, we will replace the probability forecast for 

category k = 1 by pk = 0.05 (instead of zero) and the probability forecast for category k = 11 by pk = 

0.95 (instead of one) (the observations remain unchanged). A summary of the data set incorporating 

this adjustment (to be used exclusively from this point on) is given in Table 1. 

Table 1. Summary of the data set. a 

k 1 2 3 4 5 6 7 8 9 10 11 

pk 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 
ok 1 1 5 5 4 8 6 16 16 8 11 
nk 46 55 59 41 19 22 22 34 24 11 13 

a Notation: k, forecast category index; pk, probability forecast (rain) (probability of no-rain is the 

complement); ok, number of rain observations; nk, number of observations. 

2.3. The Brier Score and its Decomposition 

For the adjusted data set (i.e., with probability forecasts pk = 0.05, 0.95 instead of 0, 1 for categories 

k = 1, 11 respectively) we recalculate the Brier score: BS = 0.1440. Then we recalculate the 

components of the decomposition of the Brier score as follows: reliability, RELBS = 0.0249; resolution, 

RESBS = 0.0602; uncertainty, UNCBS = 0.1793. As before, RELBS – RESBS + UNCBS = BS (for full 

details see Appendix, Table 2). 
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2.4. The Divergence Score and its Decomposition 

Weijs et al. [11,12] provide informative background on the provenance of the divergence score, and 

a detailed analysis of its derivation. We refer interested readers this work, and present here only 

enough details to illustrate a template calculation of the score and its reliability-resolution-uncertainty 

decomposition. The divergence score is based on the Kullback-Leibler divergence, a kind of measure 

of distance between two probability distributions [15,16]. For binary forecasts and the corresponding 

observations, all the distributions required for calculating the divergence score and its decomposition 

are Bernoulli, so we can write: 

( ) ( ) 







−
−

⋅−+







⋅=

r

c
c

r

c
crcKL x

x
x

x

x
xxxD

1

1
ln1ln

 
(1)

where variable x is a place-holder and, in our analysis, represents particular comparison and reference 

values (here, xc and xr, respectively) that will be replaced by a probability or a frequency, ranged 

between zero and one. The distribution (xc, 1 − xc) is referred to as the comparison distribution, and the 
distribution (xr, 1 − xr) is referred to as the reference distribution. Note that ( ) 0≥rcKL xxD  and that the 

divergence is not necessarily symmetric with respect to the arguments. For the purpose of numerical 
calculation, recall that ( )[ ] 0lnlim

0
=⋅

→
xx

x
; then we take ( ) 00ln0 =⋅ . 

The divergence score for an individual forecast is the Kullback-Leibler divergence between the 

observation (comparison) distribution and the forecast (reference) distribution: 

( ) ( ) 







−
−

⋅−+







⋅=

t

t
t

t

t
tttKL p

o
o

p

o
opoD

1

1
ln1ln . For the adjusted data set we can now calculate the 

overall divergence score as the average of the individual scores: ( )
=

⋅=
N

t
ttKL poD

N
DS

1

1
 = 0.4471.  

The components of the decomposition of the divergence score are calculated as follows: reliability, 

RELDS = ( ) ⋅⋅
k kkKLk poDn

N

1
 = 0.0712; resolution, RESDS = ( ) ⋅⋅

k kKLk ooDn
N

1
 = 0.1683; 

uncertainty (which in this case is characterized by the binary Shannon entropy [17]), UNCDS ( )ou=  

( ) ( ) ( )[ ]oooo −⋅−+⋅−= 1ln1ln  = 0.5442. Then we have (for full details see Appendix, Table 2): 

DSUNCRESREL DSDSDS =+−  (2)

3. Forecast Evaluation via Bregman Divergences 

Here we discuss forecast evaluation for the example data set via the Brier score and the divergence 

score, but using a different route through the calculations. Using Bregman divergences [18,19], our 

calculations lead to identical numerical results to those outlined above, in terms of the scores and their 

decompositions. What we gain by the analysis presented here is a set of diagrams which usefully 

complement those used by Weijs et al. [11,12] to illustrate the statistical decomposition both of the 

Brier score and the divergence score. This is possible because of the availability of a simple 

diagrammatic format for the illustration of Bregman divergences (e.g., [19,20]). So, by expressing 

reliability, resolution and score as Bregman divergences, we are able to illustrate these quantities 
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directly as distances on graphical plots. In addition, this approach enables us to write down the Brier 

score and the divergence score and their corresponding decompositions in a common format, thus 

clearly demonstrating their analytical equivalence. 

Bregman divergences are properties of convex functions. In particular, the squared Euclidean  

distance (on which the Brier score is based) is the Bregman divergence associated with f(x) = x2 and 

the Kullback-Leibler divergence (on which the divergence score is based) is the Bregman divergence 

associated with f(x) = x·ln(x) + (1 − x)·ln(1 − x) (the negative of the binary Shannon entropy function). 
Generically, a tangent to the curve ( )xf  is drawn at xr (the reference value). The Bregman 

divergence between the tangent and the curve at xc (the comparison value) is then, for scalar 

arguments:  

( ) ( ) ( ) ( ) ( )rrcrcrcB xfxxxfxfxxD ′⋅−−−=  (3)

in which ( )rxf ′  is the slope of the tangent at xr. Recall that 0 ≤ xc ≤ 1, 0 ≤ xr ≤ 1; and note that 

( ) 0≥rcB xxD  and that the divergence is not necessarily symmetric with respect to the arguments. 

