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Abstract: Aiming at the combined power quality +disturbance recognition, an automated 

recognition method based on wavelet packet entropy (WPE) and modified incomplete  

S-transform (MIST) is proposed in this paper. By combining wavelet packet Tsallis 

singular entropy, energy entropy and MIST, a 13-dimension vector of different power 

quality (PQ) disturbances including single disturbances and combined disturbances is 

extracted. Then, a ruled decision tree is designed to recognize the combined disturbances. 

The proposed method is tested and evaluated using a large number of simulated PQ 

disturbances and some real-life signals, which include voltage sag, swell, interruption, 

oscillation transient, impulsive transient, harmonics, voltage fluctuation and their 

combinations. In addition, the comparison of the proposed recognition approach with some 

existing techniques is made. The experimental results show that the proposed method can 

effectively recognize the single and combined PQ disturbances. 

Keywords: wavelet packet; Shannon entropy; Tsallis entropy; modified incomplete  

S-transform; combined disturbances; recognition 

 

1. Introduction 

With the dramatic increase of non-linear and unbalanced loads being connected to the power grid, 

such as new energy outlets, smart grids and high-speed trains, the issue of power quality (PQ) becomes 

more and more serious. In order to ensure high quality power supply of the power grid, it is very 
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important to analyze and recognize these PQ disturbances. PQ disturbance recognitions can be divided 

into single and combined disturbance recognitions. The single disturbance refers to that only 

containing one disturbance in PQ signals. According to the IEEE power quality standard, the single 

disturbance includes voltage sag, voltage swell, voltage interruption, transient impulse, oscillation 

transients, harmonics and flicker. At present, researches on single disturbance recognition have formed 

some mature theoretical and experimental methods. Actually, PQ disturbances in power systems are 

often mixed disturbances, which are the combinations of several single disturbances, and the various 

components and types of these disturbances are more complex. In addition, the interaction between 

certain single disturbances may cause feature aliasing and even failure characteristics, and will result in 

wrong evaluation and low recognition accuracy. Therefore, considering that feature extraction is very 

difficult, more universal recognition methods need to be further analyzed. 

Recently, some methods have been proposed, especially for the combined disturbance recognitions. 

In [1], a new dual neural-network-based methodology to detect and classify single and combined PQ 

disturbances is proposed. The adaptive linear network for harmonic and interharmonic estimation that 

allows computing the root-mean-square voltage and total harmonic distortion indices is adopted. In [2], 

an improved classification for PQ disturbances considering load changes and environmental factors is 

proposed. The hyperbolic S-transform is adopted, out of which the optimal features are selected using 

a genetic algorithm. These optimal features are used for combined various forms of PQ disturbances 

classification by employing support vector machine (SVM) and decision tree classifiers. In [3], a new 

method is presented for detection and classification of single and combined PQ disturbances using the 

sparse signal decomposition on the overcomplete hybrid dictionary matrix. In [4], an integrated 

approach using discrete wavelet transform and hyperbolic S transform is presented. The orthogonal 

forward selection by incorporating the Gram Schmidt procedure and forward selection are adopted for 

the selection of the best subset features, and the variable parameters of classifiers are optimized using 

particle swarm optimization (PSO). In [5], a method based on single channel independent component 

analysis for single and multiple power quality disturbance classification is proposed. The proposed 

method decouples the power system signal into its independent components, which are classified by 

specialized classifiers. The classifier outputs are combined by using a logic that gives the final 

classification. In [6], a method based on independent component analysis (ICA) is proposed to 

adaptively decompose signals containing multiple power quality disturbances. In [7], a multiresolution 

generalized S-transform (MGST) approach is presented to improve the ability of analyzing and 

monitoring the power quality in a microgrid. In [8], a combination method is proposed for the 

classification of combined power quality disturbances based on ensemble empirical mode 

decomposition (EEMD) and multilabel learning. In [9], a modified technique for the recognition of 

single stage and multiple power quality disturbances is introduced. An algorithm, based on Stockwell’s 

transform, artificial neural network-based classifier and rule-based decision tree, is proposed. Some of 

the latest research on combined disturbance recognition can be found in [10–14]. 

