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Abstract: A deformed exponential family is a generalization of exponential families. Since
the useful classes of power law tailed distributions are described by the deformed exponential
families, they are important objects in the theory of complex systems. Though the deformed
exponential families are defined by deformed exponential functions, these functions do not
satisfy the law of exponents in general. The deformed algebras have been introduced based
on the deformed exponential functions. In this paper, after summarizing such deformed
algebraic structures, it is clarified how deformed algebras work on deformed exponential
families. In fact, deformed algebras cause generalization of expectations. The three kinds
of expectations for random variables are introduced in this paper, and it is discussed why
these generalized expectations are natural from the viewpoint of information geometry. In
addition, deformed algebras cause generalization of independences. Whereas it is difficult
to check the well-definedness of deformed independence in general, the κ-independence is
always well-defined on κ-exponential families. This is one of advantages of κ-exponential
families in complex systems. Consequently, we can well generalize the maximum likelihood
method for the κ-exponential family from the viewpoint of information geometry.
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1. Introduction

An exponential family is a set of probability distributions and an important statistical model in
mathematical sciences. For example, the set of all Gaussian distributions is an exponential family. A
deformed exponential family is one of generalizations of exponential families, and it has been studied in
anomalous statistical physics (cf. [1]) and in machine learning theory (cf. [2,3]). A useful class of power
law tailed distributions, such as the set of all Student’s t-distributions, is a deformed exponential family.

In the study of deformed exponential families, a deformed exponential function and a deformed
logarithm function play important roles. However, these functions do not satisfy the law of exponents
in general. Hence, deformed algebraic structures and deformed differentials have been introduced in
anomalous statistical physics (cf. [4–7]). In addition, a random variable that follows a power law tailed
distribution may not have its mean and variance. To overcome this problem, a deformed probability
distribution called an escort distribution (cf. [1,8]) has been introduced. Then, an expectation with
respect to the escort distribution has been discussed.

In this paper, after summarizing such deformed algebraic structures, we clarify how a deformed
algebra works on deformed exponential families. In particular, we elucidate that a deformed sum works
on the sample space and a deformed product works on the target functional space. This difference makes
clear how to use deformed algebras.

Since the deformed sum works on the sample space (i.e., the domain of random variables), the sample
space can be regarded as some algebraic space, not the standard Euclidean space. This deformation
causes generalizations of expectations of random variables. In this paper, we consider three kinds of
expectations, which include the expectation with respect to the escort distribution mentioned above.
Then, we elucidate why these expectations are natural from the viewpoint of information geometry.
Here, information geometry is one of the differential geometric methods for statistical estimation
(cf. [9]). As a consequence, generalized expectations give local coordinate systems of deformed
exponential families, and such coordinate systems have close relations to a dually-flat structure and
to a projective structure of deformed exponential families. (see also [10–13], etc.)

The deformed product works on the target space of probability distributions. This deformation
causes generalizations of independences. Though it is difficult to check the well-definedness of
deformed independence, the κ-independence for the κ-exponential family is always well defined. This
is an advantage of κ-exponential families among the class of deformed exponential families. Hence,
we consider κ-generalization of the maximum likelihood method. In information geometry, it is
known that the maximum likelihood estimator for a curved exponential family is characterized by
the Kullback–Leibler divergence projection from the observed data. Based on this fact, we give a
κ-generalization of the divergence projection-type theorem for the κ-maximum likelihood estimator.

In this paper, new contributions are stated as theorems (i.e., Theorems 1, 3, 4 and 7), whereas known
results are stated as propositions.
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2. Deformed Exponential Families

In this section, we give definitions of deformed exponential functions and deformed exponential
families. For more details, see [1,10,11,14], for example. We assume that all functions are real functions
and that variables are defined in a real number field, since we will consider probability distributions in a
real number field.

Let χ be a strictly increasing function from R>0 to R>0. We define a χ-logarithm function (or a
deformed exponential function) by:

lnχ s :=

∫ s

1

1

χ(t)
dt.

The inverse of the χ-logarithm function is called a χ-exponential function (or a deformed exponential
function), and it is given by:

expχt := 1 +

∫ t

0

λ(s)dx,

where the function λ(s) is given by λ(lnχ s) = χ(s).
We remark that the χ-logarithm function lnχ and the χ-exponential function expχ are usually called

φ-logarithm and φ-exponential, respectively (cf. [1,15]). However, the symbol φ is used as the dual
Hessian potential function in information geometry, so we use χ as the deformation function in this
paper.

Example 1. Suppose that a deformation function χ(s) is given by:

χ(s) =
2s

sκ + s−κ
, (−1 < κ < 1, κ 6= 0).

Then, the deformed exponential and the deformed logarithm are given by:

lnκ s :=
sκ − s−κ

2κ
, (s > 0),

expκt := (κt+
√

1 + κ2t2)
1
κ ,

respectively. The function lnκ s is called a κ-logarithm function and expκt a κ-exponential function
(cf. [6]). By taking a limit κ→ 0, these functions coincide with the standard logarithm and the standard
exponential, respectively.

While s > 0 is needed for defining the κ-logarithm function lnκ s, the κ-exponential function expκ t

is defined entirely on R, since κt+
√

1 + κ2t2 is always positive.

Example 2. Suppose that χ(s) is given by a power function χ(s) = sq, (q > 0, q 6= 1), Then, the
deformed exponential and the deformed logarithm are given by:

lnq s :=
s1−q − 1

1− q
, (s > 0),

expqt := (1 + (1− q)t)
1

1−q , (1 + (1− q)t > 0).
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The function lnq s is called a q-logarithm, and expqt a q-exponential (cf. [1,8]). Taking a limit q → 1,
these functions coincide with the standard logarithm and the standard exponential, respectively.

The condition s > 0 is needed for defining lnq s. In the q-exponential case, the condition:

1 + (1− q)t > 0 (1)

is also necessary, since the base of the exponential function must be positive. Condition (1) is called the
anti-exponential condition for the q-exponential function.

