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Abstract: In this work, we show that the thermodynamic phase space is naturally
endowed with a non-integrable connection, defined by all of those processes that annihilate
the Gibbs one-form, i.e., reversible processes. We argue that such a connection is
invariant under re-scalings of the connection one-form, whilst, as a consequence of the
non-integrability of the connection, its curvature is not and, therefore, neither is the
associated pseudo-Riemannian geometry. We claim that this is not surprising, since these
two objects are associated with irreversible processes. Moreover, we provide the explicit
form in which all of the elements of the geometric structure of the thermodynamic phase
space change under a re-scaling of the connection one-form. We call this transformation
of the geometric structure a conformal gauge transformation. As an example, we revisit
the change of the thermodynamic representation and consider the resulting change between
the two metrics on the thermodynamic phase space, which induce Weinhold’s energy metric
and Ruppeiner’s entropy metric. As a by-product, we obtain a proof of the well-known
conformal relation between Weinhold’s and Ruppeiner’s metrics along the equilibrium
directions. Finally, we find interesting properties of the almost para-contact structure and
of its eigenvectors, which may be of physical interest.
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1. Introduction

The geometry of equilibrium thermodynamics and thermodynamic fluctuation theory is extremely
rich. In particular, equilibrium thermodynamics is based on the first law, which for reversible processes
can be written in the internal energy representation as:

ηU = dU − TdS + p dV −
n−2∑
i=1

µidNi = 0, (1)

where the variables have their usual meaning. From the point of view of the theory of differential
equations, this is a Pfaffian system in a space of 2n + 1 variables (n extensive quantities, n intensities
and a potential), for which there is no 2n-dimensional sub-manifold whose tangent vectors all satisfy
Condition (1) (cf. [1]). In fact, for this to be the case, the one-form ηU should satisfy the Frobenius
integrability condition, ηU ∧ dηU = 0, whereas in thermodynamics, ηU is as far as possible from being
integrable. That is, it satisfies:

ηU ∧ (dηU)n 6= 0. (2)

This implies that the solutions to Equation (1) have at most n independent variables. Therefore,
thermodynamic systems are n-dimensional sub-manifolds of a (2n+1)-dimensional phase space, which
are completely defined as the graph of the “fundamental relation”, i.e., a solution of (1) expressing the
dependence of the thermodynamic potential on n independent variables. As an example, for a closed
thermodynamic system, the fundamental relation is usually expressed in the form u(s, v), where u is
the molar internal energy and s and v are the molar entropy and volume, respectively. The equations of
state for the temperature and the pressure then follow from (1). This was already realized by Gibbs and
Carathéodory [2,3], who started to study the geometric properties of state functions and relate them to
thermodynamic properties of systems. In a geometric language, we can rephrase the above statements
by saying that the thermodynamic phase space (TPS) is a contact manifold, and thermodynamic systems
are Legendre sub-manifolds of the TPS [4–8].

A Riemannian metric can be introduced on the Legendre sub-manifold representing a thermodynamic
system by means of the Hessian of a thermodynamic potential. Weinhold [9–12] was the first to realize
this fact and proposed the metric defined as the Hessian of the internal energy. For example, for a
closed system:

gW =
∂2u

∂s2
ds⊗ ds+ 2

∂2u

∂s∂v
ds

s
⊗ dv +

∂2u

∂v2
dv ⊗ dv, (3)

where the symbol
s
⊗ denotes the symmetric tensor product (cf. Section 2, Equation (19)). Weinhold used

the inner product induced by this metric in order to recover geometrically most of the thermodynamic
relations. Later, Ruppeiner [13] introduced a related metric starting from thermodynamic fluctuation
theory. In fact, the Gaussian approximation for the probability of a fluctuation [14]:

w = w0exp

(
−∆T∆s−∆p∆v

2T

)
(4)
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depends on the Hessian of the entropy with respect to the fluctuating (extensive) variables. This enables
one to equip the Legendre sub-manifold corresponding to a thermodynamic system with a different
Hessian metric to that of Weinhold, namely [15]

gR =
∂2s

∂u2
du⊗ du+ 2

∂2s

∂u∂v
du

s
⊗ dv +

∂2s

∂v2
dv ⊗ dv. (5)

The two metrics are related by a conformal re-scaling [16]:

gR = − 1

T
gW , (6)

which is exactly the same re-scaling between the two one-forms defining the first law in the energy and
in the entropy representation, i.e.,

ηs = ds− 1

T
du− p

T
dv = − 1

T
ηu. (7)

In this way, Legendre sub-manifolds (defining thermodynamic systems undergoing reversible processes)
are equipped naturally with two different Riemannian structures that are related by a conformal
transformation. Notice that this fact also implies that Legendre sub-manifolds in thermodynamics are
also Hessian manifolds (see, e.g., [17,18]).