S-transform is a kind of reversible local time-frequency domain transform developed from Fourier 

transform. It possesses no cross terms interference, frequency adaptive Gauss window and maximum  

time-frequency resolution [15]. More detailed time-frequency features of high-frequency components 

can be extracted. Modified incomplete S-transform (MIST) is a simplified and improved S-transform 

to reduce the computational complexity and efficiency of time frequency traversal [16]. Wavelet 
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transform is a multi-scale time-frequency transform with multi-resolution analysis, which is widely 

used to analyze PQ disturbance signals [17]. Compared with traditional wavelets, the wavelet packet 

has better properties. In addition, wavelet packet transform can yield more frequency sub-bands. 

However, due to the complexity of combined PQ disturbance signals, the actual research shows that 

there are problems with feature extraction, such as energy leakage and aliasing between adjacent scales 

with the application of various methods based on wavelet transform. In [18,19], combining wavelet 

decomposition with Shannon entropy, the concept of wavelet energy entropy (WEE), wavelet time 

entropy (WTE), wavelet singular entropy (WSE), multi-wavelet packet coefficient entropy (MWPCE) 

were presented and discussed. In [20,21], because of the advantages of Tsallis entropy, as opposed to 

Shannon entropy, other wavelet entropies were defined, namely Tsallis wavelet energy entropy 

(TWEE), Tsallis wavelet time entropy (TWTE), Tsallis wavelet singular entropy (TWSE), and wavelet 

packet Tsallis singular entropy (WPTSE). The application of these entropies opened up a new way of 

thinking to apply wavelet transform in PQ analysis. The application results show that wavelet entropies 

can more accurately characterize the features of complex signals, and their ability for feature extraction 

is better. Compared with other classifiers, the decision tree is a direct-vision method. It takes a shorter 

amount of time than most of the other classifiers. If the suitable extracted eigenvectors and reasonable 

decision rules are chosen, the decision tree can obtain ideal recognition accuracy [9,22,23]. 

In this paper, based on wavelet packet Tsallis singular entropy, energy entropy, modified 

incomplete S-transform and ruled decision tree, a new recognition method of combined PQ 

disturbances is proposed. This paper is structured as follows. Section 2 provides the introduction of the 

wavelet packet entropies and modified incomplete S-transform. Section 3 proposes the recognition 

plan including the extracting algorithm and ruled decision tree. Section 4 establishes simulation 

models and analyzes corresponding experimental results. Section 5 draws some conclusions. 

2. Wavelet Packet Entropies and Modified Incomplete S-Transform 

2.1. Wavelet Packet Decomposition 

When wavelet transform is used to decompose the signals, the high-frequency resolution of signals 

is very low. Wavelet packet is a generalization of wavelet bases by taking linear combinations of the 

traditional wavelet functions to form a function cluster. Wavelet packet transform can provide more 

detailed decomposition of high frequency components. These decompositions are redundant and have 

no omissions. The results of wavelet packet transform can represent the complexity of signals more 

accurately and can obtain better time-frequency analysis. The discrete wavelet packet recursive 

decomposition is listed as follows. 
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(1)

where 0( )S t  is the original signal, ( )h k  is the high-pass filter, ( )g k  is the low-pass filter, and , ( )i jd k  is 

the reconstruction signal of wavelet packet decomposition at the ith level for the jth node. 
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For the wavelet packet decomposition, at level 1, let L1 be the low frequency part and H1 be the 

high frequency part of wavelet transformation. At level 2, let LL2 and LH2 respectively be low and 

high frequency parts of L1, and HL2 and HH2 respectively be low and high frequency parts of H1. At 

level 3, let LLL3 and LLH3 respectively be low and high frequency parts of LL2, let LHL3 and LHH3 

respectively be low and high frequency parts of LH2, let HLL3 and HLH3 respectively be low and 

high frequency parts of HL2, and let HHL3 and HHH3 respectively be low and high frequency parts of 

HH2. L1 and H1 can be divided into four bands at level 2. Similarly, LL2, LH2, HL2 and HH2 can be 

divided into eight bands at level 3. The framework of the 3-level wavelet packet decomposition is 

shown in Figure 1. 