Let Ω be a total sample space. We say that a statistical model Sχ on Ω is a χ-exponential family or a
deformed exponential family if Sχ is a set of probability density functions, such that:

Sχ :=

{
p(x; θ)

∣∣∣∣∣p(x; θ) = expχ

[
n∑
i=1

θiFi(x)− ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

where F1(x), . . . , Fn(x) are functions on Ω, θ = {θ1, . . . , θn} is a parameter and ψ(θ) is the
normalization with respect to the parameter θ. We assume that Sχ is a statistical model in the sense
of information geometry. That is, a probability density p(x; θ) ∈ Sχ has support entirely on Ω.
See Chapter 2 in [9] for more details. The normalization function ψ is convex, but it may not be
strictly convex in general. We assume that ψ is strictly convex in this paper, and then, we can
induce a Riemannian metric from this normalization function ψ (see Section 7). In addition, functions
F1(x), . . . , Fn(x), ψ(θ) and a parameter θ must satisfy the anti-exponential condition. For example, in
the q-exponential case,

n∑
i=1

θiFi(x)− ψ(θ) < − 1

1− q
.

We remark that it is a bit of a difficult problem how the anti-exponential condition imposes the domain
of {θi} and the range of {Fi(x)}. We will give a further discussion at the end of this section.

We say that a deformed exponential family is a κ-exponential family if its deformed exponential
function is a κ-exponential function expκ and a q-exponential family if its deformed exponential function
is a q-exponential function expq. These deformed exponential families are denoted by Sκ and Sq,
respectively.

Suppose that Mχ is a submanifold of Sχ, that is,

Mχ :=

{
p(x; θ(u))

∣∣∣∣∣p(x; θ(u)) = expχ

[
n∑
i=1

θi(u)Fi(x)− ψ(θ(u))

]
, u ∈ U ⊂ Rm ⊂ Rn

}
.

The submanifold Mχ is called a curved χ-exponential family of Sχ. From similar arguments, we can
define a curved q-exponential family Mq in Sq and a curved κ-exponential family Mκ in Sκ.

Example 3 (Discrete distributions (cf. [10])). Suppose that Ω = {x0, x1, . . . , xn} is a finite sample
space. Denote by Sn the set of all probability distributions on Ω:

Sn =

{
p(x; η)

∣∣∣∣∣ ηi > 0,
n∑
i=0

ηi = 1, p(x; η) =
n∑
i=0

ηiδi(x)

}
.
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The natural parameters and the normalization are given by:

θi = lnχ p(xi)− lnχ p(x0) = lnχ ηi − lnχ

(
1−

n∑
i=1

ηi

)
,

ψ(θ) = − lnχ η0 = − lnχ

(
1−

n∑
i=1

ηi

)
.

Then, we obtain:

lnχ p(x; θ) = lnχ

(
n∑
i=0

ηiδi(x)

)

=
n∑
i=1

(lnχ ηi − lnχ η0) δi(x) + lnχ η0

=
n∑
i=1

θiδi(x)− ψ(θ).

This implies that Sn is a χ-exponential family for any χ.

Example 4 (Student t-distributions). Fix a parameter q (1 < q < 3). A probability density functions
p(x;µ, σ) on Ω = R is said to be a Student t-distribution or a q-normal distribution if:

p(x;µ, σ) :=
1

Zq(σ)

[
1− 1− q

3− q
(x− µ)2

σ2

] 1
1−q

,

where (µ, σ) are parameters, such that −∞ < µ <∞ and 0 < σ <∞, and Zq(σ) is the normalization
of probability density defined by:

Zq(σ) :=

√
3− q√
q − 1

Beta

(
3− q

2(q − 1)
,
1

2

)
σ.

By taking a limit q → 1, a Student t-distribution converges to a normal distribution.
The set of all Student t-distributions Sq is a q-exponential family. In fact, natural parameters are

given by:

θ1 :=
2

3− q
{Zq(σ)}q−1 µ

σ2
, θ2 := − 1

3− q
{Zq(σ)}q−1 1

σ2
,

respectively. Then, we obtain:

lnq p(x) =
1

1− q
({p(x)}1−q − 1)

=
1

1− q

{
1

{Zq(σ)}1−q

(
1− 1− q

3− q
(x− µ)2

σ2

)
− 1

}
=

2µ{Zq(σ)}q−1

(3− q)σ2
x− {Zq(σ)}q−1

(3− q)σ2
x2 − {Zq(σ)}q−1

3− q
µ2

σ2
+
{Zq(σ)}q−1 − 1

1− q
= θ1x+ θ2x2 − ψ(θ),

where ψ is the normalization defined by:

ψ(θ) := −(θ1)2

4θ2
− {Zq(σ)}q−1 − 1

1− q
.

Hence, the set of all Student t-distributions Sq is a q-exponential family.



Entropy 2015, 17 5734

Let us give further considerations about deformed exponential families. In the case 0 < q < 1, a
q-normal distribution has the following form:

p(x;µ, σ) :=
1

Zq(σ)

[
1− 1− q

3− q
(x− µ)2

σ2

] 1
1−q

=
1

Zq(σ)
expq

[
− (x− µ)2

(3− q)σ2

]
,

where the normalization Zq(σ) is given by:

Zq(σ) :=

√
3− q√
1− q

Beta

(
2− q
1− q

,
1

2

)
σ.

The anti-exponential condition for this q-normal distribution is:

1− 1− q
3− q

(x− µ)2

σ2
> 0,

hence the domain of random variable x is given by:

µ−
√

3− q√
1− q

σ < x < µ+

√
3− q√
1− q

σ. (2)

In this case, the set of q-normal distributions Sq = {p(x;µ, σ)} is not a statistical model in the sense of
information geometry [9], since the support of p(x;µ, σ) depends on its parameter (µ, σ).

On the other hand, for a q-normal distribution, fix parameters q, µ, σ. By introducing a new parameter
α (0 < α < q/(1− q)), we set:

qα =
q − α(1− q)
1− α(1− q)

, σ2
α =

3− q
3− q − 2α(1− q)

σ2. (3)

The transformation (q, σ) 7→ (qα, σα) defined by (3) is called a τ -transformation [16]. From
straightforward calculations, we have:

3− qα
1− qα

σ2
α =

3− q
1− q

σ2.

This equation implies that, from Equation (2), the domain of random variable x is invariant under
τ -transformations. Hence, a one-dimensional statistical model is defined by:

Sqα =

{
p(x;α)

∣∣∣∣ p(x;α) :=
1

Zqα(σα)
expqα

[
− (x− µ)2

(3− qα)σ2
α

]
, 0 < α <

q

1− q

}
.