The study of Metrics (3) and (5) has been very fruitful. It was found in particular that the
thermodynamic length corresponding to gW (respectively, gR) implies a lower bound on the dissipated
availability (respectively, to the entropy production) during a finite-time thermodynamic process [19]
and that the scalar curvature of these geometries is a measure of the stability of the system, since it
diverges over the critical points of continuous phase transitions with the same critical exponents as for
the correlation volume [20–22]. Moreover, these geometries are related naturally to the Fisher–Rao
information metric, and therefore, the investigation of their geometric properties can be extended
(mutatis mutandis) to the statistical manifold [23] and to microscopic systems, which are characterized
by working out of equilibrium [24–26]. As such, the intrinsic geometric perspective of Legendre
sub-manifolds of the thermodynamic phase space has given new physical insights for thermodynamics
itself, with direct interest for applications in realistic processes, outside the realm of abstract reversible
thermodynamics.

So far, the geometric properties of the thermodynamic phase space itself have remained less
investigated. Mrugala et al. [27] proved that one can endow naturally the TPS with an indefinite metric
structure derived from statistical mechanics, which for a closed system can be defined either as:

Gu = ηu ⊗ ηu + ds
s
⊗ dT − dv

s
⊗ dp (8)

or as:

Gs = ηs ⊗ ηs + du
s
⊗ d

(
1

T

)
+ dv

s
⊗ d

( p
T

)
, (9)

depending on the thermodynamic representation being considered. These metrics reduce to Weinhold’s
and Ruppeiner’s metrics, respectively, on Legendre sub-manifolds. It was proven [28] that such
structures are as perfectly well adapted to the contact structure as they can be, and that in fact, one
can introduce also a linear endomorphism in the tangent space to the TPS, so that the manifold is
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equipped with a very peculiar geometry, defining a para-Sasakian manifold [29–31]. This, in turn, is the
odd-dimensional analogue of the well-known Kähler geometry [32]. Moreover, such a definition implies
that the TPS contains a Kähler manifold along the 2n directions identified with reversible processes.
The important point to notice here is that the thermodynamic phase space has a very rich geometric
structure, with elements stemming from the reversible relation (Equation (1)) and others arising from
irreversible fluctuations (Equations (8) and (9)). Furthermore, a related, although at first sight slightly
different, geometrical approach to thermodynamic fluctuations was also recently pursued. It was shown
in [33] that generalized complex structures, a completely new mathematical area, can be introduced in
thermodynamic fluctuation theory, especially in order to consider thermal and quantum fluctuations on
the same footing, which seems to be the case in the presence of a gravitational field.

An additional physical motivation for our study comes from previous results, where it has also been
proved, by means of contact Hamiltonian dynamics, that the lengths computed using Metrics (8) and (9)
in the thermodynamic phase space give a measure of the entropy production along irreversible processes
identified with fluctuations [34] (see also [35]).