S0(t)

L1 H1

LL2 LH2 HL2 HH2

LLL3 LHL3 HLL3 HHL3LLH3 LHH3 HLH3 HHH3
 

Figure 1. Framework of wavelet packet decomposition. 

Based on the characteristics of the wavelet packet decomposition, the choice of decomposition level 

and wavelet function must be considered. In addition, in order to avoid the redundancy representation 

for the signal with the wavelet packet decomposition, the best wavelet packet basis must be 

considered. For the wavelet packet decomposition, there are many methods for choosing the best basis, 

such as the number of coefficients exceeding some threshold, lp(p≤2) norm, logarithm entropy and 

energy entropy. Considering the existing research results, Daubechies series wavelets are more 

sensitive to irregular signal, thus DB4 wavelet function based three level wavelet packet 

decomposition is chosen. Shannon entropy is adopted as the cost function to find the best wavelet 

packet base. 

For the combined PQ disturbance signals, the high-frequency features are very important to 

characterize the transient components of disturbance signals. Wavelet packet transform is adopted as 

one of the time-frequency analysis tools. Compared with the traditional wavelet decomposition, 

wavelet packet decomposition can extract richer and more sophisticated features of combined PQ 

disturbances. Moreover, Shannon entropy and Tsallis entropy can be considered as the system’s 

information measurement, and can be adopted to estimate the complexity of random signals, since the 

combined PQ disturbances contain a great deal of transient, random and uncertain information. 

2.2. Shannon Entropy and Wavelet Packet Energy Entropy 

Entropy is the measurement of disorder such as the imbalance, uncertainty and randomness. The 

uncertainty of any event is associated with its states and probabilities. For some uncertain system, if 
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the random variable X {x1, x2, …, xL} represents its state characteristics, where the probability of xj is 

{ } , 1, ,j jp P X x j L N= = = ⋅⋅⋅ ∈ , 
1

1
L

j
j

p
=

= . 

The information for some result of X can be represented with log(1/ )j jI p= . The information 

entropy of X can be defined by Shannon. 

( )
1
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(2)

If 0jp = , then log( ) 0j jp p = . Through a i-level wavelet packet decomposition, set 2

(j,k) (k)jE D=  

as wavelet packet energy at the jth scale, where k=1,2,…,N is the sampling point of original signal. 

Then, 
(j,k)

1

N

j
k

E E
=

=  represent the sum energy at the jth scale. Set relative wavelet packet energy 

(j,k) (j,k) / jp E E= , according to energy conservation principle, (j,k) 1
k

p = . Based on fundamental principle 

of information entropy, wavelet packet energy entropy (WPEE) distributing along the scale is defined 

as follows. 

( , ) ( , )logEE j k j k
k

W P p= − (3)

2.3. Tsallis Entropy and Wavelet Packet Tsallis Entropy 

Tsallis entropy is one of the nonextensive entropies, which can provide the correct physical 

expression for the non-additive system with a mixed or irregular fragment [24]. It can characterize the 

original signal more accurately. Its continuous expression is defined as follows. 
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c
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(4)

where ( )f x  is the probability density distribution function, ( ) 1f x dx = , c is the conventional positive 

constant, and q is the nonextensive parameter. The discrete expression is shown below. 
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where ( )p i  (
1

( ) 1
n

i

p i
=

= ) is the probability density distribution function of random variable i. 

For the calculation of Tsallis entropy, the nonextensive parameter q needs to be considered. When 
1q → , Tsallis entropy is equal to Shannon entropy, which can describe the system with an extensivity 

property. Tsallis entropy is the expansion of Shannon entropy. After the wavelet packet decomposition 

for combined PQ disturbance signals, the decomposition coefficients at each scale generally show 

nonextensivity. For the wavelet packet transform, the frequency aliasing and energy leakage may be 

produced, which will result in the loss of the extensivity property for Shannon entropy. If the proper 

nonextensivity parameter q is chosen and Tsallis entropies are calculated with wavelet coefficients 

over time, the time-frequency characteristics of combined PQ disturbances based on the variety of 

entropy values can be obtained. In this paper, WPTSE is adopted as one of the feature extraction 

methods. Based on the existing research results in [20], when the nonextensive parameter q is chosen 
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in the ranges of (0.2, 1) and (1, 3), the influence of q values is very small. In this paper, set q = 0.8 

considering the nonextensive degree of disturbance signals. 

