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Abstract: In the last few years, complex networks have become an increasingly relevant

research topic due to the large number of fields of application. Particularly, complex

networks are especially significant in the area of modern online social networks (OSNs).

OSNs are actually a challenge for complex network analysis, as they present some

characteristics that hinder topology processing. Concretely, social networks’ volume is

exceedingly big, as they have a high number of nodes and links. One of the most popular

and influential OSNs is Twitter. In this paper, we present a model to describe the growth of

scale-free networks. This model is applied to Twitter after checking that it can be considered

a “scale-free” complex network fulfilling the small world property. Checking this property

involves the calculation of the shortest path between any two nodes of the network. Given

the difficulty of this computation for large networks, a new heuristic method is also proposed

to find the upper bounds of the path lengths instead of computing the exact length.

Keywords: complex networks; scale-free networks; small world property;

Twitter; modeling

1. Introduction

Online social networks (OSNs) are emerging as a new phenomenon in our communication society,

powered by a virtually universal access to the Internet and the human need for socializing and sharing

information. Thus, friends interchange information and organize common activities on Facebook or
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Tuenti; professionals keep in contact on LinkedIn; people from all walks of life communicate through

short messages on Twitter, etc. There is a variety of forums, as well, where people interested in a

given topic can post messages, chat, watch or download videos, share documents, pictures, slides, etc.

The users of OSNs are not necessarily physical persons; the presence of institutions and corporations

is increasing at a good pace. Interestingly, OSNs are also becoming an alternative to the conventional

information channels, like newspapers and television.

Among OSNs, Twitter is one of the most popular. In a nutshell, Twitter can be described as a

place for nanoblogging, where short messages or tweets (limited to 140 characters) posted by some

members are read by their followers. Twitter has grown very rapidly over the past few years. Currently,

Twitter has over 500 million users with 140 millions tweets posted daily and handles over 800,000 daily

search requests, being one of the largest social networks of all time. Twitter came for the first time to

newspapers’ front page in August 2011, because it was one of the communication channels used by street

rioters in London. This fact prompted Scotland Yard to disrupt the communications on Twitter. Twitter

played also a pivotal role in the Arab Spring [1] and in the Spanish 15M movement [2]. Therefore, it

is really necessary to model this type of network to be able to predict future behaviors, to fight against

malware and spam spreading, for marketing, etc.

Scale-free networks with a degree distribution following a power law have been the focus of a great

deal of attention in the literature. This type of network characterizes the degree distributions of many

man-made and naturally-occurring networks. For example, several types of social networks, including

collaboration networks, appear to have a degree distribution with a power-law tail.

Many scale-free networks fulfill the small world property. This property consists of the fact that

their average path length is very small compared to the size of the network. The computation of this

property is very difficult for large networks, since it involves calculating the shortest path between any

two nodes of the network. In this paper, a new heuristic method is proposed for proving this property for

social networks.

Barabasi and Albert [3] have given the first explanation of the scale-free distribution by reformulating

Simon’s model [4] in the context of growing networks. New nodes join the network by attaching m links

to other nodes, chosen according to linear preferential attachment. This means that a node obtains one

of the new links with a probability proportional to the number of links it already has. The algorithm,

henceforth called the BA model, generates networks with a degree distribution P (k) = 2m2k−3 with

k ≥ m. This model considers only undirected networks. Several variations and generalizations have

been performed with this model for different authors to make a more realistic representation of processes

taking place in real-world networks [5–10].

To model the growth of these social networks like Twitter, it is necessary to consider a more

realistic perspective. Therefore, in this paper, a generalization of the BA model is proposed considering

developing networks with directed links. In Section 2, an overview about complex networks is presented.

In Section 3, it is verified that Twitter can be considered a complex network by surveying its topological

structure. A new heuristic method to upper bound the path lengths is used to check the small world

property. The data used in this study were taken in September 2009, thanks to the collaboration of

Twitter administrators. The proposed model is introduced in Section 4. The application of this model to
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simulate Twitter’s growth is performed in Section 5. Finally, the conclusions obtained in this work are

outlined in Section 6.