In this work, we revisit these ideas from a different point of view, namely that of the theory of
connections. In this manner, we present a novel aspect of the geometric structure of thermodynamics and
thermodynamic fluctuation theory. In particular, we study the transformations preserving the connection
defined by reversible processes, which we call the equilibrium connection. In fact, it is known that the
physical content of the first law resides in those processes that annihilate the connection one-form ηu,
and therefore, at the level of an equilibrium (reversible) description, we are presented with the physical
freedom of rescaling such a form through multiplication by any non-vanishing function. This operation,
known as contactomorphism [36,37], does not change the results of equilibrium thermodynamics.
One usually encounters such transformations as the change of thermodynamic representation, e.g.,
from the energy to the entropy representation (cf. Equation (7)). Here, we consider the class of
contactomorphisms in the thermodynamic phase space and derive the induced transformations for any
object defining its geometric structure. We call these conformal gauge transformations [38]. We prove
that the equilibrium connection thus defined is necessarily non-integrable, meaning that its associated
curvature (not to be confused with the Riemannian curvature associated with the various thermodynamic
metrics) is non-vanishing and not invariant under contactomorphisms. Hence, it follows that, albeit
that the equilibrium thermodynamics of reversible processes is independent of the representation used,
the description of irreversible fluctuations along such processes does change depending on the choice
of a particular representation. We show that the metric structure of the TPS is intimately related to the
curvature of the equilibrium connection. Since the connection is non-integrable, it follows that the metric
changes under contactomorphisms. We further show that this reduces to the well-known relation (6)
between Weinhold’s and Ruppeiner’s geometries in the appropriate case, but our result is valid for
a general transformation. This shows that the induced thermodynamic lengths are not invariant with
respect to using different potentials or representations (see also [41–43] for the definition of inequivalent
thermodynamic metrics based on the Hessian of other potentials). Finally, we argue that our results
can shed light on the physical significance of these geometric objects, highlighting the ones related to a
reversible situation and the ones associated with irreversible evolution. Hopefully, this description will
help in the identification of geometric properties of potentials that are relevant in irreversible situations.
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2. The Equilibrium Connection

In this section, we will recall some formal developments of thermodynamic geometry. The interested
reader is referred to [28] and [34] for a detailed discussion about the statistical origin of the structures
presented here.

Let us consider a thermodynamic system with n degrees of freedom. As we have argued in
the Introduction, the TPS, denoted by T , is the (2n + 1)-dimensional ambient space of possible
thermodynamic states of any system.

The laws of thermodynamics are universal statements (applicable to every thermodynamic system)
about the nature of the processes that take place when a system evolves from a particular thermodynamic
state to another. Thus, we believe that such laws are better identified in a geometric perspective with the
properties of the TPS. In order to accommodate such laws, it is convenient to consider the TPS to be
a differentiable manifold. This will make the evolution meaningful in terms of vector fields and their
corresponding integral curves.

Our central point is that the first law of thermodynamics (1) is equivalent to defining a 2n dimensional
connection Γ over the TPS, which we call the equilibrium connection. This is a smooth assignment of
2n horizontal directions for the tangent vectors at each point of T . We express this schematically by:

{First law of thermodynamics at p} ≡ {Γ : p ∈ T −→ Γp ⊂ TpT }, (10)

where we use the standard notation TpT for the tangent space at a given point. At first sight, such
an assignment seems to be rather abstract. However, we will shortly see that it takes the same local
form independently of the thermodynamic system under consideration, reflecting the universality of the
first law.

Let us agree that a curve on T represents a possible process. We say that a curve joining two points in
the TPS is an equilibrium (reversible) process if its tangent vector lies in the horizontal subspace Γp with
respect to the first law. This statement acquires a definite meaning with the aid of a connection one-form
η. Recall that a one-form is just a linear map acting on tangent vectors. In the case of the first law, the
horizontal directions of TpT are given by the vectors annihilated by η, that is,

X ∈ Γp ⇐⇒ η(X) = 0. (11)

From Equation (1), we see that the above condition onX is just the requirement that the corresponding
process be a reversible process. In fact, from a geometric point of view, since η is a contact form (see
the Introduction), then a theorem by Darboux ensures that around each point on the TPS, one can assign
a set of local coordinates (w, pa, q

a), where a takes values from one to n, in which η reads:

η = dw +
n∑
a=1

padq
a. (12)

It can also be justified from statistical mechanical arguments (cf. [34]) that such coordinates are the
ones that enter in the equilibrium description of the process. These are known in the literature as
Darboux coordinates. For example, for a closed system, as in (7), in the molar entropy representation,
the coordinates qa are naturally associated with the extensive variables u and v; the pa are (minus) the
intensities T−1 and p/T , and w is the molar entropy s.
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Note that the horizontal directions in the TPS are uniquely defined by (11), and any particular
thermodynamic system at equilibrium has a tangent space, which is a subspace of Γp at every point.
Therefore, Definition (11) encodes the universality of the first law of thermodynamics.

Now, let us find a coordinate expression for the equilibrium directions around every point of the TPS.
These are simply the tangent vectors satisfying (11). In Darboux coordinates, a direct calculation reveals
that the vectors:

P a =
∂

∂pa
and Qa =

∂

∂qa
− pa

∂

∂w
, (13)

generate 2n linearly-independent horizontal directions, that is,

η(P a) = 0 and η(Qa) = 0, (14)

for every value of a; thus, every equilibrium direction around each thermodynamic state of a given
system, i.e., every element of Γp, is a linear combination of the vectors (13).