However, Sqα is not a deformed exponential family in our setting, since the exponent qα of the deformed
exponential function depends on the parameter α.

3. Non-Additive Differentials

In this section, we consider deformed algebras and deformed differential equations to characterize
deformed exponential functions.



Entropy 2015, 17 5735

3.1. κ-Deformed Algebras and κ-Exponential Functions

We begin with the κ-exponential case. For more details about κ-deformed algebras, see [6].
Let expκ be a κ-exponential function and lnκ a κ-logarithm function. Since expκ and lnκ do not

satisfy the law of exponents, we introduce the κ-sum ⊕̃κ and the κ-product ⊗κ as follows.

x1⊕̃
κ
x2 := lnκ [expκ x1 · expκ x2]

= x1

√
1 + κ2x2

2 + x2

√
1 + κ2x2

1,

y1 ⊗κ y2 := expκ [lnκ y1 + lnκ y2] , (y1 > 0 and y2 > 0).

The conditions y1 > 0 and y2 > 0 are necessary for defining the κ-logarithm function. On the other
hand, such conditions are not necessary for defining the κ-exponential function.

From the definitions of κ-deformed algebras, we have the following deformed law of exponents.

expκ(x1 ⊕̃
κ
x2) = expκ x1 · expκ x2, lnκ(y1 · y2) = lnκ y1 ⊕̃

κ
lnκ y2,

expκ(x1 + x2) = expκ x1 ⊗κ expκ x2, lnκ(y1 ⊗κ y2) = lnκ y1 + lnκ y2. (4)

Since the inverse element of x with respect to the κ-sum is −x, we define the κ-difference 	̃κ by:

x1	̃
κ
x2 := x1⊕̃

κ
(−x2)

= x1

√
1 + κ2x2

2 − x2

√
1 + κ2x2

1. (5)

By taking a limit with respect to the κ-difference, we define a (non-additive) κ-differential as follows.

dκ
dκx

f(x) := lim
x′→x

f(x′)− f(x)

x′	̃κx
. (6)

We remark that a non-additive κ-differential dκ/dκx characterizes the κ-exponential function. Consider
the following deformed differential equations:

dκ
dκx

f(x) = f(x), (7)

d

dx
f(x) =

1√
1 + κ2x2

f(x). (8)

Then, the eigenfunction f(x) of both equations is the κ-exponential function. That is,

f(x) = expκ x = (κx+
√

1 + κ2x2)
1
κ .

In fact, from the definition of the κ-difference (5), we have:

dκ
dκx

=
√

1 + κ2x2
d

dx
,

hence two deformed differential equations, (7) and (8), are essentially equivalent. We call a non-additive
differential equation (7) a non-additive representation and a deformed differential equation (8) an escort
representation.
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Remark 1. A κ-sum works on the domain of a κ-exponential function (i.e., the sample space Ω), and
a κ-product works on the target space. This implies that the sample space can be regarded as some
deformed algebraic space, not the standard Euclidean space. In fact, the sample space and the target
space are regarded as commutative fields (equivalently, Abelian fields in the usage of [7]). The κ-sum is
an additive group structure of a commutative field structure on the sample space, and the κ-product is
a multiplicative group structure on the target space (see also Remark 2 and [7]). We consider that this
fact is very important in the theory of non-extensive statistical physics.

Recall the definition of Napier’s constant. The standard exponential function has the following infinite
product expression:

expx = lim
n→∞

(
1 +

x

n

)n
.

In the κ-exponential case, we have the following.

Theorem 1. Fix a real number x ∈ R. Suppose that n > |x| and n ∈ N. Then, we have:

expκ x = lim
n→∞

(
1 +

x

n

)⊗κn
,

where: (
1 +

x

n

)⊗κn
:=
(

1 +
x

n

)
⊗κ · · · ⊗κ

(
1 +

x

n

)
︸ ︷︷ ︸

n times

.

Proof. From the assumption, the inequality 1 + x/n > 0 always holds. Hence, we have:

lnκ

(
1 +

x

n

)⊗κn
= n lnκ

(
1 +

x

n

)
= n

(
1 + x

n

)κ − (1 + x
n

)κ
2κ

. (9)

(the assumption n > |x| is a condition that the κ-logarithm in Equation (9) defines). From the definition
of the κ-product (4), using asymptotic expansions, we have:(

1 +
x

n

)κ
= 1 + κ

x

n
+ O

((x
n

)2
)
,(

1 +
x

n

)−κ
= 1 − κ

x

n
+ O

((x
n

)2
)
.

Substituting asymptotic expansions into (9), we have:

lnκ

(
1 +

x

n

)⊗κn
= x +

n

2κ
·O
((x

n

)2
)
.

Hence, we have: (
1 +

x

n

)⊗κn
= expκ

[
x+

n

2κ
·O
((x

n

)2
)]

.

By taking a limit n→∞, we obtain the result.
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3.2. q-Deformed Algebras and q-Exponential Functions

Let us consider the q-exponential case (cf. [4]). Let expq be a q-exponential function, and let lnq be
a q-logarithm function. The q-deformed algebras, i.e., the q-sum ⊕̃q and the q-product ⊗q, are defined
as follows.

x1⊕̃
q
x2 := lnq

[
expq x1 · expq x2

]
= x1 + x2 + (1− q)x1x2,

y1 ⊗q y2 := expq [lnq y1 + lnq y2]

=
[
y1−q

1 + y1−q
2 − 1

] 1
1−q ,

where conditions 1 + (1− q)x1 > 0, 1 + (1− q)x2 > 0, y1−q
1 + y1−q

2 − 1 > 0 are needed for defining
q-exponential functions and y1 > 0, y2 > 0 are for q-logarithm. Under the q-deformed algebras, the
q-deformed law of exponents holds:

expq(x1 ⊕̃
q
x2) = expq x1 · expq x2, lnq(y1 · y2) = lnq y1 ⊕̃

q
lnq y2,

expq(x1 + x2) = expq x1 ⊗q expq x2, lnq(y1 ⊗q y2) = lnq y1 + lnq y2. (10)

The inverse element of x with respect to the q-sum is given by:

[−x]q := lnq

(
1

expq x

)
=

−x
1 + (1− q)x

.