Where necessary for calculation purposes, we take ( ) 00ln0 =⋅  as previously.  

3.1. Scoring Rules as Bregman Divergences 

3.1.1. Brier Score and Divergence Score Diagrams for Individual Forecast Categories 

Figure 1 shows examples of scoring rules as Bregman divergences in diagrammatic form, for pk = 
0.4 and an observation { }1,0∈o  (see Appendix, Tables 3 and 4, category k = 5, for details of 

calculations based on Equation (3)). For individual forecasts, smaller divergences (scores) are better, 

and from Figure 1A (Brier score) we can see that for reference value pk = 0.4 the score for comparison 

value o = 0 (DB = 0.16, Table 3A, Appendix) is smaller than the score for comparison value o = 1 (DB = 

0.36, Table 3B, Appendix). From Figure 1B (divergence score) we can see that for reference value pk = 

0.4 the score for comparison value o = 0 (DB = 0.5108, Table 4A, Appendix) is smaller than the score 

for comparison value o = 1 (DB = 0.9163, Table 4B, Appendix). In each case this is as we require, 

because the forecast probability pk = 0.4 is closer to o = 0 than to o = 1. That is, a forecast of pk = 0.4 

gets a better evaluation score if o = 0 is subsequently observed than if o = 1 is subsequently observed. 

To calculate directly as Kullback-Leibler divergences the divergence scores for individual forecast 

categories as illustrated in Figure 1B, we have: 

• for o = 0, ( ) 







−
−⋅+






⋅=

4.01

01
ln1

4.0

0
ln00 kKL pD  = 0.5108; 

• for o = 1, ( ) 







−
−⋅+






⋅=

4.01

11
ln0

4.0

1
ln11 kKL pD  = 0.9163. 

3.1.2. Overall Scores 

For the Brier score, the Bregman divergence for each individual forecast category (as calculated via 

Equation (3)) is the squared Euclidean distance between o (the comparison value, where the 

divergence is calculated) and pk (the reference value, where the tangent is drawn) (Appendix, Table 3). 

For the divergence score, the Bregman divergence for each individual forecast category (as calculated 
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via Equation (3)) is the Kullback-Leibler divergence between o (the comparison value, where the 

divergence is calculated) and pk (the reference value, where the tangent is drawn) (Appendix, Table 4). 

In each case, the overall score for a forecast-observation data set is calculated as a weighted average of 

the individual Bregman divergences. For the Brier score, we have ( ) ⋅⋅=
k kBk poDn

N
BS

1
 = 

49.9375/346 = 0.1440; for the divergence score we have ( ) ⋅⋅=
k kBk poDn

N
DS

1
 = 154.6859/346 = 

0.4471 (for full details see Appendix, Tables 3 and 4). 

Figure 1. Scoring rules as Bregman divergences. The long-dashed curve is a convex function 

of p, the solid line is a tangent to the convex function at the reference value of p (pk) indicated 

by a short-dashed line between the curve and the horizontal axis. The short-dashed lines 

between the curve and the tangent indicate the Bregman divergence at the comparison values 

of o (these lines coincide with sections of the vertical axes of the graphs, at comparison values 

o = 0 and o = 1). (A) Brier score (for calculations see Appendix, Table 3, k = 5). For this 

example, a tangent to the convex function f(p) = p2 is drawn at probability forecast of rain pk = 

0.4. The score for this forecast depends on the subsequent observation. If no-rain is observed, 

the score is the Bregman divergence at o = 0, which is 0.16. If rain is observed, the score is the 

Bregman divergence at o = 1, which is 0.36. Bregman divergences for other forecast-

observation combinations are given in the Appendix, Table 3. The overall score for a forecast-

observation data set is calculated as a weighted average of the individual Bregman 

divergences; (B) Divergence score (for calculations see Appendix, Table 4, k = 5). For this 

example, a tangent to the convex function f(p) = p·ln(p) + (1 − p)·ln(1 − p) is drawn at 

probability forecast of rain pk = 0.4. The score for this forecast depends on the subsequent 

observation. If no-rain is observed, the score is the Bregman divergence at o = 0, which is 

0.5108. If rain is observed, the score is the Bregman divergence at o = 1, which is 0.9163. 

Bregman divergences for other forecast-observation combinations are given in the Appendix, 

Table 4. The overall score for a forecast-observation data set is calculated as a weighted 

average of the individual Bregman divergences. 
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3.2. Reliability 

3.2.1. Reliability Diagrams for Individual Forecast Categories 

Figure 2 shows examples of reliability components as Bregman divergences in diagrammatic form, 
for reference value pk = 0.6 and comparison value 2727.0=ko  (see also Appendix, Table 5, category  

k = 7, for details of calculations based on Equation (3)). From Figure 2A (for the Brier score reliability 
component) ( )kkB poD  = 0.1071. From Figure 2B (for the divergence score reliability component) 

( )kkB poD  = 0.2198. The corresponding calculation for this divergence score reliability component 

directly as a Kullback-Leibler divergence is as follows: 

( ) ( ) 







−
−⋅−+






⋅=

6.01

2727.01
ln2727.01

6.0

2727.0
ln2727.0kkKL poD  = 0.2198. 