Our model simulates the topology and dynamics of the Twitter network. It can be further used

as a starting point in simulating the information dynamics of the social network. There are many

information-theoretic models that simulate the diffusion of messages [11–16]. They characterize the

dynamics of retweeting activity, leading to interesting insights, such as users’ tweeting patterns in

relation to their degree distribution or the ability to predict whether a piece of information will be virally

transmitted through the network. As the next step in our work, tweeting activity can be assigned to our

model’s nodes to implement the above-mentioned information propagation models. The goal would be

to design a model able to successfully predict which information diffusion events will lead to bursts in

network dynamics: whose tweets will be retweeted fastest and by the most nodes. The applications

are obvious in simulating the diffusion of shocking news, spam messages, advertising and promotion

campaigns, etc.

2. Complex Networks

In the field of network theory, a complex network is a graph whose topological structure shows some

features that are not typical of simple networks, such as lattices or random graphs [17]. In recent years,

the study of real-world networks has proven that, unlike what might be expected, many of them behave

very differently from the standard Erdös–Rényi random graph model: the World Wide Web, Internet,

movie actor collaboration networks, science collaboration graphs, the web of human sexual contacts,

cellular networks, phone call networks, citation networks, networks in linguistics, power and neural

networks, protein folding and many more [18].

Three concepts are of particular interest within the realm of complex networks, which are

explained next.

• Degree distribution: In an undirected graph G = (V,E), the degree of a node vi is the number of

connections or edges that this node has to other nodes (excluding self-links), i.e.,

deg vi = |{eij ∈ E : j 6= i}| ,

where |·| denotes cardinality. Furthermore, the degree distribution,

P (k) =
|{vi ∈ V : deg vi = k}|

|E|
,

gives the fraction (or percentage) of nodes in V , the degree of which is k ∈ {0, 1, ..., n − 1},

n = |G|. Therefore, P (k) can be interpreted as the probability for a node (drawn randomly from

V ) of having exactly k edges.

In Erdös–Rényi random networks, it has been shown [18] that P (k) follows a Poisson distribution

whose peak is located at 〈k〉 (〈·〉 denotes the expectation value). However, in many real-world

networks, P (k) follows a power-law distribution, that is,

P (k) ∼ k−λ. (1)
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Networks with this property are called scale-free networks [19]. Equation (1) implies that

scale-free networks have very few nodes that are highly connected, whereas the majority of them

are not. Highly-connected nodes are called hubs, and their degrees tend to be orders of magnitude

higher than that of the average nodes.

Other functional dependencies on k are also found describing the degree distribution of real-world

networks. Truncated power laws, exponential functions or Gaussian distributions are some

examples of non-power laws that arise in many situations [20].

In the case of directed graphs, there are in- and out-degrees (referring to incoming and outgoing

edges, respectively) and the corresponding degree distributions. Needless to say, incoming and

outgoing edges could follow different scaling laws.

• Clustering coefficient: This coefficient measures the tendency of a graph to form clusters of

highly-related (i.e., connected) nodes, and it can be defined at a local and at a global level.

For a particular node (local level), its clustering coefficient represents the degree of connection

among its neighbors. The set of neighbors Ni of a given node vi in a directed graph is defined

as the set of nodes that are bidirectionally connected to vi (i.e., there is an edge from vi to the

neighbor and also an edge from the same neighbor to vi):

Ni = {vj ∈ V : eij ∈ E, eji ∈ E}. (2)

The clustering coefficient Ci of a node vi is then defined as the ratio of the number of links between

the neighbors of vi to the maximum number of links possible,

Ci =
|{ejk ∈ E : vj , vk ∈ Ni}|

|Ni|(|Ni| − 1)
. (3)

Obviously, Ci ∈ [0, 1]. At a global level, the clustering coefficient C of the whole network is

computed as the mean value of all of the local clustering coefficients:

C =
1

n

n
∑

i=1

Ci. (4)

In random networks, which are meant to be undirected, the clustering coefficient depends on the

probability of two random nodes being connected and can be easily computed from the mean

degree 〈k〉 as [19]:

Crand =
〈k〉

n
(5)

According to Equation (5), random networks are expected to have a low clustering coefficient,

since the mean degree 〈k〉 is usually low compared to the number of nodes of the network, n.

Surprisingly, however, some real-world networks do have a clustering coefficient much larger

than what is expected for a random network of the same size n. The fact is again evidence that

real-world networks have an underlying structure considerably different from that of random ones.