Hence, the q-difference should be defined by:

x1	̃
q
x2 := x1⊕̃

q
[−x2]q

= x1 −
1 + (1− q)x1

1 + (1− q)x2

x2. (11)

By taking a limit with respect to the q-difference, we define a (non-additive) q-differential as follows.

dq
dqx

f(x) := lim
x′→x

f(x′)− f(x)

x′	̃qx
.

Let us consider the following deformed differential equations:

dq
dqx

f(x) = f(x), (12)

d

dx
f(x) = {f(x)}q. (13)

Then, the eigenfunction f(x) of both equations is the q-exponential function. That is,

f(x) = expq x = (1 + (1− q)x)
1

1−q .

In the same way as the κ-exponential, we say that the non-additive differential equation (12) is the
non-additive representation and the deformed differential equation (13) is the escort representation.

We remark again that a q-sum (a deformed sum) works on the domain of a q-exponential function and
that a q-product (a deformed product) works on the target space. Hence, the sample space Ω may not be
the standard Euclidean space.

An infinite product expression of the q-exponential function is given as follows.
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Proposition 2 (cf. [17]). For all integers n ∈ N, suppose that:

n
(

1 +
x

n

)1−q
− (n− 1) > 0. (14)

Then, we have:

expq x = lim
n→∞

(
1 +

x

n

)⊗qn
,

where: (
1 +

x

n

)⊗1
n

:=
(

1 +
x

n

)
⊗q · · · ⊗q

(
1 +

x

n

)
︸ ︷︷ ︸

n times

.

Proof. From the definition of q-product (10) and the anti-exponential condition (14), we have:

lnq

(
1 +

x

n

)⊗qn
= n lnq

(
1 +

x

n

)
= n

(
1 + x

n

)1−q − 1

1− q
.

Using an asymptotic expansion:(
1 +

x

n

)1−q
= 1 + (1− q)x

n
+ O

((x
n

)2
)
,

we have:

lnq

(
1 +

x

n

)⊗qn
= x +

n

1− q
·O
((x

n

)2
)
.

Hence, we have: (
1 +

x

n

)⊗qn
= expq

[
x+

n

1− q
·O
((x

n

)2
)]

.

By taking a limit n→∞, we obtain the result.

Remark 2. If a deformed sum and a deformed product are well-defined, then we can give similar
arguments for any χ-exponential functions. However, it is difficult to describe the anti-exponential
conditions in general. If we can admit a complex number field for the domain and the target of statistical
model (cf. [18]), then the deformed algebras are well defined [7]. In fact, we can define the following
commutative field structures if all of the objects are well defined:

x1⊕̃
χ
x2 := lnχ

[
expχ x1 · expχ x2

]
, x1⊗̃

χ
x2 := lnχ

[
exp[ln(expχ x1) · ln(expχ x2)]

]
,

y1 ⊕χ y2 := expχ [ln[exp(lnχ y1) + exp(lnχ y2)]] , y1 ⊗χ y2 := expχ [lnχ y1 + lnχ y2] .

Usages of the multiplicative group structure ⊗̃χ on the sample space and the additive group structure
⊕χ on the target space are not clear. We may need algebraic probability theory to clarify these group
structures (for usages of algebraic structures for statistics, see [19,20], for example).
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4. Expectation Functionals

As we have seen in the previous section, the sample space Ω may not be the standard Euclidean space.
Let us consider suitable expectations for deformed exponential families.

For a χ-exponential probability p(x; θ) ∈ Sχ, we define the escort distribution Pχ(x; θ) and the
normalized escort distribution P esc

χ (x; θ) of p(x; θ) by:

Pχ(x; θ) := χ{p(x; θ)},

P esc
χ (x; θ) :=

1

Zχ(θ)
χ{p(x; θ)}, Zχ(θ) :=

∫
Ω

χ{p(x; θ)}dx,

respectively. The χ-canonical expectation Eχ,p[∗] and the normalized χ-escort expectation Eesc
χ,p[∗] are

defined by:

Eχ,p[f(x)] :=

∫
Ω

f(x)Pχ(x; θ) dx =

∫
Ω

f(x)χ{p(x; θ)}dx,

Eesc
χ,p[f(x)] :=

∫
Ω

f(x)P esc
χ (x; θ) dx =

1

Zχ(θ)

∫
Ω

f(x)χ{p(x; θ)}dx.

Even though the integration of χ-canonical expectation is carried out with respect to a positive density, as
we will see in later sections, this expectation is natural from the viewpoint of differential geometry. On
the other hand, we call the standard expectation with respect to p(x; θ) a simple expectation and denote
it by:

Ep[f(x)] :=

∫
Ω

f(x)p(x; θ)dx.

A χ-canonical expectation and a normalized χ-escort expectation with respect to a κ-exponential
probability p(x; θ) are called the κ-canonical expectation and the normalized κ-escort expectation and
are denoted byEκ,p[∗] andEesc

κ,p [∗], respectively. In the q-exponential case, they are called the q-canonical
expectation and the normalized q-escort expectation and denoted by Eq,p[∗] and Eesc

q,p [∗], respectively.
For a Student t-distribution p(x;µ, θ) ∈ Sq, the normalized q-escort mean µq and the normalized

q-escort variance σ2
q are given by:

µq := Eesc
q,p [x] = µ,

σ2
q := Eesc

q,p

[
(x− µ)2

]
= σ2,

respectively. Hence, the normalized q-escort expectation Eesc
q,p [∗] is a natural generalization of the simple

expectation Ep[∗].
Next, we consider non-additive integrals to elucidate the relations between the deformed algebras and

the escort expectations. In particular, we discuss the κ-exponential case.
Let f(x) be a function on the sample space Ω. Then, we define a (non-additive) κ-integral (cf. [5]) by

the following formula: ∫
Ω

f(x)dκx :=

∫
Ω

f(x)√
1 + κ2x2

dx =

∫
Ω

f(x)wκ(x)dx, (15)

where w(x) is a weight function defined by:

wκ(x) =
1√

1 + κ2x2
.
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Obviously, this is the inverse operation of the non-additive κ-differential (6).
When Ω is a discrete set, Ω = {x0.x1, . . . , xn}, then we define a (non-additive) κ-summation by:

n∑
i=0

©κ f(xi) :=
n∑
i=0

f(xi)√
1 + κ2x2

i

=
N∑
i=0

f(xi)w(xi).