 

 
Figure 2. Reliability as a Bregman divergence. The long-dashed curve is a convex function 

of p, the solid line is a tangent to the convex function at the reference value of p (pk) 

indicated by a short-dashed line between the curve and the horizontal axis. A second short-

dashed line, between the curve and the tangent, indicates the Bregman divergence at the 

comparison value of o (for calculations see Appendix, Table 5). Overall reliability for a 

forecast-observation data set is calculated as a weighted average of individual Bregman 

divergences. (A) Brier score reliability. For this example, a tangent to the convex function 

f(p) = p2 is drawn at probability forecast of rain pk = 0.6. The reliability component 
depends on the corresponding ko , the average frequency of rain observations following 

such forecasts, which is 0.2727 for the example data set. The reliability component is the 
Bregman divergence at ko  = 0.2727, which is 0.1071; (B) Divergence score reliability. For 

this example, a tangent to the convex function f(p) = p·ln(p) + (1 − p)·ln(1 − p) is drawn at 

probability forecast of rain pk = 0.6. The reliability component depends on the 
corresponding ko which is 0.2727 for the example data set. The reliability component is the 

Bregman divergence at ko  = 0.2727, which is 0.2198.  
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3.2.2. Overall Reliability 

For the Brier score reliability, the Bregman divergence for each individual forecast category  
(as calculated via Equation (3)) is the squared Euclidean distance between ko  (the comparison value, 

where the divergence is calculated) and pk (the reference value, where the tangent is drawn)  

(see Appendix, Table 5A). For the divergence score reliability, the Bregman divergence for each 

individual forecast category (as calculated via Equation (3)) is the Kullback-Leibler divergence 
between ko and pk (see Appendix, Table 5B). In each case, the overall reliability score for a forecast-

observation data set is calculated as a weighted average of the individual Bregman divergences. For 

the Brier score, we have ( )kkBk kBS poDn
N

REL ⋅⋅= 1
 = 8.6204/346 = 0.0249; for the divergence 

score, we have ( )kkBk kDS poDn
N

REL ⋅⋅= 1
 = 24.6440/346 = 0.0712 (for full details see Appendix, 

Table 5). 

3.2.3. Interpreting Reliability 

First, recall that reliability is defined so that smaller is better: perfect reliability corresponds to an 
overall reliability score equal to zero. From the formulation of the Bregman divergence ( )kkB poD , we 

can see that this occurs when kk po =  for all k categories (see Appendix, Table 5). In fact, since 

( ) 0≥kkB poD , we require kk po =  for all k categories for an overall reliability score equal to zero. 

What this tells us is that for perfect reliablity of our probability forecast, the average frequency of rain 

observations in each category must be equal to the probability forecast for that category. In practice, 
we typically accept (small) deviations of ko  from pk that contribute a small ( )kkB poD  to the overall 

calculation of RELBS or RELDS. 

3.3. Resolution 

3.3.1. Resolution Diagrams for Individual Forecast Categories 

Figure 3 shows examples of resolution components as Bregman divergences (as calculated via 

Equation (3)) in diagrammatic form, for reference value 2341.0=o  and comparison value 
6667.0=ko  (see Appendix, Table 6, category k = 9). From Figure 3A (for the Brier score resolution 

component) ( )ooD kB  = 0.1871. From Figure 3B (for the divergence score resolution component)  

( )ooD kB  = 0.4204. The corresponding calculation for this divergence score resolution component 

directly as a Kullback-Leibler divergence is as follows: 

( ) ( )0.6667 1 0.6667
0.6667 ln 1 0.6667 ln

0.2341 1 0.2341KL kD o o
−   = ⋅ + − ⋅   −   

 = 0.4204. 

3.3.2. Overall Resolution 

For the Brier score resolution, each individual Bregman divergence (as calculated via Equation (3)) 
is the squared Euclidean distance between ko  (the comparison value, where the divergence is 



Entropy 2015, 17 5459 

 

 

calculated) and o  (the reference value, where the tangent is drawn) (see Appendix, Table 6A). For the 

divergence score resolution, each individual Bregman divergence (as calculated via Equation (3)) is 
the Kullback-Leibler divergence between o  and ko  (see Appendix, Table 6B). In each case, the 

overall resolution score for a forecast-observation data set is calculated as a weighted average of the 

individual Bregman divergences. For the Brier score, we have ( )ooDn
N

RES kBk kBS ⋅⋅= 1
 = 

20.8205/346 = 0.0602; for the divergence score we have, ( )ooDn
N

RES kBk kDS ⋅⋅= 1
 = 

58.2471/346 = 0.1683 (for full details see Appendix, Table 6). 