• Average path length: This concept is defined as the average distance between any two nodes of the

network, assuming that all nodes of the graph are connected to each other (i.e., for all vi, vj ∈ V ,

there is a sequence of nodes {vi, va1 , va2 , . . . .val , vj}, called a path from vi to vj of length l ≥ 0,

such that {eia1 , ea1a2 , . . . , ealj} ⊂ E). Otherwise, one discards all isolated nodes; the result is (are)
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called the connected component(s) of the graph. The distance d(vi, vj) from node vi to node vj in

the same connected component is then the shortest distance of all paths joining vi to vj . Note that,

in the case of directed graphs, d(vi, vj) 6= d(vj, vi) in general. The average path length Alength is

calculated according to:

Alength =
1

n(n− 1)

∑

i,j

d(vi, vj). (6)

Depending on the convention used, Equation (6) may include paths from one node to itself

(so-called cycles), but in practice, this possibility barely affects the results.

Real-world networks usually fall into the category of small world networks. Small world networks

are characterized by the fact that their average path length is very small compared to the size of

the network. This interesting property is not so uncommon though, since it can also be found in

random networks [21].

Over the past several years, many studies have been carried out to analyze the complex topological

structure of several real-world networks. The World Wide Web is such an example: web pages form the

set of nodes of the network, and the hyperlinks among them are the edges. Despite the large number

of web pages on the Internet and the links among them, its structure shows a very low average path

length, a high clustering coefficient and a power-law-based degree distribution. Other examples of

artificial networks with a special topological structure include the Internet (composed of routers and

their connections to computers), power networks (the grid of the western United States), scientific

collaboration networks and several biologically-based networks. For a detailed list of examples where

complex connectivities were observed emerging from real-world networks, see [18].

3. Twitter as a Complex Network

The Twitter network consists of users and their relationships, so it can be naturally modeled as a

directed graph G = (V,E), where:

• V = {v1, v2, . . . , vn} is the set of nodes (or vertices) of the graph. Here, each vi represents a

Twitter user, and n is the number of users. By definition, the number of nodes is the cardinality of

the graph (in symbols: n = |G|).

• E is the set of directed edges (or links). An edge eij is an ordered pair of nodes of the form

(vi, vj), meaning that the edge goes from vi to vj . If there exists a relationship between two users

vi and vj in the sense that vi follows vj (in Twitter terms), then there is a corresponding edge

eij = (vi, vj) ∈ E in the Twitter graph.

Equivalently, one says that vi is a follower of vj or that vj is a friend of vi. Although, in general

graphs, there can be edges of the form eii (i.e., from node vi to itself), this is not the case in the graph

representing Twitter.
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3.1. Data Gathering

As was mentioned in the Introduction, Twitter has currently some 500 million users, and counting.

Therefore, gathering the data required to analyze Twitter’s topological structure poses a difficult problem.

The Twitter public API [22] is the standard tool used by many web applications to retrieve data from

Twitter users’ accounts and to compute useful statistics, such as social influence metrics (see, for

instance, Klout [23] and Twitalyzer [24]). However, Twitter imposes a restriction on all users accessing

the API, in such a way that only 350 queries can be performed per hour, which in effect makes it

impossible to collect the necessary information to build a snapshot of the Twitter network at a certain

time. Fortunately, in [25], the authors were able to obtain such a snapshot (Twitter administrators kindly

removed the access limit for them), which was then made publicly available.

The dataset that was finally used for this study contains social data from 50 million users.

The snapshot was taken in September 2009 and contains 1, 963, 263, 821 friendship links among

51, 217, 936 users.

3.2. Degree Distribution

The degree distribution of many real-world networks is not Poissonian, showing that they have not

much in common with the classical random network model. For instance, the degree distribution of the

Internet is accurately modeled by a power law [26]. However, in some cases, such as the collaboration

network between scientists (two scientists are connected if they have coauthored a paper), it can be better

represented by a truncated power law (i.e., P (k) ∼ k−λe−k/kc) [27]. Other networks show a completely

different degree distribution, such as the power grid of the western United States, which follows an

exponential distribution, or the Utah Mormon social network, which shows a Gaussian distribution [20].

Since Twitter is a directed network, two degree distributions can be actually studied: (i) the outgoing

degree distribution Po(k) (relative frequency of nodes with k outgoing edges); and (ii) the incoming

degree distribution Pi(k) (relative frequency of nodes with k incoming edges). Figures 1 and 2 show

Po(k) and Pi(k) of Twitter, respectively. Both figures have been plotted in logarithmic scale. As one

can see, they nicely resemble straight lines, showing that both degree distributions follow approximately

a power law. As a result, Twitter is characterized by the presence of “friend” and “follower” hubs.