From the definition of the κ-exponential function, we have the following.

Theorem 3. Suppose that χ(s) = 2s/(sκ + s−κ) is the deformation function with respect to the
κ-logarithm function. Then, χ(expκ x) coincides with the weight function w(x) with respect to the
non-additive κ-integral. That is, the following formula holds:

χ(expκ x) =
1√

1 + κ2x2
= wκ(x).

We think that the canonical expectationEκ,p[∗] gives a suitable weight for the sample space Ω from the
above theorem. We may consider a non-additive χ-integral as a general discussion (in the q-exponential
case, the corresponding q-integral is introduced in [4]). However, we have to check carefully the
well-definedness of the χ-integral since the anti-exponential condition must be satisfied.

5. Geometry of χ-Exponential Families with Simple Expectations

In this section, we consider the geometry of χ-exponential families by generalizing the
e-representation and the m-representation of probability densities. For more details, see [11].

Let Sχ be a χ-exponential family. We define a χ-score function sχ(x; θ) : Sχ → Rn, sχ(x; θ) =
t ((sχ)1(x; θ), . . . , (sχ)n(x; θ)) by:

(sχ)i(x; θ) :=
∂

∂θi
lnχ p(x; θ), (i = 1, . . . , n). (16)

Under suitable conditions, we can define Riemannian metrics on Sχ by:

gEij(θ) :=

∫
Ω

∂i lnχ p(x; θ)∂j lnχ p(x; θ)χ{p(x; θ)} dx (17)

= Eχ,p[(s
χ)i(x; θ)(sχ)j(x; θ)],

gMij (θ) :=

∫
Ω

∂ip(x; θ)∂j lnχ p(x; θ) dx, (18)

gNij (θ) :=

∫
Ω

1

χ{p(x; θ)}
∂ip(x; θ)∂jp(x; θ) dx. (19)

In the same manner as an invariant statistical manifold, a differential ∂ip(x; θ) and a χ-score function
∂i ln p(x; θ) are regarded as tangent vectors for a χ-exponential family Sχ. Hence, the χ-score function
is a generalization of the e-representation of p(x; θ).

Theorem 4. Riemannian metrics gE, gM and gN on Sχ coincide. That is,

gE(θ) = gM(θ) = gN(θ).
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Proof. For a χ-exponential distribution p(x; θ), its differential is given as follows:

∂

∂θi
p(x; θ) = χ(p(x; θ))

(
Fi(x)− ∂

∂θi
ψ(θ)

)
,

∂

∂θi
lnχ p(x; θ) = Fi(x)− ∂

∂θi
ψ(θ).

By substituting the above formulas into (17)–(19), we obtain the results.

We remark that integrations are carried out with respect to un-normalized χ-escort distributions. If we
define Riemannian metrics by normalized χ-escort expectations, they do not coincide in general. Their
Riemannian metrics are conformally equivalent (cf. [11]).

By differentiating Equation (18), we can define dual affine connections∇M(e) and ∇M(m) on Sχ by:

Γ
M(e)
ij,k (θ) :=

∫
Ω

∂kp(x; θ)∂i∂j lnχ p(x; θ)dx,

Γ
M(m)
ij,k (θ) :=

∫
Ω

∂i∂jp(x; θ)∂k lnχ p(x; θ)dx.

From the definitions of the χ-exponential family and the χ-logarithm function, we obtain Γ
M(e)
ij,k (θ) ≡ 0.

Hence, a parameter θ = {θi} is a∇M(e)-affine coordinate system, and the connection∇M(e) is flat. These
imply that the triplet (Sχ,∇M(e), gM) is a Hessian manifold. The cubic form CM

ijk of (Sχ,∇M(e), gM) is:

CM
ijk = Γ

M(m)
ij,k − Γ

M(e)
ij,k = Γ

M(m)
ij,k .

To give Hessian potential functions of (Sχ,∇M(e), gM), we define functions Iχ and Φ by:

Iχ(pθ) := −
∫

Ω

{Vχ(p(x; θ)) + (p(x; θ)− 1)Vχ(0)} dx,

Ψ(θ) :=

∫
Ω

p(x; θ) lnχ p(x; θ)dx+ Iχ(pθ) + ψ(θ),

where the function Vχ(t) is given by:

Vχ(t) :=

∫ t

1

lnχ(s) ds.

We call Iχ a generalized entropy functional and Ψ a generalized Massieu potential.

Proposition 5 (cf. [21,22]). For a χ-exponential family Sχ, (1) the generalized Massieu potential Ψ(θ)

is the potentials of gM and CM with respect to {θi}:

gMij (θ) = ∂i∂jΨ(θ),

CM
ijk(θ) = ∂i∂j∂kΨ(θ).

(2) Let ηi be the simple expectation of Fi(x), i.e., ηi := Ep[Fi(x)]. Then, {ηi} is the dual affine coordinate
system of {θi} with respect to gM , and each ηi is given by:

ηi = ∂iΨ(θ).

(3) Let Φ(η) be the negative generalized entropy functional, i.e., Φ(η) := −Iχ(pθ). Then, Φ(η) is the
potential of gM with respect to {ηi}.
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Let us consider a divergence function on χ-exponential family. The canonical divergence D on
(Sχ,∇M(e), gM) is defined by:

D(p, r) = Ψ(θ(p)) + Φ(η(r))−
n∑
i=1

θi(p)ηi(r).

On the other hand, the χ-divergence (or U -divergence) on Sχ is defined by:

Dχ(p, r) =

∫
Ω

{Uχ(lnχ r(x))− Uχ(lnχ p(x))− p(x)(lnχ r(x)− lnχ p(x))} dx,

where the function Uχ(t) is given by:

Uχ(s) :=

∫ s

0

expχ(t) dt.

Then, the χ-divergence Dχ coincides with the canonical divergence D on (Sχ,∇M(m), gM). We remark
that the χ-divergence is naturally constructed from a bias corrected χ-score function. See [11,23]. for
more details.