An interesting fact is that equilibrium directions are not propagated along equilibrium processes. To
see this, note that the change of the Qb’s along the integral curves of P a does not vanish identically, that
is, for any smooth function f on T ,

[P a, Qb] (f) =

[
∂

∂pa
,
∂

∂qb
− pb

∂

∂w

]
(f)

= − ∂

∂pa

(
pb
∂f

∂w

)
− pb

∂

∂w

(
∂f

∂pa

)
= −δab

∂f

∂w
= −δabξ(f). (15)

Here, δab is a Kronecker delta, and we have introduced the vector field ξ = ∂/∂w, which is known in
contact geometry as the Reeb vector. It is straightforward to see that ξ is a “purely vertical” vector at
each point of the TPS in the sense of Definition (11). In fact, it is the unique vector field satisfying:

η(ξ) = 1 and dη(ξ) = 0, (16)

and, thus, can be thought of as indicating the “maximally non-equilibrium” direction at each point of
the TPS.

Let us observe a crucial consequence of Equation (15). Since the set (13) generates Γp at each point
in the TPS, then any non-vanishing Lie-bracket of vectors in Γp will be necessarily vertical. This means
that the equilibrium connection Γ is non-integrable [44]. We will return to this point in the next section
when we discuss its relevance on conformal gauge invariance.

Now, we have a basis for the tangent space TpT , composed by the Reeb vector ξ and the horizontal
basis in (13). Notice, however, that we do not have yet a notion of orthogonality for the vector fields ξ,
P a and Qa. The only information available thus far is that every tangent vector to any point in the TPS
can be uniquely decomposed into a vertical part and its equilibrium (horizontal) directions, namely:

X ∈ TpT ⇐⇒ X = Xξξ +
n∑
a=1

(
Xp
aP

a +Xa
qQa

)
, (17)
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thus the tangent space at each point of the TPS is split into a vertical direction and 2n horizontal
directions defined by the first law, namely:

TpT = Vξ ⊕ Γp. (18)

In order to introduce the notion of orthogonality between the horizontal and vertical directions, one
can introduce a metric structure on the TPS. It was found by Mrugala et al. [27] (see also [28]) that there
is a natural choice for such a metric based on statistical mechanical arguments, that is:

G = η ⊗ η −
n∑
a=1

dpa
s
⊗ dqa where dpa

s
⊗ dqa ≡ 1

2
[dpa ⊗ dqa + dqa ⊗ dpa] (19)

Introducing a metric at this stage raises several questions about its possible significance, e.g., if there
is a physical quantity associated with the length of a curve, the interpretation of the curvature of its
Levi–Civita connection, Killing symmetries, etc. None of these issues will be addressed in this work.
We will limit ourselves to using the metric as an inner product for the tangent vectors of TpT (see [34]
for a physical interpretation of the length of particular curves on the TPS corresponding to irreversible
fluctuations).

A word of warning is warranted. It can be directly verified that the metric (19) is not positive definite,
that is there are non-zero tangent vectors whose norm vanishes identically. To see this, remember that
a metric tensor is a bi-linear map (linear in its two arguments), and hence, it is completely determined
by its action on a set of basis vectors. Thus, using the decomposition (18) together with the horizontal
basis (13), it follows that:

G(ξ, ξ) = 1, G(P a, Qb) = −1

2
δab and G(ξ, P a) = G(ξ,Qa) = 0. (20)

Interestingly, the remaining combinations vanish identically, that is:

G(Qa, Qb) = G(P a, P b) = 0. (21)

There are two important things to be noticed in the above expressions. On the one hand, the metric G
makes the splitting of the tangent spaces (18) orthogonal. On the other hand, the vectors generating the
horizontal basis, Equation (13), form a set of null vectors (whose norm is zero) at every point of T . In
general, the norm of a vector in TpT (cf. Equation (17)) is simply given by:

G(X,X) = X2
ξ −

n∑
a=1

Xa
qX

p
a , (22)

and thus, we can immediately see that a linear combination of null vectors is not necessarily null.
Now, we want to express the metric tensor in (19) in a coordinate-free manner putting into play the

role of η and dη as the connection one-form and the curvature two-form, respectively. In terms of the
geometry of contact Riemannian manifolds, the result of this derivation means that the metric (19) is
associated and compatible with the contact one-form η (cf. [36,37]). Since the equilibrium connection Γ

is non-integrable, the action of the curvature [45] of the connection one-form (12) on pairs of horizontal
vectors U, V ∈ Γp,

dη =
n∑
a=1

[dpa ∧ dqa] (U, V ) =
1

2

n∑
a=1

[dpa(U)dqa(V )− dpa(V )dqa(U)] , (23)
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does not necessarily vanish. In this case, one can observe a similarity of such action with the second term
in the right-hand side of (19). Let us exhibit this fact with a short calculation. Consider the coordinate
expression of the two horizontal vectors U and V , namely:

U =
n∑
a=1

[
Up
aP

a + Ua
qQa

]
and V =

n∑
a=1

[
V p
a P

a + V a
q Qa

]
. (24)

Their inner product is given by:

G(U, V ) = η(U)η(V )− 1

2

n∑
a=1

[dpa (U) dqa (V ) + dqa (U) dpa (V )]

= −1

2

n∑
a=1

[
Up
aV

a
q + V p

a U
a
q

]
, (25)

where the contribution from the first term vanishes identically, since we are assuming U, V ∈ Γp. Now,
a similar calculation using the exterior derivative of the connection one-form yields:

−dη(U, V ) = −1

2

n∑
a=1

[dpa (U) dqa (V )− dqa (U) dpa (V )]

= −1

2

n∑
a=1

[
Up
aV

a
q − V p

a U
a
q

]
. (26)

There is an obvious sign difference due to the fact that the metric is a symmetric tensor, whereas dη

is anti-symmetric. However, we can use here the same argument used in Kähler geometry and introduce
a linear transformation of the tangent space at each point, namely Φ : TpT −→ TpT , such that:

−dη(ΦU, V ) = −1

2

n∑
a=1

[dpa (ΦU) dqa (V )− dqa (ΦU) dpa (V )]

= −1

2

n∑
a=1

[
Up
aV

a
q + V p

a U
a
q

]
= G(U, V ). (27)

The map Φ is known in para-Sasakian geometry as the almost para-contact structure [28]. Since Φ is
a linear map, it is uniquely determined by its action on the basis vectors. Thus, one can quickly verify
that the desired transformation has to satisfy:

Φξ = 0, ΦP a = P a and ΦQa = −Qa. (28)

Thus, P a and Qa are eigenvectors of Φ with eigenvalues one and −1, respectively, and a local
expression for Φ : TpT −→ Γp in this adapted basis is simply:

Φ = dpa ⊗ P a − dqa ⊗Qa. (29)

Now, we can replace the coordinate dependent part in Equation (19) with an equivalent purely
geometric (coordinate independent) expression. Furthermore, since dη “kills” the vertical part of any
tangent vector (cf. Equation (16)), our expressions are carried to any tangent vector. Therefore, for any
pair of tangent vectors in TpT , their inner product is given by:

G(X, Y ) = η(X)η(Y )− dη(ΦX, Y ), (30)
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that is, we can use a short-hand notation to re-write Equation (19) as:

G = η ⊗ η − dη ◦ (Φ⊗ I) , (31)

where ◦ stands for composition and I is the identity map on TpT .
Our final expression for the metric poses a compelling geometric structure, expressed as the sum of

the equilibrium connection one-form η and its associated field strength dη, respectively. This was made
with the aid of an intermediate quantity Φ, whose role is revealed by means of its “squared” action on
any vector X ∈ TpT ,

Φ2X = Φ (ΦX) = Φ

(
n∑
a=1

[
Xp
aP

a −Xa
qQa

])
=

n∑
a=1

[
Xp
aP

a +Xa
qQa

]
, (32)

returning its purely horizontal part. This can be easily expressed by:

Φ2 = I− η ⊗ ξ. (33)

Finally, Φ can be independently obtained as the covariant derivative of ξ with respect to the
Levi–Civita connection of G, closing the hard-wired geometric circuit associated with the first law of
thermodynamics [28].