In other words, there are few users with a large group of followers, as well as few users with a large

group of friends, while the majority of users have a few friends and followers.

Twitter can therefore be categorized as a scale-free network. How scale-free networks come about

can be explained by growth based on preferential attachment [3]. According to this assumption, as the

network grows, new nodes are more likely to connect to high degree nodes than to low degree nodes.

This is also known as “the rich gets richer” philosophy and is observed in the Twitter network, since new

users tend to follow important (i.e., highly connected) users.
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Figure 1. Outgoing degree distribution of Twitter’s network. As the figure shows, there are

a few users with an enormous degree (number of friends). On the contrary, the majority of

them have just at most 1000 friends.
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Figure 2. Incoming degree distribution of Twitter’s network. As the figure shows, there are

a few users with an enormous degree (number of followers). On the contrary, the majority

of them have less than 100 followers.
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3.3. Clustering Coefficient

As explained in Section 2, the clustering coefficient of a node measures how much connected it is to

its neighbors. The clustering coefficient of a node in a directed graph is given by Equations (2) and (3),

and the clustering coefficient for the whole network is obtained from Equation (4).

The expected clustering coefficient in random networks is computed via Equation (5). In random

networks, the mean degree 〈k〉 is usually orders of magnitude lower than the number of nodes n, so the

clustering coefficient tends to be a small value.

Many real-world networks, however, have a much higher clustering coefficient than what is expected

according to the random network model. For a random network of the same size as that of Twitter’s

network, the expected clustering coefficient is, according to Equation (5),

CTwitter_rand =
〈k〉

n
=

38.33

51.22× 106
= 7. 48× 10−7,

where the mean node degree 〈k〉 was obtained by dividing the number of links (1963×106) by the number

of nodes (51.22 × 106). However, Twitter is a directed network, thus CTwitter_rand must be divided by

two, resulting in 3.74× 10−7. The analysis of the actual Twitter network provides quite different results

though (see Table 1).

Table 1. Twitter network clustering coefficient.

Random network C. Coef. Twitter network actual C. Coef. Ratio

3.74× 10−7 0.096 (9.6%) 256, 684.5

The results of Table 1 show that the Twitter clustering coefficient is much larger than that of a random

network of the same size (specifically, it is almost 105-times larger). We conclude that Twitter users tend

to form clusters according to friendship links.

3.4. Average Path Length

Whether a network may be called a small world network depends on the average path length, which

must be very short compared to the size of the network. Many real-world networks fall into this category,

but so do random networks, as well.

Computing the average path length is a difficult task, since it involves calculating the shortest path

between any two nodes of the network. Traditionally, algorithms, such as Floyd-Warshall’s [28] or

Johnson’s [29], have been used for computing the distance between all pairs of nodes in a graph.

Unfortunately, as the size of the graph grows larger, their execution time rapidly increases, rendering

them useless for graphs, such as the Twitter network model. Specifically, the Twitter network is

composed of 51, 217, 936 users; 43, 027, 729 of them have at least one friend (i.e., they are the beginning

of a link), and 48, 192, 718 of them have at least one follower (i.e., they are the end of a link). Therefore,

there are 43, 027, 729 × 48, 192, 718 ≈ 2073 × 1012 potential paths, making the brute force approach

infeasible. To overcome this problem, a new method is proposed to prove the small world property for

Twitter’s network. Instead of computing the exact length of all of the paths, we will content ourselves

with upper bounds of the path lengths and average path length. Note that a small upper bound of the path
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lengths means that all paths are at most as long, but not any longer. As a consequence, finding a small

upper bound of the path lengths would prove that all of the paths are short enough to make Twitter a

small world network.

3.4.1. Method

The new method presented here for estimating an upper bound of the average path length is mainly

based on the existence of hubs. The idea behind it is very simple. Consider for a moment a undirected

graph with several hubs. Since hubs are connected to a large amount of nodes, they are an easy way to

quickly go from one node to another. For instance, if a path from vi to vj must be found and hk is a hub,

then it is very likely that hk is connected to both vi and vj , leading to the short path {vi, hk, vj}. Since,

however, the graph we have associated with the Twitter network is directional, only nodes with a large

number of both outgoing and incoming links will be promoted to hubs.