In the q-exponential case, the χ-divergence is given by:

D1−q(p, r) =
1

(1− q)(2− q)

∫
Ω

p(x)2−qdx− 1

1− q

∫
Ω

p(x)r(x)1−qdx+
1

2− q

∫
Ω

r(x)2−qdx.

The divergence D1−q(p, r) is called a β-divergence (β = 1 − q) or a density power divergence in
statistics [24]. This divergence is useful in robust statistics.

We remark that the generalization of e- and m-representations through an arbitrary monotone
embedding function was first studied in [25]. For further generalizations through monotone embedding
functions, see [26,27]. These generalizations of e- and m-representations are also related to the
U -geometry in information geometry (cf. [21,22]). When the embedding function χ(t) is identity (q = 1

in the q-exponential case and κ = 0 in the κ-exponential case), the results in this section reduce to the
standard results in exponential families [11].

6. Geometry of Deformed Exponential Families with χ-Escort Expectation

Since a χ-exponential distribution has a normalization term ψ(θ), we induce geometric structures
directly from the potential function ψ. For more details, see [10,11]. When the embedding function χ(t)

is identity, the results in this section also reduce to the standard results in exponential families [11].
We define a χ-Fisher metric gχ and a χ-cubic form Cχ by:

gχij(θ) := ∂i∂jψ(θ),

Cχ
ijk(θ) := ∂i∂j∂kψ(θ),

respectively. Denote by Γ
χ(0)
ij,k the Christoffel symbol of the Levi–Civita connection with respect to the

χ-Fisher metric gχ. From standard arguments in Hessian geometry [28], we can define mutually dual
flat connections by:

Γ
χ(e)
ij,k (θ) := Γ

χ(0)
ij,k (θ)− 1

2
Cχ
ijk(θ) ≡ 0,

Γ
χ(m)
ij,k (θ) := Γ

χ(0)
ij,k (θ) +

1

2
Cχ
ijk(θ) = Cχ

ijk(θ),
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respectively. We call ∇χ(e) a χ-exponential connection and ∇χ(m) a χ-mixture connection. In this case,
{θi} is a ∇χ(e)-affine coordinate system, and triplets (Sχ,∇χ(e), gχ) and (Sχ,∇χ(m), gχ) are mutually
dual Hessian manifolds.

Proposition 6 (cf. [10,11]). For a χ-exponential family Sχ,

(1) ψ(θ) is the potential of gχ and Cχ with respect to {θi}.

(2) Let ηi be the normalized χ-escort expectation of Fi(x), i.e., ηi := Eesc
χ,p[Fi(x)]. Then, {ηi} is the

dual affine coordinate system of {θi} with respect to gχ, and each ηi is given by:

ηi = ∂iψ(θ).

(3) Let φ(η) by the negative χ-deformed entropy, i.e., φ(η) := Eesc
χ,p[lnχ p(x; θ)].

Then, φ(η) is the potential of gχ with respect to {ηi}.

Let us consider divergence functions. The canonical divergence of (Sχ,∇χ(e), gχ) is given by:

D(p, r) = ψ(θ(p)) + φ(η(r))−
n∑
i=1

θi(p)ηi(r).

On the other hand, a χ-relative entropy (or a generalized relative entropy) Dχ(p, r) on Sχ is defined by:

Dχ(p, r) := Eesc
χ,p[lnχ p(x)− lnχ r(x)]. (20)

If the deformation function χ is an identity function χ(s) = s, then the χ-relative entropy coincides with
the Kullback–Leibler divergence. In addition, the χ-relative entropy Dχ coincides with the canonical
divergence on (Sχ,∇χ(m), gχ). In fact, in the same way as a standard exponential family, we have:

Dχ(p(θ), p(θ′)) = Eesc
χ,p

[(
n∑
i=1

θiFi(x)− ψ(θ)

)
−

(
n∑
i=1

(θ′)iFi(x)− ψ(θ′)

)]

=

(
n∑
i=1

θiηi(x)− ψ(θ)

)
−

(
n∑
i=1

(θ′)iηi(x)− ψ(θ′)

)

= ψ(θ′) + φ(θ)−
n∑
i=1

(θ′)iηi

= D(p(θ′), p(θ)).

In the κ-exponential case, we call a χ-relative entropy (20) a κ-relative entropy and denote it by Dκ.
On the other hand, in the q-exponential case, a χ-relative entropy for q-exponential family is called a

normalized Tsallis relative entropy, which is given by:

DT
q (p, r) := Eesc

q,p [lnq p(x)− lnq r(x)]

=

∫
Ω

P esc
q (x) (lnq p(x)− lnq r(x)) dx

=
1

(1− q)Zq(p)

{
1−

∫
Ω

p(x)qr(x)1−q
}
dx,
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where Zq(p) is the normalization of the escort distribution P esc
q (x) of p(x). Denote by (Sq,∇q(e), gq)

and (Sq,∇q(m), gq) the induced Hessian manifolds from the normalization ψ(θ). Then, the normalized
Tsallis relative entropy coincides with the canonical divergence for a Hessian manifold (Sq,∇q(m), gq).

For a q-exponential family, we can also define an α-divergence (α = 1− 2q) by:

D(1−2q)(p, r) :=
1

q
Eq,p[lnq p(x)− lnq r(x)]

=
1

q

∫
Ω

Pq(x) (lnq p(x)− lnq r(x)) dx

=
1

q(1− q)

{
1−

∫
Ω

p(x)qr(x)1−q
}
dx.

It is known that the α-divergence (α = 1− 2q) induces an invariant statistical manifold (Sq,∇(1−2q), g).

Remark 3. For a q-exponential family Sq, a normalized Tsallis entropy induces a Hessian manifold
(i.e., a flat statistical manifold) (Sq,∇q(m), gq), whereas an α-divergence induces an invariant statistical
manifold (Sq,∇(1−2q), g). Since a constant multiplication is not essential in differential geometry, the
difference is caused by the normalization of the escort distribution:

DT
q (p, r) =

q

Zq(p)
D(1−2q)(p, r).

In this case, the two statistical manifolds (Sq,∇q(m), gq) and (Sq,∇(1−2q), g) are (−1)-conformally
equivalent (cf. [29,30]). This implies that the normalization of a probability density is not a trivial
problem. The normalization does affect the induced geometric structures and, consequently, the
estimating methods for statistical inference.