 

 

Figure 3. Resolution as a Bregman divergence. The long-dashed curve is a convex 

function of o, the solid line is a tangent to the convex function at the reference value of o 
( )o  indicated by a short-dashed line between the curve and the horizontal axis. A second 

short-dashed line, between the curve and the tangent, indicates the Bregman divergence at 

the comparison value of o (for calculations see Appendix, Table 6). Overall resolution 

based on a forecast-observation data set is calculated as a weighted average of the 

individual Bregman divergences. (A) Brier score resolution. For this example, a tangent to 

the convex function f(o) = o2 is drawn at the overall average frequency of rain 

observations, o  = 0.2341. The components of resolution are calculated for each particular 

ko , the average frequency of rain observations in each category. For k = 9, ko  = 0.6667 for 

the example data set. The corresponding resolution component is the Bregman divergence 
at ko  = 0.6667, which is 0.1871; (B) Divergence score resolution. For this example, a 

tangent to the convex function f(o) = o·ln(o) + (1 − o)·ln(1 − o) is drawn at the overall 

average frequency of rain observations, o  = 0.2341. The components of resolution are 
calculated for each particular ko , the average frequency of rain observations in each 

category. For k = 9, ko  = 0.6667 for the example data set. The corresponding resolution 

component is the Bregman divergence at ko  = 0.6667, which is 0.4204.  
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3.3.3. Interpreting Resolution 

Recall that resolution is defined so that larger is better. If forecasts and observations were 

independent (which is least desirable), resolution would be equal to zero; if forecasts were perfect 

(which is most desirable), resolution would be equal to uncertainty. Note that the conditions under 

which resolution is equal to uncertainty also fulfil the conditions for perfect reliability, equal to zero 

(as above, in the context of interpreting reliability). 
Resolution depends on our ability to define forecast categories for which the observed frequencies ko  

are different from the overall average frequency o , such that the average for a forecast category 

provides a better prediction of the eventual outcome than the average over all forecast categories.  
For both the Brier score and the divergence score, if any ko  is equal to o , then the corresponding 

resolution component is equal to zero. If ook =  for all k, then overall resolution is equal to zero. 

Consider first the scenario in which–as in the initial analysis of the original data set–probability 

forecasts of pk = 0 and pk = 1 are allowed. Further, let us suppose that all 265 observations of  
no-rain followed forecasts of pk = 0 (in which case 0=ko ) and all 81 observations of rain followed 

forecasts of pk = 1 (so 1=ko ). Recall 2341.0=o . If we calculate resolution based on squared 

Euclidean distance, we have RESBS = ( ) ( )[ ]22 1810265
1

oo
N

−⋅+−⋅⋅  = 62.0366/346 = 0.1793 = 

UNCBS. Alternatively, if we calculate resolution based on the Kullback-Leibler divergence, we have  

RESDS = ( ) ( )[ ]oDoD
N KLKL 1810265
1 ⋅+⋅⋅  = 188.2875/346 = 0.5442 = UNCDS. That is to say, if we 

were to allow probability forecast categories pk = 0 and pk = 1, then use them exclusively in making 

forecasts and do so without error, resolution would be equal to uncertainty (i.e., RESBS = UNCBS and 

RESDS = UNCDS). 

Now consider instead the scenario in which–as in our analysis of the adjusted data set–the most 

extreme allowed probabilities are pk = 0.05 and pk = 0.95. Now, the best resolution we can achieve is if 
all 265 observations of no-rain followed forecasts of pk = 0.05 (in which case 05.0=ko ) and all 81 

observations of rain followed forecasts of pk = 0.95 (so 95.0=ko ). If we calculate resolution based on 

squared Euclidean distance, we have RESBS = ( ) ( )[ ]22 95.08105.0265
1

oo
N

−⋅+−⋅⋅  = 50.4960/346 = 

0.1459. Alternatively, if we calculate resolution based on the Kullback-Leibler divergence, we have 

RESDS = ( ) ( )[ ]oDoD
N KLKL 95.08105.0265
1 ⋅+⋅⋅  = 130.5177/346 = 0.3772. Thus, the price we pay for 

restricting the extreme allowed probabilities to pk = 0.05 and pk = 0.95 is to reduce the achievable 

upper limit of resolution. 

In the present example the notional upper limit is reduced to about 80% of uncertainty for  

calculations based on squared Euclidean distance, and about 70% of uncertainty for calculations based 

on Kullback-Leibler divergence. The difference arises because of the larger penalty score that accrues 

with extreme discrepancies between forecast and observation for the divergence score compared with 

the Brier score (as mentioned in the Introduction). 
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We note in passing that overall resolution, as formulated, may be characterized as a Jensen gap [21] 

for a convex function. Banerjee et al. [22] refer to this as the Bregman information. Thus generically  

we have ( ) ( ) 0≥− xfxf , and in particular here, ( ) ( ) RESofofn
N kk k =−



 ⋅⋅1

. Then, with  

f(x) = x2 (for the Brier score) we have ( )21
oon

N
RES kk k −⋅⋅=  , the sample variance (e.g., [3]).  

With f(x) = x·ln(x) + (1–x)·ln(1–x) (for the divergence score) we have ( )ooDn
N

RES kKLk k ⋅⋅= 1
, 

the expected mutual information (see also [11,12]). 

3.4. Uncertainty 

We select an uncertainty function appropriate for the analysis, depending on the chosen convex 

function and its associated Bregman divergence. For the Brier score, uncertainty is calculated as the 
value of the uncertainty function (the Bernoulli variance) at o : UNCBS = ( ) ( ) 1793.01 =−⋅= ooou  

(Figure 4A). For the divergence score, uncertainty is calculated as the value of the uncertainty function 
(the binary Shannon entropy) at o : UNCDS = ( )ou  = ( ) ( ) ( )[ ]oooo −−+− 1ln1ln  = 0.5442 (Figure 

4B). We interpret uncertainty as a quantification of our state of knowledge in the absence of a forecast, 

so based only on the data set from which overall average frequency of rain observations o  is 

calculated. 