Our method, inspired by the idea presented above, makes the problem computationally amenable by

introducing a strongly-connected component, called the hub subnetwork and denoted by Gh = (Vh, Eh),

Vh = {h1, ..., h|Vh|}. This hub subnetwork consists of nodes with both many friends (outgoing links) and

followers (incoming links), so virtually any pair of nodes can be connected through it. The method is

divided into three stages.

• For every node that is not in the hub subnetwork, find one path from it to any hub. Call d(vi, Vh) its

length, 〈d(vi, Vh)〉 the average of all distances d(vi, Vh) and maxtoHub = maxvi /∈Vh
d(vi, Vh) their

maximum.

• For every hub, find one path to any other hub. Call d(hi, hj) its distance, 〈d(hi, hj)〉 the average of

all distances d(hi, hj) and maxwithinHub = maxhi,hj∈Vh
d(hi, hj) their maximum.

• For every node that is not in the hub subnetwork, find one path from any hub to that node.

Call d(Vh, vi) its length, 〈d(Vh, vi)〉 the average of all distances d(Vh, vi) and maxfromHub =

maxvi /∈Vh
d(Vh, vi) their maximum.

Figure 3 depicts this approach. Then:

maxlength = maxtoHub + maxwithinHub + maxfromHub (7)

is an upper bound of the distance from any node of the network to any other, and:

〈d〉 = 〈d(vi, Vh)〉+ 〈d(hi, hj)〉+ 〈d(Vh, vi)〉 (8)

is an upper bound of the mean distance of the Twitter network.

Nevertheless, this approach makes some assumptions that might not hold:

• It is always possible to find a path from any node to the hub subnetwork.

• There is a path between any two nodes within the hub subnetwork.

• It is always possible to go from any node of the hub subnetwork to any other node in the graph.
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Figure 3. Three-stage methodology for computing the path between two nodes.

Fortunately, by carefully selecting the nodes of the hub subnetwork, these three assumptions may be

considered as good as true (see below for details). Indeed, the high in- and out-connectivity of the hub

nodes makes it easy to find paths from any node of the network to the hub network, as well as from

the hub network to any other node. The selection process produced a hub subnetwork with 1000 nodes,

these being the users with the most friends that also happened to have a large group of followers. On

average, each hub has 47,351 friends and 67,622 followers.

In order to compute maxtoHub, it is necessary to find a path from any node outside the hub subnetwork

to the hub subnetwork. To this end, a breadth-first search starting from each such node is performed.

Each search stops when any hub is reached. maxtoHub is then the maximum length of all of the found

paths. By construction, maxtoHub is certainly an upper bound of the greatest distance from any node to

the hub subnetwork.

The parameter maxwithinHub can be easily computed by exhaustive searching, since only 1 000×1 000

paths must be found. After finding all distances between pairs of hubs, maxwithinHub is set to be the

maximum distance.

Obtaining maxfromHubs can be more complicated than maxtoHub, if one tries to find paths from the

hubs to any other node that is not in the hub subnetwork. The reason is that finding a path from a simple

node to a hub is easier than the other way around. To circumvent this difficulty, an auxiliary network was

created solely for this purpose, this new network being identical to the original Twitter network, but with

inverted links. Therefore, an edge from vi to vj means in the auxiliary network that user vj is a follower

of vi. Clearly, its maxtoHub value matches the maxfromHub value of the original Twitter network, so the

same method explained above for computing maxtoHub can be used.

3.4.2. Results

The relevant parameter values are provided below using the new proposed method to estimate the

average path length of the dataset used for this study.

• maxtoHub

The maximum length of all of the paths found between any node and the hub subnetwork is:

maxtoHub = 45.

However, the average path length is much lower,

〈d(vi, Vh)〉 = 1.79.
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The distribution of path lengths is shown in Figure 4, where it can be checked that most of them

have a length of three or less. Moreover, a total amount of 42, 213, 921 paths (each with a different

initial node) was found. Taking into account the fact that there are 43, 027, 729 users with at least

one friend, this means that in 98.10% of the cases, the search of a path from a node outside the hub

subnetwork to a hub was successful.

No. of Paths Path Length

. . . . . .
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Figure 4. Path length distributions ending at a node of the hub network. The few paths with

a length greater than or equal to 10 have been omitted in the table.
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• maxwithinHub

The maximum length of all of the paths found from one hub to another is:

maxwithinHub = 3,

and their average,

〈d(hi, hj)〉 = 1.30.