The reconstruction signals of each node for wavelet packet decomposition can form a matrix

( ){ , ,i jD d k=  1,..., ,k L=  1 , 1,..., 2 }ii N j≤ ≤ = . If a moving data window is defined on the 

reconstruction signals of wavelet packet node, suppose the window width is w N∈  and moving 

factor be Nδ ∈ , then the moving window can be represented as follows. 
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where 1,2, ,m M=  , ( )M L w= − δ , m is the moving number of data window, M is the length of 

wavelet entropy, and L is the signal length.  
The reconstructed signals of 2i wavelet packet nodes in moving data window ( , , )W m w δ  form a 

matrix 
2i w

D
×

. Based on the singular value decomposition theory [18], matrix 
2i w

D
×

 can be decomposed  

as follows. 

2 2i i g g g ww g
D U V× ×× ×= Λ

 (7)

The diagonal elements ( 1, , , min(2 , ))i
s s g g wλ = ≤  of diagonal matrix Λ  are the singular values 

of 
2i w

D
× , and 1 2 0gλ λ λ≥ ≥ ≥ ≥ . According to the reconstructed signal characteristics of wavelet 

packet node, if the correlation is stronger, the frequency components are more similar. When the 

reconstructed signals of neighbor nodes are approximately consistent, the corresponding singular value 

approaches zero. Otherwise, if the frequency components are quite different, there are a few nonzero 

singular values on the main diagonal. The number of nonzero singular values can reflect the 

complexity of frequency components in tested signals. In order to represent the rule, at the moment 

( )/ 2m wδ + , the WPTSE at ith scale is formulated as follows. 

1

1
( ) 1 ( , ) ,

1

g
q

TsallisPSE m
j

W m P i j q R
q =

 
= − Δ ∈ −  

  (8)

where 
1

g

m j s
s

P λ λ
=

Δ =  , and q is the nonextensive parameter. 

Based on the Equation (8), if there are more nonzero singular values, the WPTSE value will be 

large. With the combination of redundant information, the singular entropy in wavelet packet spaces 

can directly reflect the uncertainty of characteristic energy distributions in the time-frequency domain  

of signals. 

2.4. Modified Incomplete S-Transform 

S-transform is a kind of reversible local time-frequency domain transform developed from Fourier 

transform. It possesses interference with no cross terms, frequency adaptive Gauss window and 

maximum time-frequency resolution. However, the frequency domain ergodicity of S-transform leads 
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to low computation speed and efficiency. MIST is a simplified and improved S-transform. The discrete 

form expression is below. 

[ ] [ ]
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(9)

where 
n d

λ  is the window width coefficient chosen for different frequency points, and 1 ~ Ll l  are main 

frequency points detected by the dynamic measurement using power spectrum envelope. L is generally 
1~4. The conversion relationship of actual frequency is df n NT= , and T is the sampling period. The 

rapid calculation procedure of MIST is shown in Figure 2. 
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Figure 2. The rapid calculation procedure of MIST. 

In Figure 2, FFT and IFFT respectively represent fast Fourier transform and inverse fast Fourier 

transform. H(m) is FFT spectrum, and m is the point of FFT spectrum. 

3. Recognition Plan 

The recognition plan of combined PQ disturbances is shown in Figure 3. 
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Figure 3. Combined PQ disturbance recognition plan. 
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3.1. Feature Extraction 

In this paper, 13 significant features of PQ disturbances are extracted. According to different  

time-frequency analysis methods, these features can be divided into three classes. 

(1) WPEE features 

This class contains three features, named avE , stdE  and biasE . They respectively represent the mean 

value, standard deviation and the bias of WPEE. According to Equation (3), avE , stdE  and biasE  can be 

calculated using the following formulas. 

1

1 L

av EE
l

E W
L =

=  (10)

[ ]2

1

1 l L

std EE av
l

E W E
L

=

=

= − (11)

2 max{max(W ) 0.5,0.5 min (W )}bias EE EEE = − −  (12)

where L is the length of WPEE. 