 

Figure 4. Uncertainty functions. The long-dashed curves are uncertainty functions, u(o); 

the short dashed lines indicate o  (= 0.2341 for the example data set) and the 
corresponding value of ( )ou . (A) The Bernoulli variance u(o) = o·(1 − o). For the example 

data set, ( )ou  = 0.1793; (B) The Shannon entropy u(o) = −(o·ln(o) + (1 − o)·ln(1 − o)). For 

the example data set, ( )ou  = 0.5442. 
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3.5. Overview 

Theil [23] used a logarithmic scoring rule to describe the inaccuracy of predictions, but also found it 

convenient to write prediction errors directly in terms of the difference between the observed and 

forecast probabilities. This was achieved by use of a Taylor series expansion to write a logarithmic 

scoring rule in terms of a quadratic approximation. More recently, Benedetti [24] has attributed the 

lasting application of the Brier score in forecast evaluation to its being an approximation of the 

logarithmic score; however, an analysis leading to the Brier score as an approximation of the 

logarithmic score does not reveal a hierarchy in which the latter is in some way more fundamental than 

the former (cf. [25]). 
For an individual probability forecast, with pk an allowed probability and { }1,0∈o  the 

corresponding observation, we can calculate the scoring rule: 

( ) ( ) ( ) ( ) ( )kkkkB pfpopfofpoD ′⋅−−−=  (4)

(see Figure 1). Equation (4) calculates either the Brier score or the divergence score, depending on our 

choice of convex function on which to base the Bregman divergence. For a data set comprising a 

number of forecasts and corresponding observations, we calculate the overall score as 

( )k kBk poDn
N

1
 for either the Brier score or the divergence score. On this basis, neither scoring rule 

is inherently superior to the other. However, it is possible to establish further criteria against which the 

properties of such scoring rules may be judged [24]. 

The statistical decomposition of the scoring rule in Equation (4) also has a common format: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) 







=

′⋅−−−==

′⋅−−−==

ouUNC

ofooofofooDRES

pfpopfofpoDREL

kkkBk

kkkkkkkBk

 (5)

(see Figures 2 and 3, respectively, for example illustrations of components of REL and RES; and  

Figure 4 for an illustration of UNC, which does not vary with k). Again, it is only the choice of convex 

function (and corresponding choice of an appropriate uncertainty function) that distinguishes the 

calculation of the components of the Brier score from those of the divergence score. For a data set 

comprising a number of forecasts and the corresponding observations, we calculate the overall 

reliability and overall resolution scores, respectively, as ( ) ⋅⋅
k kkBk poDn

N

1
 and 

( ) ⋅⋅
k kBk ooDn

N

1
. 

We can compare the information-theoretic analysis of a boundary-line model by Topp et al. [26] 

with the present analysis. When, as in [26], forecast probabilities are based on retrospectively-

calculated relative frequencies, reliability is equal to zero (i.e., perfect reliability), uncertainty is equal 

to the Shannon entropy, and resolution is equal to the expected mutual information. In such a 

retrospective analysis, a normalized version of expected mutual information may be calculated as a 

measure of the proportion of uncertainty in the observations that is explained by the forecasts. 
  



Entropy 2015, 17 5463 

 

 

4. Discussion 

Figure 5 shows a diagrammatic summary of the overall divergence score and its components (see 

also Equation (2)), based on calculations using the example data set. Here, uncertainty (UNC) is 

characterized by the binary Shannon entropy at the overall average frequency of rain observations, 
2341.0=o . In this context, we can think of entropy as a measure of the extent of our uncertainty 

before use of the forecaster. A useful intuitive interpretation of reliability (REL) can be gained from the 

data summary set out in Table 1. There, the probabilities pk represent the allowed probability forecasts 
for rain. For a perfectly reliable forecaster, the observed frequencies of rain events, kk no , will be 

equal to pk in each category k; then REL = 0. Resolution (RES) is a measure of the extent to which the 

forecaster accounts for uncertainty (but not reliability), i.e., RES ≤ UNC. As mentioned above, in the 

case of the divergence score, resolution is characterized by expected mutual information. Then, the 

divergence score (DS) characterizes the uncertainty not accounted for by the forecaster (UNC – RES) 

together with the reliability (REL), so that DS = UNC – RES + REL. 

 

Figure 5. The overall divergence score and its components. The overall divergence score is 

denoted DS, with components uncertainty (UNC), reliability (REL) and resolution (RES), 

such that DS = UNC – RES + REL, with RES ≤ UNC as indicated by the vertical dashed 

line. 

The evaluation of probabilistic weather forecasts is primarily of interest to meteorologists, of 

course; but the methodology for evaluation of probabilistic forecasts is also applicable more widely in 

those situations where weather factors are identified as drivers of processes contributing to risk. 