Figure 5 shows the distribution of path lengths in the hub subnetwork.
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Figure 5. Path length distributions within the hub subnetwork.

• maxfromHub

The maximum length of all of the paths found from the hub subnetwork to any other node is:

maxfromHub = 12.

However, as in the case of maxtoHub, the average path length is much lower, namely,

〈d(Vh, vi)〉 = 2.19.

The distribution of path lengths is shown in Figure 6, where it can be seen that most of them have

a length of three or less. Moreover, the total count of paths (each with a different initial node) was
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48, 044, 814. Taking into account that there are 48, 192, 718 users with at least one follower, this

means that in 99.69% of the cases, the search of a path from the hub subnetwork to a node outside

was successful.

No. of Paths Path Length

1 12

1 11
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Figure 6. Path length distributions starting from the hub network.

3.4.3. Resulting Upper Bounds

From the previous data, and Equations (7) and (8), it follows that:

maxlength = 45 + 3 + 12 = 60, (9)

and:

〈d〉 = 1.79 + 1.30 + 2.19 = 5.28. (10)
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Having made the simple math, a final remark is in order.

As mentioned above, the hub subnetwork was reached by 42, 213, 921 nodes, and 48, 044, 814 nodes

could be reached from the hub network. This means that the total amount of paths included in the

calculations is 42, 213, 921 × 48, 044, 814 = 2 028 × 1012 out of the 43, 027, 729 × 48, 192, 718 =

2 073× 1012 potential paths (once the isolated nodes of Twitter’s network have been removed), provided

there is a path between any pair of nodes. Therefore, the sample used for the calculation of maxtoHub

and 〈d〉 might cover even more than 97.83% of the actual paths (one per pair of nodes), just obtained

after dividing those numbers. Our sample being practically exhaustive, we may conclude that the results

Equations (9) and (10) are not only conservative, but also statistically significant.

4. The Model

In social networks, every instant, new nodes and links are created while some others are removed.

In this paper, we propose a model based on developing networks with directed links that show a

scaling behavior, but we did not contemplate the decaying behavior to avoid complicating the model.

We consider structures that evolve due to the following reasons. First, they grow as in the BA model,

i.e., in each instant, one new node is added and is connected to an old node by a directed link with a

probability depending only on the in- or out-degree of the target. If the new node is attached to the old

node Figure 7 i), the probability depends only on the in-degree, and if it is attached as the target of the

old node Figure 7 ii), the probability depends on the out-degree of the target. In addition, we introduce

a new parallel component of the evolution Figure 7 iii): the permanent addition of new directed links

between old nodes depending on the out-degree of the target and the in-degree of the originating node.

In this section, we follow the same notation as in [10].

Figure 7. Growth process in the model: (i) node creation attaching an old node; (ii) node

creation as the target of an old node; (iii) link creation. In (i) and (ii), the new node is a filled

black circle, while in (i), (ii) and (iii), the new link is a dashed line.

Let us first determine the average node degrees (in-degree, out-degree and total degree) of the model.

Let N(t) be the total number of nodes and I(t) and J(t) the in-degree and out-degree of the entire

network, respectively. At each time step,

• with probability p, a new node is created attaching to a directed node,

• with probability q, a new node is created attached by a directed link and

• with probability r, a directed link is created between the old nodes.
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The probabilities p, q and r should clearly add up to unity, and we always assume q < p. Therefore,

both the total in- and out-degrees increase by one. As a result, N(t) = (p+ q)t and I(t) = J(t) = t and

the average in- and out-degrees, Din = I(t)/N(t) and Dout = J(t)/N(t), are both equal to 1
p+q

.

To determine the degree distributions, we need to specify:

• (i) the attachment rate A(i, j), defined as the probability that a newly-introduced node links to an

existing node with i incoming and j outgoing links,

• (ii) the attachment rate B(i, j), defined as the probability that a newly-introduced node is linked

by an existing node with i incoming and j outgoing links,

• (ii) the creation rate C(i1, j1|i2, j2), defined as the probability of adding a new link from a (i1, j1)

node to a (i2, j2) node.

We consider that the attachment rate A(i, j) depends only on the in-degree of the target node and

that the attachment rate B(i, j) depends only on the out-degree of the source node; therefore, A(i, j) =

Ai = i + λ and B(i, j) = Bj = j + ν, where λ and ν are constants. In the same spirit, we take the link

creation rate to depend only on the out-degree of the issuing node and the in-degree of the target node,

C(i1, j1|i2, j2) = C(j1, i2) = (i2 + λ)(j1 + ν).