7. Discussion about Expectations

We give further discussions about expectation functionals. Since a deformed exponential family
Sχ is regarded as a manifold, we can choose an arbitrary local coordinate system for Sχ. From this
point of view, simple expectations {Ep[Fi(x)]} and normalized χ-escort expectations {Eesc

χ,p[Fi(x)]} are
nothing but local coordinates of the statistical model. However, in differential geometry, we often use
appropriate coordinates depending on the background geometry, e.g., Darboux coordinates in symplectic
geometry and isothermal coordinates in geometry of minimal surfaces. From Propositions 5 and
6, the simple expectations {Ep[Fi(x)]} and the normalized χ-escort expectations {Eesc

χ,p[Fi(x)]} give
appropriate coordinates for (Sχ, g

M ,∇M(e),∇M(m)) and (Sχ, g
χ,∇χ(e),∇χ(m)), respectively, since they

are the dual affine coordinates of the natural parameters {θi}.
From the assumptions of deformed exponential families, there always exists a dually flat structure

(Sχ, g
χ,∇χ(e),∇χ(m)), but there does not exist (Sχ, g

M ,∇M(e),∇M(m)) in general (see [31] for more
details). In addition, from Theorem 3, the deformed algebra on sample space Ω is reflected in the
canonical expectationEχ,p[∗]. Hence, we think that the canonical expectationEχ,p[∗] and the normalized
χ-escort expectation Eesc

χ,p[∗] are more natural than the simple expectation Ep[∗].
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8. Maximum κ-Likelihood Estimators

In Section 3, we discussed deformed algebras for deformed exponential functions. As a consequence,
it is natural to regard that a sample space is not the standard Euclidean space. In this section, we construct
a maximum likelihood method that is in accordance with the deformed algebras.

Suppose that X is a random variable that follows a probability p1(x), and Y follows p2(y). We say
that two random variables X and Y are independent if the joint probability p(x, y) coincides with the
product of marginal distributions p1(x) and p2(y):

p(x, y) = p1(x)p2(y).

Suppose that p1(x) and p2(y) have support entirely on Ω, that is p1(x) > 0 and p2(y) > 0 hold for all
x ∈ Ω. The independence is given by a duality of an exponential function and a logarithm function:

p(x, y) = exp [ln p1(x) + ln p2(x)] .

We generalize the notion of independence using the χ-exponential and χ-logarithm.
Suppose thatXi is a random variable on Ωi, which follows pi(x) (i = 1, 2, . . . , N). Random variables

X1, X2, . . . , XN may not be independent on the standard algebra. Let p(x1, x2, . . . , xN) be the joint
probability density of X1, X2, . . . , XN .

We say that X1, X2, . . . , XN are χ-independent with m-normalization if:

p(x1, x2, . . . , xN) =
p1(x1)⊗χ p2(x2)⊗χ · · · ⊗χ pN(xN)

Zp1,p2,··· ,pN
,

where Zp1,p2,··· ,pN is the normalization of p1(x1)⊗χ p2(x2)⊗χ · · · ⊗χ pN(xN) defined by:

Zp1,p2,··· ,pN :=

∫
· · ·
∫
Supp{p(x1,x2,...,xN )}⊂Ω1···ΩN

p1(x1)⊗χ p2(x2)⊗χ · · · ⊗χ pN(xN)dx1 · · · dxN .

We remark that the domain of integration may not be entirely Ω1 × · · · × ΩN because of the
anti-exponential conditions. In addition, N is not an arbitrary integer. The maximum number of N
depends on the deformation function χ.

Example 5 (Bivariate Student t-distributions (cf. [32])). Suppose that X and Y are random variables
that follow Student t-distributions pq(x;µx, σx) and pq(y;µy, σy), respectively. Even if X and Y are
independent, the joint distribution p(x, y) = pq(x)pq(y) is not a bivariate Student t-distribution. On the
other hand, if X and Y are q-independent with m-normalization, then the joint distribution:

pq(x, y) =
pq(x)⊗q pq(y)

Zpq(x),pq(y)

is a bivariate Student t-distribution. Note that neither pq(x) nor pq(y) is the marginal distribution,
because: ∫

ΩY

pq(x, y)dy 6= pq(x).

However, in this paper, we say that pq(x) and pq(y) are the q-marginal distributions of the joint
distribution pq(x, y).
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Recall that we cannot consider infinitely many q-products to define a joint distribution. In the case of
Student t-distributions, the number of q-marginal distributions must satisfy N < 2(q − 1). Otherwise,
the normalization Z diverges.

Let us consider the κ-exponential case. We say that random variables X1, X2, . . . , XN are
κ-independent with m-normalization if:

p(x1, x2, . . . , xN) =
p1(x1)⊗κ p2(x2)⊗κ · · · ⊗κ pN(xN)

Zp1,p2,··· ,pN
,

where Zp1,p2,··· ,pN is the normalization of p1(x1)⊗κ p2(x2)⊗κ · · · ⊗κ pN(xN) defined by:

Zp1,p2,··· ,pN :=

∫
· · ·
∫

Ω1···ΩN
p1(x1)⊗κ p2(x2)⊗κ · · · ⊗κ pN(xN)dx1 · · · dxN .

In the κ-exponential case, the domain of integration is entirely Ω1 × · · · × ΩN , since the κ-exponential
function is defined entirely on R.

Similarly, we say that X1, X2, . . . , XN are κ-independent with e-normalization (or exponential
normalization) if:

p(x1, x2, . . . , xN) = p1(x1)⊗κ p2(x2)⊗κ · · · ⊗κ pN(xN)⊗κ (−c),

where c is the normalization of p1(x1)⊗κ p2(x2)⊗κ · · · ⊗κ pN(xN) defined by:∫
· · ·
∫

Ω1···ΩN
p1(x1)⊗κ p2(x2)⊗κ · · · ⊗κ pN(xN)⊗κ (−c)dx1 · · · dxN = 1.

We remark that the e-normalization is different form the m-normalization in general. See [33] for
further discussion.

A normalization of joint distribution is not required in several problems. In these cases, we define a
joint positive distribution (not a probability distribution) by the κ-marginal probability distributions,

f(x1, x2, . . . , xN) := p1(x1)⊗κ p2(x2)⊗κ · · · ⊗κ pN(xN), (21)

and we say that X1, X2, . . . , XN are simply κ-independent.