Weather factors are important drivers of N2O emissions from agricultural soils, but studies of 

management interventions aimed at greenhouse gas mitigation have mainly been concerned with 

emissions inventory, and mitigation options tend to be assessed on an integrated seasonal time-scale 

[27,28]. An interesting example of the potential for a probabilistic approach to describing short-term 

N2O flux dynamics was offered in discussion of a modelling study by Hawkins et al. [29], as follows: 

“The model depicts a realistic positive emissions response to soil moisture at the mean values of the 

other factors. This reflects the general understanding that N efficiency, in terms of lower N2O 

emission, may be promoted by drier conditions. The WETTEST and DRIEST scenarios were simulated 

to investigate the magnitude of this efficiency difference. Although these scenarios are hypothetical 
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because in practice the wettest or driest day in a week in terms of soil moisture is not known until the 

end of the week, they are analogous to spreading fertiliser before or after a rainfall event.” We note 

here that although the wettest and driest day in a week in terms of soil moisture may only be known 

retrospectively, weather forecasts provide (probabilistic) advance warning of rainfall events. 

Rees et al. [28] highlight the importance of reducing the supply of nitrogen in the context of 

greenhouse gas mitigation, so that management interventions with potential to increase nitrogen-use 

efficiency are of interest. Increasing nitrogen-use efficiency ought to represent a contribution to 

measures that, in relation to mitigation, reduce both greenhouse gas emissions and farm costs, 

constituting a “win-win” scenario [30]. The goal therefore is practical implementation of 

meteorological information, in the form of forecasts that could be incorporated into decision making 

for within-season environmental management interventions. This depends first on our ability to show 

that such forecasts have the required levels of reliability and resolution, using appropriate evaluation 

methodology as outlined here. 
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Appendix 

The Appendix contains the tables of results referred to in the text. 

Table 2. Decomposition of the Brier score and the divergence score.a 

k pk nk ok ko  nk/N RELBS,k RESBS,k RELDS,k RESDS,k 

1 0.05 46 1 0.0217 0.1329 0.0367 2.0745 0.4862 8.6362

2 0.1 55 1 0.0182 0.1590 0.3682 2.5642 2.9939 10.8561

3 0.2 59 5 0.0847 0.1705 0.7837 1.3162 2.9746 4.5399

4 0.3 41 5 0.1220 0.1185 1.2998 0.5157 3.6576 1.6589

5 0.4 19 4 0.2105 0.0549 0.6821 0.0106 1.5491 0.0302

6 0.5 22 8 0.3636 0.0636 0.4091 0.3691 0.8286 0.9292

7 0.6 22 6 0.2727 0.0636 2.3564 0.0328 4.8346 0.0883

8 0.7 34 16 0.4706 0.0983 1.7894 1.9014 3.8702 4.5244

9 0.8 24 16 0.6667 0.0694 0.4267 4.4907 1.1695 10.0892

10 0.9 11 8 0.7273 0.0318 0.3282 2.6754 1.3052 5.9706

11 0.95 13 11 0.8462 0.0376 0.1402 4.8699 0.9745 10.9241

Column sumsb 346 81 1.0000 8.6204 20.8205 24.6439 58.2471

a Notation: k, forecast category index; pk, probability forecast (rain) (probability forecast of no-rain is the 

complement); nk, number of observations; ok, number of rain observations; ko , average frequency of rain 

observations = ok/nk ; nk/N, normalized frequency of observations; RELBS,k (components of RELBS) = 

( )2
kkk opn −⋅ ; RESBS,k (components of RESBS) = ( )2oon kk −⋅ ; RELDS,k (components of RELDS) = 

( )kkKLk poDn ⋅ ; RESDS,k (components of RESDS) = ( )ooDn kKLk ⋅ ; with 2341.0== NOo  (footnote b);  

b Column sums: 346== Nn
k k ; 81== Oo

k k ; 1= Nn
k k ; ( ) −⋅

k kkk opn 2  = 8.6204; 

( ) −⋅
k kk oon 2  = 20.8205; ( ) ⋅

k kkKLk poDn  = 24.6439; ( ) ⋅
k kKLk ooDn  = 58.2471. 
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Table 3. Brier score calculation via Bregman divergence.a 

A. Observation = no-rain (o = 0) 

k pk o nk ( )kpf ′ f(o) f(pk) ( ) ( )kk pfpo ′⋅−  DB(0||pk)

1 0.05 0 45 0.1 0 0.0025 −0.0050 0.0025 

2 0.1 0 54 0.2 0 0.0100 −0.0200 0.0100 

3 0.2 0 54 0.4 0 0.0400 −0.0800 0.0400 

4 0.3 0 36 0.6 0 0.0900 −0.1800 0.0900 

5b 0.4 0 15 0.8 0 0.1600 −0.3200 0.1600 

6 0.5 0 14 1.0 0 0.2500 −0.5000 0.2500 

7 0.6 0 16 1.2 0 0.3600 −0.7200 0.3600 

8 0.7 0 18 1.4 0 0.4900 −0.9800 0.4900 

9 0.8 0 8 1.6 0 0.6400 −1.2800 0.6400 

10 0.9 0 3 1.8 0 0.8100 −1.6200 0.8100 

11 0.95 0 2 1.9 0 0.9025 −1.8050 0.9025 

B. Observation = rain (o = 1) 

k pk o nk ( )kpf ′ f(o) f(pk) ( ) ( )kk pfpo ′⋅−  DB(1||pk)