With these rates, the joint degree distribution, Nij(t), defined as the average number of nodes with i

incoming and j outgoing links, evolves according to:

dNij(t)

dt
=(p+ r)

[

(i− 1 + λ)Ni−1,j − (i+ λ)Nij

I + λN

]

+

(q + r)

[

(j − 1 + ν)Ni,j−1 − (j + ν)Nij

J + νN

]

+ pδi0δj1 + qδi1δj0.

(11)

The first group of terms on the right accounts for the changes in the in-degree of target nodes

by simultaneous creation of a new node and link (probability p) or by creation of a new link only

(probability r). For example, the creation of a link to a node with in-degree i leads to a loss in the

number of such nodes. This occurs with rate (p+ r)(i+λ)Nij , divided by the appropriate normalization

factor
∑

i,j(i+ λ)Nij = I + λN . Similarly, the second group of terms account for out-degree changes.

The third term accounts for the introduction of new nodes with no incoming links and one outgoing link.

The last term appears for the introduction of new nodes with one incoming link and no outgoing links.

It is clear that the Nij grow linearly with time. Accordingly, we substitute Nij(t) = tnij , as well as

N = (p+ q)t, I = J = t and r = 1− p− q, into Equation (11) to yield a recursion relation for nij :

[(1 + λ(p+ q)) + (1− q)(i+ λ) + (1− p)(j + ν)]nij =

(1− q)(i− 1 + λ)ni−1,j + (1− p)(j − 1 + ν)ni,j−1+

p [1 + λ(p+ q)] δi0δj1 + q [1 + λ(p+ q)] δi1δj0. (12)

The in-degree and out-degree distributions are straightforwardly expressed through the joint

distribution: Ii(t) =
∑

j Nij(t) and Oj(t) =
∑

i Nij(t). Because of the linear time dependence of

the node degrees, we write Ii(t) = tIi and Oj(t) = tOj . The densities Ii and Oj satisfy:

[(1 + (1− q)i+ λ(1 + p)] Ii =

(1− q)(i− 1 + λ)Ii−1 + p [1 + λ(p+ q)] δi0 + q [1 + λ(p+ q)] δi1 (13)
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and:

[(1 + λ(p+ q)) + (1− p)(j + ν)]Oj =

(1− p)(j − 1 + ν)Oj−1 + p [1 + λ(p+ q)] δj1 + q [1 + λ(p+ q)] δj0, (14)

respectively. The solution to these recursion formulae may be expressed in terms of the following ratios

of gamma functions:

Ii =
Γ(i+ λ)Γ(2+λ(1+p)−q

1−q
+ 1)

Γ(i+ λ(1+p)+1
1−q

+ 1)Γ(1 + λ)
I1, for i ≥ 1 (15)

with I0 =
p[1+λ(p+q)]
1+λ(1+p)

, I1 =
λ(p+q)[1+λ(p+q)]+q

[1+λ(1+p)][2−q+λ(1+p)]
and:

Oj =
Γ(j + ν)Γ(2+ν(1+q)−p

1−p
+ 1)

Γ(j + ν(1+q)+1
1−p

+ 1)Γ(1 + ν)
O1, for j ≥ 1 (16)

with O0 =
q[1+ν(p+q)]
1+ν(1+q)

, O1 =
ν(p+q)[1+ν(p+q)]+p

[1+ν(1+q)][2−p+ν(1+q)]
.

From Equations (15) and (16), we see that as i, j → ∞, we have Ii ∼ CIN i
−λIN and

Oj ∼ COUT j
−λOUT , respectively, with:

λIN =
1 + λ(p+ q)

1− q
+ 1 and λOUT =

1 + ν(p+ q)

1− p
+ 1. (17)

Therefore, in this section, a generalization of the BA model is proposed to describe the behavior of

social networks. The BA model only considers undirected networks, and every instant, a new node is

created linked to the network node with the highest degree. This model offers a more realistic point of

view considering directed networks, and the creation of new nodes attaching or attached to a node and

new links between old nodes depending on their in- and out-degree. It would be very interesting to add

the decaying network behavior of social networks. This behavior consists of removing links or nodes

with a lower probability than the creation of new ones. This property makes the model too complicated

and difficult to find a mathematical representation.

Our model can be used to simulate “scale-free” networks and to study different parameters about how

information is spread considering the selected application.