(b) WPTSE features 

This class contains two features, named avT  and biasT . They respectively represent the mean value 

and the bias of WPTSE. According to Equation (8), avT  and biasT  can be calculated using the  

following formulas. 

1

1 L

av TsallisPSE
l

T W
L =

=  (13)

2max{max( ) 0.5,0.5 min ( )}
TsallisPSEbias TsallisPSET W W= − −

 (14)

(c) MIST features 

There are eight features in total, avS , biasS , maxS  S_1, S_2, fN , hN  and 1N . In this class, avS , biasS , 

maxS  and S_1 respectively represent the average amplitude, the bias, the maximum of fundamental 

component and the amplitude fluctuation of fundamental component obtained after MIST. The 

fundamental time-amplitude curve obtained after MIST is 

( ) ( )fb bV t A t, f=
 (15)

where t is the sampling moment, and bf  is the fundamental frequency. 

avS , biasS , maxS , and S_1 can be calculated using the following formulas. 

( )
1

1
,

N

av b
n

S A t f
N =

=  (16)

where N means the total sampling points. 

( ) ( )2max{max , 0.5,0.5 min , }bias b bS A t f A t f= − −        (17)

( )max max , bS A t f=     (18)



Entropy 2015, 17 5819 

 

 

( ) ( )
max min

max max max min min min
1 1

_1= max( ) / ( 1) min( ) / ( 1)
n n

i i

S d i d n d i d n
= =

         − − − − −                 
   (19)

In addition, the other four features S_2, fN , hN  and 1N  are extracted via dynamic measurement of 

power spectrum obtained after FFT. S_2 represents the symmetry of main frequency points obtained 

through dynamic measurement of FFT power spectrum. The values of S_2 are 1 or 0, which can be 

judged by the following formula. 

5down b up bf f f f− − − ≤
 

(20) 

where bf  is the fundamental frequency, downf  corresponds to the single frequency that is lower than 

fundamental frequency, and upf  is the frequency that is higher than bf . The main function of S_2 is to 

reflect whether there is voltage fluctuation in the disturbance signal that contains voltage sag, voltage 

swell and voltage interruption. 

fN , the number of main frequency points, is first used to identify oscillation transient and harmonic 

by judging whether fN  = 1 or not. hN  can characterize the existence of the main frequency point in 

the high frequency band of the signal, which is the criterion of oscillation transient. 1N  = 0 or 1N  =1, 

can represent whether the harmonic exists. 

Table 1. Description of significant features. 

No Method Name Description Threshold Function 

1 

WPEE 

avE  Mean value 1.2 Oscillation assistant judgment 

2 stdE  Standard deviation 0.17, 0.8 
Impulsive/oscillation  

assistant judgment 

3 biasE  Bias 1.1, 4.8 
Interruption/impulsive  

assistant judgment 

4 
WPTSE 

avT  Mean value 0.091, 0.35 
Oscillation/impulsive  

assistant judgment 

5 biasT  Bias 0.8 Harmonic assistant judgment 

6 

MIST 

fN  Number of main frequency points - 
Oscillation/harmonic  

initial judgment 

7 hN  Whether it contains high frequency 0, 1 Oscillation initial judgment 

8 1N  Whether it contains Harmonic 0, 1 Harmonic initial judgment 

9 avS  
Average amplitude of the  

fundamental components 
0.475, 0.495 

Swell/sag/interruption  

initial judgment 

10 biasS  Bias of the fundamental component 0.19, 0.85 
Swell/sag/interruption  

initial judgment 

11 maxS  
Maximum of the  

fundamental component 
0.4807, 0.57 

Swell/sag/interruption  

assistant judgment 

12 S_1 
Amplitude fluctuation of  

fundamental components 
0, 1 Fluctuation assistant judgment 

13 S_2 The symmetry of main frequency points 0, 1 Fluctuation assistant judgment 

Note: sign “-” means no Threshold. 
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The further descriptions of all the features are listed in Table 1. In order to test all the features, the 

normal signal and seven single PQ disturbances are chosen as the test objects, including normal signal, 

voltage swell, voltage sag, voltage interruption, impulsive transient, oscillation transient, harmonics, 

and voltage fluctuation (labeled as R0~R7 respectively for the convenience of expression, namely,  