Thus far, we have re-formulated the first law as the definition of a connection whose horizontal vector
fields are reversible processes (cf. Equations (10) and (11)). This sets up a suitable framework to work
out the local symmetries shared by every thermodynamic system, that is the various points of view in
which a thermodynamic analysis can be made without changing its physical conclusions. In the present
case, such conclusions are restricted to the directions in which a system can evolve and the possible
interpretation (not analyzed here) of the thermodynamic length of a generic process, not necessarily an
equilibrium one, by means of Metric (31). In the next section, we will analyze an important class of such
local symmetries, i.e., conformal gauge symmetries.

3. Conformal Gauge Transformations in Thermodynamics

In the previous section, we presented the first law of thermodynamics as a connection over the TPS,
that is the assignment of 2n equilibrium directions at each point of the tangent space. Such directions
were explicitly obtained as the ones that annihilate a one-form whose local expression is the same for
every thermodynamic system. There is, however, a whole class of one-forms generating exactly the
same connection, each obtained from the other through multiplication by a non-vanishing function. This
is referred to here as a conformal gauge freedom. Thus, the central point of this section is to present the
class of transformations that leave the equilibrium connection Γ invariant (cf. Equation (10)), together
with its corresponding effect on the whole intertwined geometric structure of thermodynamic fluctuation
theory, namely the para-Sasakian structure (T , η, ξ,Φ, G).

Consider the thermodynamic connection one-form η. It is easy to see that any re-scaling η′ = Ωη

defines the same equilibrium directions at each point as the original η, that is:

X ∈ Γp ⇐⇒ Ωη(X) = 0. (34)
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here, Ω is any smooth and non-vanishing function on T . This means we can use indistinctly η or η′ to
indicate the equilibrium directions at each point of T [47]. This, however, does change the associated
metric structure. In particular, for an arbitrary re-scaling, the curvature of the thermodynamic connection
η is not preserved, as can be immediately confirmed by considering a generic pair of horizontal vectors
U, V ∈ Γp (cf. Equation (24)) and making:

dη′(U, V ) = Ωdη(U, V ) +
1

2
[dΩ(U)η(V )− dΩ(V )η(U)] = Ωdη(U, V ). (35)

Moreover, the directions annihilated by dη do not coincide with those of dη′, That is, while dη(ξ) = 0,
we have:

dη′(ξ) = Ωdη(ξ) + [dΩ ∧ η] (ξ) =
1

2
[dΩ(ξ)η − dΩ] , (36)

where in the last equality, we have used the two expressions in (16). In general, the last term does
not vanish, and therefore, the orthogonality of the equilibrium split of the tangent space (18) is not
trivially preserved. This is a consequence of the non-integrability of the equilibrium connection Γ. In
the following lines, we will obtain the way in which the various objects introduced in the previous section
change when using a different gauge.

Let us take the defining properties of the Reeb vector field, Equation (16), as our starting point. We
need a new vertical vector field satisfying:

η′(ξ′) = 1 and dη′(ξ′) = 0. (37)

The first condition is easily met if we define the new vertical vector field as:

ξ′ ≡ 1

Ω
(ξ + ζ) (38)

where we have introduced an arbitrary horizontal vector field ζ ∈ Γp whose exact form will be
determined shortly.

The second condition in Equation (37) is not as trivial. A direct evaluation yields:

dη′(ξ′) = Ωdη(ξ′) +
1

2
[dΩ(ξ′)η − η(ξ′)dΩ]

= dη(ζ) +
1

2Ω
[ξ(Ω)η + dΩ(ζ)η − dΩ] , (39)

where we have used the fact that dΩ(ξ) = ξ(Ω). Now, we are demanding that Equation (39) must vanish
identically, that is:

dη(ζ) +
1

2Ω
[ξ(Ω)η + dΩ(ζ)η − dΩ] = 0. (40)

Evaluating the above expression on ξ and recalling that dη annihilates ξ, we obtain that:

dΩ(ζ) = 0. (41)

Now, recalling that Ω is fixed by the change of the gauge (34), we have obtained the desired equation
for ζ . Moreover, substituting (41) back into (40), we obtain the expression for the derivative of the
scaling factor:

dΩ = 2Ωdη(ζ) + ξ(Ω)η. (42)
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From these calculations, we see that the auxiliary equilibrium (horizontal) vector field ζ plays a
central geometric role. Note that in the new gauge η′, the fundamental vertical vector field ξ′ is tilted
with respect to its unprimed counterpart, that is it has a horizontal component. However, the equilibrium
directions are unaltered and, therefore, are generated by the same basis vectors (13). Thus, we write the
equilibrium split at each point as:

TpT = Vξ ⊕ Γp = Vξ′ ⊕ Γp. (43)

Note that the expression for ξ′ was obtained by requiring that its geometrical properties be the same as
those of ξ in the new gauge (cf. Equations (16) and (37)). From the same reasoning, in analogy to (31),
we require the new metric to be given by:

G′ = η′ ⊗ η′ − dη′ ◦ (Φ′ ⊗ I) . (44)

The task is to find an expression for G′ solely in terms of unprimed objects, and just as in deriving (31),
this reduces to obtaining an expression for the new map Φ′. Since Φ′ is just a linear transformation
of each tangent space and the horizontal directions were not changed by the new gauge, its action on
the horizontal basis must be the same as that of Φ (cf. Equation (29)). Therefore, in order to preserve
the properties (28), we only have to guarantee that its action on ξ′ vanishes. The most general linear
expression capturing these observations is Φ′ = Φ +η⊗Z, where the vector field Z is easily determined
by the requirement Φ′(ξ′) = 0. Thus, a straightforward calculation reveals that:

Φ′ = Φ− η ⊗ Φ(ζ). (45)

This implies that Φ and Φ′ coincide on horizontal vectors, as has to be the case.
Consider two vector fields X, Y ∈ TpT and their inner product in terms of the new gauge. This is

expressed by the action of (44) as:

G′(X, Y ) = Ω2η(X)η(Y )−
[
Ωdη(Φ′X, Y ) +

1

2
dΩ(Φ′X)η(Y )− 1

2
dΩ(Y )η(Φ′X)

]
. (46)

We work out each individual term inside the brackets separately. Let us do this in reverse order and
start with the last term. One can immediately see that:

η(Φ′X) = η [ΦX − η(X)Φ(ζ)] = 0 (47)

since both ΦX and Φζ are, by construction, horizontal. Now, using the expression we obtained for the
differential of the scaling factor (cf. Equation (42), above), combined with the action of Φ′, we can
re-write the next term as:

dΩ(Φ′X)η(Y ) = 2Ωdη(ζ,Φ′X) + ξ(Ω)η(Φ′X)

= −2Ωdη(Φ′X, ζ)

= −2Ω [dη(ΦX, ζ)− η(X)dη(Φζ, ζ]

= −2Ω [dη(ΦX, ζ) + η(X)G(ζ, ζ)] . (48)
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Finally, a simple expansion of the first term yields:

Ωdη(Φ′X, Y ) = Ωdη(ΦX, Y )− Ωη(X)dη(Φζ, Y ). (49)

To conclude, note that both expressions, dη(ΦX, ζ) in (48) and dη(Φζ, Y ) in (49), correspond to inner
products involving at least one equilibrium vector. Thus, we can re-write them as G(ζ,X) and G(ζ, Y ),
respectively. Substituting (47) to (49) back into (46), adding the null term Ω [η(X)η(Y )− η(X)η(Y )]

and collecting the various resulting expressions, we obtain:

G′(X, Y ) = Ω [Ω− 1 +G(ζ, ζ)] η(X)η(Y ) + Ω [G(X, Y ) + η(X)z(Y ) + η(Y )z(X)] , (50)

where we used the shorthand z ≡ G(ζ). Hence, our final expression for the primed metric reads:

G′ = Ω
[
G+ 2η

s
⊗ z
]

+ Ω [Ω− 1 +G(ζ, ζ)] η ⊗ η. (51)

The only ambiguity left is an exact expression for ζ . However, this can be easily obtained recalling once
again that ζ ∈ Γp. Thus, using the horizontal basis (13), we can write it as:

ζ =
n∑
a=1

[
ζp
aP

a + ζaqQa

]
=⇒ Φζ =

n∑
a=1

[
ζp
aP

a − ζaqQa

]
. (52)

Now, a straightforward calculation reveals that:

G−1 [dη(ζ)] = G−1

[
n∑
a=1

dpa ∧ dqa

(
n∑
b=1

[
ζp
b P

b + ζbqQb

])]
= −

n∑
a=1

[
ζp
aP

a − ζaqQa

]
, (53)

where the inverse metric is given by:

G−1 = ξ ⊗ ξ − 4
n∑
a=1

P a
s
⊗Qa. (54)