5. Application of the Model to Twitter

In this section, the model proposed in Section 4 is applied to Twitter. From Section 3, we know the

power law values λIN = 2.2 and λOUT = 1.9 and the average in- and out-degrees Din = Dout = 38.33.

Substituting these values in Equation (17), the following expressions are obtained:

0.2− 1.2q = 0.026λ and − 0.123 + 0.9q = 0.026ν.

The proposed model was applied to generate a Twitter network of 5000 nodes considering the

probability, p, of creating a new node attaching to a directed node equal to 0.016. For these initial

conditions, a total number of 98,324 links were created by the model. The degree distributions provided
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by the model are represented in Figures 8 and 9. It is observed that the power law distribution follows

the same trend as the ones obtained with real data in Section 3.2. It is shown that the model describes the

“rich gets richer” philosophy, since new nodes are more likely to connect to high degree nodes than to

low degree nodes. Therefore, it is concluded that our model is able to generate the power law behavior

of the Twitter social network.
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Figure 8. Outgoing degree distribution of Twitter’s network computed considering 5000

nodes with the proposed model.
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Figure 9. Incoming degree distribution of the Twitter network computed considering 5000

nodes with the proposed model.
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The clustering coefficient was also calculated. In Table 2, a comparison between the parameter values

obtained with the real Twitter database and with the Twitter network generated by the proposed model

for 5000 nodes is shown. It should be noticed that the value of the clustering coefficient is lower in

the modeled Twitter, because the size of the generated network is smaller. Then, the following question

arises about what is the minimum number of nodes required to properly generate a simulated Twitter

network. This interesting aspect is out of the scope of this paper and could be the subject of future work.

Table 2. Comparison between the real Twitter network of 51, 217, 936 users and the modeled

network using 5000.

λIN λOUT Clustering Coeff.

Real Twitter network −1.8778 −2.1715 0.096 (9.6%)

Modeled Twitter network −1.8227 −2.1361 0.020 (2%)

As previously said, Twitter is one of the most popular social networks for spreading ideas. It has

revolutionized the way millions of people consume news. Twitter is the world’s fourth-largest social

network, so it is no surprise that Twitter malware attacks are on the rise. Therefore, this model can be

applied to define an optimal defense strategy to fight against malware and spam spreading.

Twitter is also evolving into a major marketing tool in different areas of media and marketing.

Therefore, it is important to find the best strategy for that purpose. With this model, it is possible to

simulate a Twitter network and to analyze the way that messages are spread to find the best strategy to

disseminate the required business information.

6. Conclusions

In this paper, we have studied the behavior of the Twitter social network. It was proven that Twitter

can be considered as a scale-free network fulfilling the small world property. For that purpose, the

degree distribution, the clustering coefficient and a conservative estimate of the average path length

of the Twitter network have been computed using data as of September 2009 amounting to some 50

million users. Given this great number of users, a new heuristic method is introduced to estimate the

average path length. This method consists of computing an upper bound dividing the network into two

parts: the hub subnetwork (comprised of 1 000 highly-connected nodes), and the rest. For any pair of

nodes, a breadth-first algorithm searched then for a path via the hub subnetwork in three steps: from

the initial node to a hub, from the hub subnetwork to the final node and within the hub subnetwork.

The maximum path length in the hub subnetwork was found to be three. The numerical results confirm

that Twitter, as other important real-world networks, is a scale-free, small world network with a high

clustering coefficient. Such networks, not complying with the characteristic of geometrically-regular

graphs, nor random graphs, are called complex networks.

A model has also been proposed considering developing networks with directed links based on the

works of [10]. Our model is a generalization of the BA model to describe the behavior of social networks,

which offers a more realistic point of view by considering also the creation of new links between old

nodes. The proposed model has been applied to simulate the growth of Twitter. A Twitter network of
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5000 nodes was generated creating 98,324 links. It was shown that the model describes the “rich gets

richer” philosophy, and it was concluded that the model is able to generate the power law behavior of

the Twitter social network; this modeled network can be used for different applications, for example

marketing studies, malware and spam spreading, news dissemination, etc.

The clustering coefficient was also computed for this modeled network. The results obtained differ

from the ones obtained with the real database, because the size of this network is smaller. A very

interesting question arises, which is out of the scope of this paper, about what it is the minimum number

of users necessary to describe the Twitter network. This fascinating aspect could be the subject of

future work.
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