R0-normal signal, R1-voltage swell, R2-voltage sag, R3-voltage interruption, R4-impulsive transient, 

R5-oscillation transient, R6-harmonics, R7-voltage fluctuation). Referring to the related IEEE 

standards in [25], 200 samples of each single disturbance are randomly produced as feature extraction 

test signals. The fundamental frequency of the signals is 50 Hz, the sampling frequency and point 

number are 6.4 kHz and 2048, respectively. Examples are shown in Figure 4, and the 13 dimensional 

features for the examples in Figure 4 are listed in Table 2. 

Using the extraction algorithm given in this paper, the distributions of main features of single PQ 

disturbances are shown in Figure 5a to Figure 5h. After the feature extraction, a 13-dimension vector is 

obtained as the input of the classifier. 

Table 2. The 13-dimensional features for the examples in Figure 4. 

Disturbances Eav Estd Ebias Tav Tbias Nf Nh N1 Sav Sbias Smax S_1 S_2 

Normal (R0) 0.0006 0.0009 0.9991 0.0882 0.8392 1 0 0 0.4806 0.0387 0.4806 0 0 

Swell (R1) 0.0016 0.0041 0.9991 0.1377 0.8398 1 0 0 0.5576 0.4072 0.7036 0 0 

Sag (R2) 0.0022 0.0065 0.9991 0.1374 0.8824 1 0 0 0.4392 0.2841 0.4806 0 0 

Interruption (R3) 0.0986 0.4007 4.8617 0.2519 3.5527 1 0 0 0.3537 0.9615 0.4806 0 1 

Impulsive (R4) 0.0686 0.3500 3.4339 0.1809 3.4694 1 0 0 0.4767 0.1130 0.4806 0 0 

Oscillation (R5) 1.5776 1.0600 3.7398 0.6735 2.1716 2 1 0 0.4811 0.0387 0.4830 0 0 

Harmonics (R6) 0.0409 0.0027 0.9322 0.5730 0.1735 2 0 1 0.4806 0.0387 0.4806 0 0 

Fluctuation (R7) 0.0007 0.0010 0.9991 0.0891 0.8423 1 0 0 0.4808 0.1402 0.5314 1 1 

 

Figure 4. Examples of each single PQ disturbance. 
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Figure 5. Cont. 
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(g) (h) 

Figure 5. The distribution of each feature quantity (a) Add WPEE feature avE  distribution; 

(b) WPEE feature stdE distribution; (c) WPEE feature biasE  distribution; (d) WPTSE 

feature avT  distribution; (e) WPTSE feature biasT  distribution; (f) MIST feature maxS  

distribution; (g) MIST feature avS  distribution; (h) MIST feature biasS  distribution. 

3.2. Ruled Decision Tree 

Compared with other classifiers, the decision tree is a direct-vision method. Moreover, it takes a 

shorter amount of time than most of the other classifiers with an ideal classification result. In this 

paper, the interactions between different disturbances and the failure situation of features are fully 

considered. Through sufficient analysis of the feature extracting in the last section, a ruled decision 

tree is designed. The rules are listed in Table 3. All the threshold values selected in Table 3 are 

obtained through specific analysis and multiple repeat tests, considering both the threshold coverage 

and the recognition accuracy. 

Table 3. Rules of the decision tree. 