1 0.05 1 1 0.1 1 0.0025 0.0950 0.9025 

2 0.1 1 1 0.2 1 0.0100 0.1800 0.8100 

3 0.2 1 5 0.4 1 0.0400 0.3200 0.6400 

4 0.3 1 5 0.6 1 0.0900 0.4200 0.4900 

5b 0.4 1 4 0.8 1 0.1600 0.4800 0.3600 

6 0.5 1 8 1.0 1 0.2500 0.5000 0.2500 

7 0.6 1 6 1.2 1 0.3600 0.4800 0.1600 

8 0.7 1 16 1.4 1 0.4900 0.4200 0.0900 

9 0.8 1 16 1.6 1 0.6400 0.3200 0.0400 

10 0.9 1 8 1.8 1 0.8100 0.1800 0.0100 

11 0.95 1 11 1.9 1 0.9025 0.0950 0.0025 

a Notation: k, forecast category index; pk, probability forecast for rain (reference value, at which the tangent 

is calculated), probability forecast for no-rain is the complement; o, comparison value, at which the 

divergence is calculated; nk, number of observations (total no-rain observations = 265, total rain observations 

= 81); ( )kpf ′ , slope of the tangent to f(p) at pk; ( ) ( )kpfof − − ( ) ( )kk pfpo ′⋅−  = DB(0||pk) (no-rain, o = 0), 

or ( ) ( )kpfof −  − ( ) ( )kk pfpo ′⋅−  = DB(1||pk) (rain, o = 1); 

b See Figure 1A. 
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Table 4. Divergence score calculation via Bregman divergence.a 

A. Observation = no-rain (o = 0) 

k pk o  nk ( )kpf ′  f(o) f(pk) ( ) ( )kk pfpo ′⋅−  DB(0||pk)

1 0.05 0 45 −2.9444 0 −0.1985 0.1472 0.0513 

2 0.1 0 54 −2.1972 0 −0.3251 0.2197 0.1054 

3 0.2 0 54 −1.3863 0 −0.5004 0.2773 0.2231 

4 0.3 0 36 −0.8473 0 −0.6109 0.2542 0.3567 

5b 0.4 0 15 −0.4055 0 −0.6730 0.1622 0.5108 

6 0.5 0 14 0.0000 0 −0.6931 0.0000 0.6931 

7 0.6 0 16 0.4055 0 −0.6730 −0.2433 0.9163 

8 0.7 0 18 0.8473 0 −0.6109 −0.5931 1.2040 

9 0.8 0 8 1.3863 0 −0.5004 −1.1090 1.6094 

10 0.9 0 3 2.1972 0 −0.3251 −1.9775 2.3026 

11 0.95 0 2 2.9444 0 −0.1985 −2.7972 2.9957 

B. Observation = rain (o = 1) 

k pk o nk ( )kpf ′  f(o) f(pk) ( ) ( )kk pfpo ′⋅−  DB(1||pk)

1 0.05 1 1 −2.9444 0 −0.1985 −2.7972 2.9957 

2 0.1 1 1 −2.1972 0 −0.3251 −1.9775 2.3026 

3 0.2 1 5 −1.3863 0 −0.5004 −1.1090 1.6094 

4 0.3 1 5 −0.8473 0 −0.6109 −0.5931 1.2040 

5b 0.4 1 4 −0.4055 0 −0.6730 −0.2433 0.9163 

6 0.5 1 8 0.0000 0 −0.6931 0.0000 0.6931 

7 0.6 1 6 0.4055 0 −0.6730 0.1622 0.5108 

8 0.7 1 16 0.8473 0 −0.6109 0.2542 0.3567 

9 0.8 1 16 1.3863 0 −0.5004 0.2773 0.2231 

10 0.9 1 8 2.1972 0 −0.3251 0.2197 0.1054 

11 0.95 1 11 2.9444 0 −0.1985 0.1472 0.0513 

a Notation: k, forecast category index; pk, probability forecast for rain (reference value, at which the tangent 

is calculated), probability forecast of no-rain is the complement; o, comparison value, at which the 

divergence is calculated; nk, number of observations (total no-rain observations = 265, total rain observations 

= 81); ( )kpf ′ , slope of the tangent to f(p) at pk; ( ) ( )kpfof −  − ( ) ( )kk pfpo ′⋅−  = DB(0||pk) (no-rain, o = 

0), or ( ) ( )kpfof −  − ( ) ( )kk pfpo ′⋅−  = DB(1||pk) (rain, o = 1); 

b See Figure 1B.  
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Table 5. Reliability calculation via Bregman divergence.a 