Remark 4. As we mentioned in Remark 2, it is difficult to describe explicitly the anti-exponential
conditions for the χ-exponential case. Though several authors have introduced χ-independence
(which is called U -independence in [2,3] and F -independence in [34]), they did not mention the
anti-exponential conditions. Hence, the χ-independence was not well defined in their papers.

On the other hand, the anti-exponential condition of the κ-deformed algebra (4) is always satisfied,
since p(x; θ) ∈ Sκ can be defined entirely on R. Therefore, the κ-independence is well defined for a
κ-exponential family. This is an advantage of the κ-exponential families.

Before we discuss a generalization of maximum likelihood methods, we recall the difference between
Gauss’ law of error and the maximum likelihood method.

In the case of Gauss’ law of error, we consider the following likelihood function:

L(θ) := p(x1 − θ)p(x2 − θ) · · · p(xN − θ).



Entropy 2015, 17 5747

Suppose that N -observations {x1, . . . , xN} are obtained. If the likelihood function L(θ) attains the
maximum at the sample mean θ = x̄N = (x1, . . . , xN)/N , then the probability density function p must
be a Gaussian distribution. Hence, we specify a probability distribution from a given likelihood function
and observed data. Generalizations of Gauss’s law of error in non-extensive statistical physics have been
obtained in [35,36], etc.

On the other hand, in the case of the maximum likelihood method, we suppose a statistical model
S = {p(x; θ)} and define a likelihood function L(θ) by:

L(θ) := p(x1; θ)p(x2; θ) · · · p(xN ; θ).

Suppose that N -observations {x1, . . . , xN} are obtained. If the likelihood function attains the maximum
at θ̂, then the probability distribution p(x; θ̂) is expected to be closest to the true distribution in the given
statistical model. Hence, we specify a parameter on a given statistical model from a likelihood function
and observed data.

Later in this section, we consider a κ-generalization of the maximum likelihood method and give a
characterization of the maximum κ-likelihood estimator from the viewpoint of information geometry.

Let Sκ = {p(x; θ)|θ ∈ Θ} be a κ-exponential family, and let {x1, . . . , xN} be N -observations from
p(x; θ) ∈ Sκ. We define a κ-likelihood function Lκ(θ) and a κ-logarithm κ-likelihood function lκ(θ) by:

Lκ(θ) := p(x1; θ)⊗κ p(x2; θ)⊗κ · · · ⊗κ p(xN ; θ), (22)

lκ(θ) := lnκ Lκ(θ) =
N∑
i=1

lnκ p(xi; θ),

respectively. By taking a limit κ→ 0, Lκ is the standard likelihood function on θ.
The maximum κ-likelihood estimator θ̂ is the maximizer of κ-likelihood function. We assume the

existence of θ̂ in this paper. Since the parameter space Θ is assumed to be an open subset, θ̂ should be an
interior point in Θ. From the monotonicity of the κ-logarithm lnκ, θ̂ is also the maximizer of κ-logarithm
κ-likelihood function:

θ̂ := argmax
θ∈Θ

Lκ(θ) = argmax
θ∈Θ

lnκ Lκ(θ).

Theorem 7. Let Sκ = {p(x; θ)|θ ∈ Θ} be a κ-exponential family. Suppose that Mκ = {p(x; θ(u))|u ∈
U} is a curved κ-exponential family of Sκ and {x1, . . . , xN} are N -observations from p(x; θ(u)) ∈Mκ.
Then,

(1) the maximum κ-likelihood estimator for Sκ in η-coordinates is given by:

η̂i =
1

N

N∑
j=1

Fi(xj).

(2) The κ-likelihood attains the maximum if and only if the κ-relative entropy attains the minimum.

Proof. (1) The κ-logarithm κ-likelihood function is given by:

lκ(θ) =
N∑
j=1

lnκ p(xj; θ) =
N∑
j=1

{
n∑
i=1

θiFi(xj)− ψ(θ)

}
=

n∑
i=1

θi
N∑
j=1

Fi(xj)−Nψ(θ).
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Hence, we obtain the κ-logarithm κ-likelihood equation:

∂ilκ(θ) =
N∑
j=1

Fi(xj)−N∂iψ(θ) = 0.

From Proposition 6, the maximum κ-likelihood estimator for Sκ is given by:

η̂i =
1

N

N∑
j=1

Fi(xj).

(2) Denote p(η̂) = p(x; η̂) ∈ Sκ by the probability distribution whose parameter is determined by the
maximum likelihood η̂. Since a κ-relative entropy coincides with a canonical divergence, we obtain:

Dκ(p(η̂), p(θ(u))) = D(p(θ(u)), p(η̂)) = ψ(θ(u)) + φ(η̂)−
n∑
i=1

θi(u)η̂i

= φ(η̂)− 1

N
lnκ Lκ(θ(u)).

This implies that the κ-likelihood attains the maximum if and only if the κ-relative entropy attains the
minimum.

Since the κ-relative entropy attains the minimum at the κ-maximum likelihood estimator, we say that
Theorem 7 is a divergence projection theorem for the κ-exponential family. We remark again that similar
arguments hold for any χ-exponential families if the χ-independence is well defined.

9. Conclusion

In this paper, we discussed deformed algebras and generalizations of expectations for χ-exponential
families. In particular, we clarified how to use deformed algebraic structures for deformed exponential
families. We introduced the canonical expectation for χ-exponential families, whereas the normalized
χ-escort expectation has been known in anomalous statistical physics. We then considered information
geometric properties of deformed exponential families. Though the canonical expectation is not an
expectation with respect to a probability density, it naturally characterizes a generalized Fisher metric
and the α-divergence.

In addition, we studied the generalization of independence and introduced a generalized maximum
likelihood method for the κ-exponential family. In particular, a divergence projection-type theorem
was obtained in the case of the κ-maximum likelihood method. A deformed independence is not
defined explicity in general, since it is difficult to describe anti-exponential conditions for χ-exponential
functions. On the other hand, the κ-independence for the κ-exponential family is always well defined.
This is an advantage of the κ-exponential family in the class of χ-exponential families.
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