Rule Description 

Rule1 if avS  > 0.495 & 0.19 < biasS  < 0.85 & maxS  > 0.57 then R1 = 1 

Rule2 if avS  < 0.475 & 0.19 < biasS  < 0.85 & maxS  < 0.4807 then R2 = 1 

Rule 3 if avS  < 0.475 & biasS  > 0.85 & maxS  < 0.4807 then R3 = 1 

Rule 4 if 0.17 < stdE  < 0.8 & 0.091 < avT  < 0.35 & 1.1 < biasE  < 4.8 & Nh = 0 & N1 = 0 then R4 = 1 

Rule 5 if Nf > 1& Nh = 1& avE > 1.2 & stdE  > 0.8 then R5 = 1 

Rule 6 if Nf > 1 & N1 = 1 & biasT  < 0.8 then R6 = 1 

Rule 7 

if R1|R2|R3 = 1 & R4 = 1 then R7 = S_1 & S_2 
else if R1|R2|R3 = 1 & R4 = 0 then R7 = S_2 
else if R1|R2|R3 = 0 & R4 = 1 then R7 = S_1 
else R1|R2|R3 = 0 & R4 = 0 then R7 = S_1| S_2 
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3.3. Recognition Flow 

The recognition flow of the proposed approach is shown in Figure 6. 
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Figure 6. PQ disturbances recognition flow 

4. Experimental Results 

The combined PQ disturbances in the power system are variable and complex. It is difficult to 

obtain all kinds of real life signals. In order to verify the effectiveness of the recognition method 

proposed in this paper, MATLAB 2013a is adopted to simulate the disturbance signals according to 

standard of the IEEE. The seven signal PQ disturbances introduced above are chosen, and 14 mixed 

signals combined with the seven single disturbances are produced. The fundamental frequency is 50 

Hz, the sampling frequency and point number are 6.4 kHz and 2048, respectively. Two hundred 

samples of each disturbance under SNR 40 dB are randomly produced. The sample sum is 200 × 22. It 

means there are in total 22 (1 + 7 + 14) types of disturbances as listed in Table 4 and Table 5. Each kind 

of disturbance will produce 200 samples used to test the recognition accuracy. The vector length for 

each signal is 13. The experimental results are shown in Tables 4 and 5. 
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Table 4. The recognition results of single disturbances. 

Disturbance Type 
Recognition Results Number of 

Right Samples 
Accuracy/% Time/s 

R1 R2 R3 R4 R5 R6 R7 

swell 191 0 0 0 0 0 0 191 95.5 0.014 

sag 0 189 10 0 0 0 0 189 94.5 0.018 

interruption 0 5 195 0 0 0 0 195 97.5 0.014 

impulsive 0 0 0 185 0 0 0 185 92.5 0.014 

oscillation  0 0 0 0 194 0 0 194 97 0.011 

harmonics 0 0 0 0 0 199 0 199 99.5 0.011 

fluctuation 0 0 0 0 0 0 200 200 100 0.013 

Total sample identification accuracy: 96.64%; the mean consuming time to recognize a power quality 

disturbance: 0.0000678571 s. 

Table 5. The recognition results of combined disturbances. 

Disturbance Type 
Recognition Results Number of 

Right Samples 
Accuracy/% Time/s 

R1 R2 R3 R4 R5 R6 R7 

R1 + R6 193 0 0 0 0 199 0 193 96.5 0.017 

R2 + R5 0 194 0 0 196 0 0 194 97 0.017 

R2 + R6 0 195 0 0 0 199 0 195 97.5 0.015 

R2 + R7 0 188 0 0 0 0 197 188 94 0.013 

R3 + R6 0 0 195 0 0 195 0 195 97.5 0.016 

R5 + R6 0 0 0 0 195 196 0 195 97.5 0.011 

R5 + R7 0 0 0 0 194 0 200 194 97 0.013 

R6 + R7 0 0 0 0 0 200 200 200 100 0.013 

R2 + R5 + R6 0 192 0 0 198 199 0 192 96 0.013 

R2 + R5 + R7 0 186 0 0 193 0 191 186 93 0.014 

R2 + R6 + R7 0 182 0 0 0 199 194 182 91 0.016 

R3 + R5 + R6 0 0 188 0 195 180 0 180 90 0.018 

R5 + R6 + R7 0 0 0 0 195 197 200 195 97.5 0.020 

R1+R4+R6+R7 181 0 0 194 0 198 196 181 90.5 0.020 

Total sample identification accuracy: 95.36%; the mean consuming time to recognize a power quality 

disturbance: 0.0000817857s. 

In order to evaluate the proposed disturbance recognition method more reasonably, two recognition 

indexes are defined as follows. 