A. Brier score 

k pk ko  nk ( )kpf ′ ( )kof  f(pk) ( ) ( )kkk pfpo ′⋅−  ( )kkB poD

1 0.05 0.0217 46 0.1 0.0005 0.0025 −0.0028 0.0008 

2 0.1 0.0182 55 0.2 0.0003 0.0100 −0.0164 0.0067 

3 0.2 0.0847 59 0.4 0.0072 0.0400 −0.0461 0.0133 

4 0.3 0.1220 41 0.6 0.0149 0.0900 −0.1068 0.0317 

5 0.4 0.2105 19 0.8 0.0443 0.1600 −0.1516 0.0359 

6 0.5 0.3636 22 1.0 0.1322 0.2500 −0.1364 0.0186 

7b 0.6 0.2727 22 1.2 0.0744 0.3600 −0.3927 0.1071 

8 0.7 0.4706 34 1.4 0.2215 0.4900 −0.3212 0.0526 

9 0.8 0.6667 24 1.6 0.4444 0.6400 −0.2133 0.0178 

10 0.9 0.7273 11 1.8 0.5289 0.8100 −0.3109 0.0298 

11 0.95 0.8462 13 1.9 0.7160 0.9025 −0.1973 0.0108 

B. Divergence score 

k pk ko  nk ( )kpf ′  ( )kof  f(pk) ( ) ( )kkk pfpo ′⋅−  ( )kkB poD

1 0.05 0.0217 46 −2.9444 −0.1047 −0.1985 0.0832 0.0106 

2 0.1 0.0182 55 −2.1972 −0.0909 −0.3251 0.1798 0.0544 

3 0.2 0.0847 59 −1.3863 −0.2902 −0.5004 0.1598 0.0504 

4 0.3 0.1220 41 −0.8473 −0.3708 −0.6109 0.1509 0.0892 

5 0.4 0.2105 19 −0.4055 −0.5147 −0.6730 0.0768 0.0815 

6 0.5 0.3636 22 0.0000 −0.6555 −0.6931 0.0000 0.0377 

7b 0.6 0.2727 22 0.4055 −0.5860 −0.6730 −0.1327 0.2198 

8 0.7 0.4706 34 0.8473 −0.6914 −0.6109 −0.1944 0.1138 

9 0.8 0.6667 24 1.3863 −0.6365 −0.5004 −0.1848 0.0487 

10 0.9 0.7273 11 2.1972 −0.5860 −0.3251 −0.3795 0.1187 

11 0.95 0.8462 13 2.9444 −0.4293 −0.1985 −0.3058 0.0750 

a Notation: k, forecast category index; pk, probability forecast for rain (reference value, at which the tangent 

is calculated), probability forecast for no-rain is the complement; ko , average frequency of rain observations 

(comparison value, at which the divergence is calculated); nk, number of observations; ( )kpf ′ , slope of the 

tangent to f(p) at pk; ( )kof  − f(pk) − ( ) ( )kkk pfpo ′⋅−  = ( )kkB poD ; 

b See Figure 2. 
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Table 6. Resolution calculation via Bregman divergence.a 

A. Brier score 

k o  ko  nk ( )of ′  ( )kof  ( )of  ( ) ( )ofook ′⋅−  ( )ooD kB  

1 0.2341 0.0217 46 0.4682 0.0005 0.0548 −0.0994 0.0451 

2 0.2341 0.0182 55 0.4682 0.0003 0.0548 −0.1011 0.0466 

3 0.2341 0.0847 59 0.4682 0.0072 0.0548 −0.0699 0.0223 

4 0.2341 0.1220 41 0.4682 0.0149 0.0548 −0.0525 0.0126 

5 0.2341 0.2105 19 0.4682 0.0443 0.0548 −0.0110 0.0006 

6 0.2341 0.3636 22 0.4682 0.1322 0.0548 0.0606 0.0168 

7 0.2341 0.2727 22 0.4682 0.0744 0.0548 0.0181 0.0015 

8 0.2341 0.4706 34 0.4682 0.2215 0.0548 0.1107 0.0559 

9b 0.2341 0.6667 24 0.4682 0.4444 0.0548 0.2025 0.1871 

10 0.2341 0.7273 11 0.4682 0.5289 0.0548 0.2309 0.2432 

11 0.2341 0.8462 13 0.4682 0.7160 0.0548 0.2866 0.3746 

B. Divergence score 

k o  ko  nk ( )of ′  ( )kof  ( )of  ( ) ( )ofook ′⋅−  ( )ooD kB  

1 0.2341 0.0217 46 −1.1853 −0.1047 −0.5442 0.2517 0.1877 

2 0.2341 0.0182 55 −1.1853 −0.0909 −0.5442 0.2559 0.1974 

3 0.2341 0.0847 59 −1.1853 −0.2902 −0.5442 0.1770 0.0769 

4 0.2341 0.1220 41 −1.1853 −0.3708 −0.5442 0.1329 0.0405 

5 0.2341 0.2105 19 −1.1853 −0.5147 −0.5442 0.0279 0.0016 

6 0.2341 0.3636 22 −1.1853 −0.6555 −0.5442 −0.1535 0.0422 

7 0.2341 0.2727 22 −1.1853 −0.5860 −0.5442 −0.0458 0.0040 

8 0.2341 0.4706 34 −1.1853 −0.6914 −0.5442 −0.2803 0.1331 

9b 0.2341 0.6667 24 −1.1853 −0.6365 −0.5442 −0.5127 0.4204 

10 0.2341 0.7273 11 −1.1853 −0.5860 −0.5442 −0.5845 0.5428 

11 0.2341 0.8462 13 −1.1853 −0.4293 −0.5442 −0.7255 0.8403 

a Notation: k, forecast category index; o , overall average frequency of rain observations (see Table 2) 

(reference value, at which the tangent is calculated); ko , average frequency of rain observations (comparison 

value, at which the divergence is calculated); nk, number of observations; ( )of ′ , slope of the tangent to f(o) 

at o ; ( )kof  − ( )of  − ( ) ( )ofook ′⋅−  = ( )ooD kB ; 

b See Figure 3. 
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