(1) Sample recognition accuracy. This index considers the overall recognition accuracy of the 

sample. It is a traditional pattern recognition evaluation method. The calculation formula is as 

follows. 

 100% = ×the number of  correct recognition 

the total num
Sample recognition a

ber of  samples
ccuracy

 
(21) 

(2) Label error (leak) rate. This index considers the number of recognition error and leakage in 

recognition results of all samples. It reflects the stability of the proposed recognition method for 

single disturbance in the case of different combined disturbances. The calculation formula is as 

follows. 
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(22) 

As seen in Tables 4–6, the accuracy of the method proposed in this paper is high (the average of 

single disturbances and combined disturbances are respectively 96.64% and 95.36%). The statistic of 

recognition error and leakage of single disturbance in combined disturbances shows that the total 

recognition error and leakage rate is 0.770%. In addition, due to the small amplitude and noise effect, 

several cases cannot be completely accurately classified.  

Table 6. The recognition error and leakage of single disturbance in combined disturbances. 

Disturbance type R1 R2 R3 R4 R5 R6 R7 

Total sample number 14 × 200 = 2800 

Recognition error and leakage number 26 31 17 6 27 37 7 
Recognition error and leakage rate/% 0.928 1.107 0.607 0.214 0.964 1.321 0.250

Total recognition error and leakage rate: 0.77%. 

In order to further test the performance of the proposed method, some real-life signals are adopted. 

Figure 7a–d are the normalized real-life signals from a 110 kV bus of a 220 kV substation in North 

China power grid. The sampling frequency is 25.6 kHz and the interception is 15 cycles in 0.3 s. The 

recognition results are shown in Table 7. It can be found that the proposed method can efficiently 

recognize the real-life combined PQ disturbance signals, such as swell, impulsive, sag + oscillation and 

interruption + oscillation. 

In order to show the advantage of the proposed method in this paper, some comparisons are made. 

The recognition methods based on improved incomplete S-transform with decision tree [26], wavelet 

transform with neural network [27] and EEMD (Ensemble Empirical Mode Decomposition) and MIST 

with automatic classification [28] are respectively applied. The test samples produced previously in 

Section 4 are also used. Their recognition performance is listed in Table 8. 

(a) (b) 

(c) (d) 

Figure 7. The normalized real-life signals (a) swell signal; (b) impulsive signal;  

(c) sag + oscillation signal; (d) interruption + oscillation signal. 
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Table 7. The recognition results of real life disturbance signals. 

Disturbances R1 R2 R3 R4 R5 R6 R7 

Swell 1 0 0 0 0 0 0 
Impulsive 0 0 0 1 0 0 0 

Sag + Oscillation 0 1 0 0 1 0 0 
Interruption + Oscillation 0 0 1 0 1 0 0 

Table 8. Recognition performance comparison with some existing methods. 

Method 
Accuracy/% 

Single Combined 

Improved incomplete S-transform with decision tree 81.86 88.93 
Wavelet transform with neural network 94.42 83.33 
EEMD and MIST with automatic classification 97.70 88.70 
Wavelet Packet Entropies and MIST with decision tree (proposed) 96.64 95.36 

According to the results in Table 8, the proposed method in this paper shows better classification 

ability both for single and combined PQ disturbances. Some existing methods are not able to recognize 

specific disturbances. For example, the method based on improved incomplete S-transform with 

decision tree is invalid for the recognition of impulsive transient. Some existing methods show poor 

recognition accuracy for the combined PQ disturbances, such as the classifier using wavelet transform 

with neural network and EEMD and MIST with automatic classification. 

5. Conclusions 

The main contribution of this paper is to present a new recognition approach of combined power 

quality disturbances. In order to extract the features of combined disturbances, the wavelet packet 

decomposition is combined with information entropies (Shannon entropy and Tsallis entropy). The 

multi-resolution analysis (MRA) ability of wavelet packet decomposition and the complexity 

estimation ability of information entropies ensure reliable feature extraction. In addition, MIST is used 

to obtain more detailed time-frequency features. After feature extraction, a 13-dimension vector is 

obtained as the input of a ruled decision tree. Simulation experiments and a real life signal test show its 

effectiveness and practicability. 
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