Finally, using (42) to obtain the coordinate independent expression:

Φζ = −G−1 [dη(ζ)] = − 1

2Ω

[
G−1(dΩ)− ξ(Ω)ξ

]
, (55)

and recalling the action of Φ2 (cf. Equations (32) and (33) in the previous section), it follows that:

ζ = − 1

2Ω
Φ
[
G−1(dΩ)

]
. (56)

Thus, we have completely determined the new structures in terms of the old ones and the scaling factor
relating them. Let us summarize the action of a change of gauge (T , η, ξ,Φ, G) −→ (T , η′, ξ′,Φ′, G′),
that is:

η′ = Ωη, (57)

ξ′ =
1

Ω
(ξ + ζ) , (58)

Φ′ = Φ +
1

2Ω
η ⊗

[
G−1(dΩ)− ξ(Ω) ξ

]
, (59)

G′ = Ω
(
G+ 2η

s
⊗G(ζ)

)
+ Ω [Ω− 1 +G(ζ, ζ)] η ⊗ η, (60)
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where ζ is given by (56). We call the transformation (57) to (60) a conformal gauge transformation of
the thermodynamic phase space [48]. Here, a gauge choice corresponds to a choice of η defining the
equilibrium connection.

To close this section, we shall make a few remarks on conformal gauge invariance in equilibrium
thermodynamics, that is the mathematical structures that are indistinguishable along equilibrium
processes when we make a change of gauge. Firstly, notice that the curvature of the thermodynamic
connection one-form is not a conformally gauge-invariant object, as opposed to a standard gauge theory.
This is because the equilibrium connection Γ is, by construction, non-integrable (cf. Equations (15)
and (16)). This can be interpreted physically by saying that thermodynamic fluctuations are not gauge
invariant. Secondly, note that in spite of the rather non-trivial expression for the transformed metric,
Equation (60), its action on equilibrium vectors, say U, V ∈ Γp, is remarkably simple, that is:

G′(U, V ) = ΩG(U, V ). (61)

Thus, in the primed gauge, the inner product between the basis vectors (13) for the horizontal space
Γp is:

G′(P a, Qb) = −Ωδab, G′(P a, P b) = 0 and G′(Qa, Qb) = 0. (62)

Notoriously, one can immediately see that the null equilibrium directions at each point of the TPS are
exactly the same. Thus, the null structure is gauge invariant. Thirdly, the linear transformation Φ that we
introduced on the tangent space at each point of T to obtain a coordinate-free expression for the metric
tensor is also a gauge invariant object with respect to equilibrium processes,

Φ′U = ΦU for every U ∈ Γp. (63)

Thus, combining the statistical origin of the metric [27,28] and the fact that its null directions are
eigenvectors of Φ suggests that there is a physical role played by this structure. This will be the subject of
future investigations. We believe that quantities that can be directly linked to gauge-invariant structures
for equilibrium thermodynamics will be of great interest, since, on the one hand, their meaning will have
a universal scope (valid for every thermodynamic system) and, on the other, their values are independent
of the thermodynamic representation one decides to use.

4. Change of Thermodynamic Representation as a Gauge Transformation

In the previous sections, we explored some of the consequences of the geometrization of the first
law as a connection of the TPS. In this section, we will study a particular example and observe that the
various thermodynamic representations are all related by conformal gauge transformations. It follows
that, albeit the directions in which a state can evolve through an equilibrium path are independent of the
thermodynamic representation, the fluctuations associated with the path will be different when using a
different gauge.

Consider the conformal gauge transformation defined by:

η′ =
1

p1

η =
1

p1

dw + dq1 +
n∑
a=2

pa
p1

dqa, (64)
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where it is assumed that the Darboux neighborhood does not contain points where p1 vanishes. Now,
let us follow the prescription for a gauge transformation given by Equations (56)–(60). We start by
computing the horizontal vector field ζ in the definition of ξ′. Using (56) together with the expression
for the inverse metric (54) and recalling the action of Φ on the horizontal basis (28), we have that:

ζ = −1

2
p1ΦG−1

[
d

(
1

p1

)]
=

1

p1

Q1. (65)

Thus, the fundamental primed vertical vector field is given by:

ξ′ = p1(ξ + ζ) = p1

(
ξ +

1

p1

Q1

)
=

∂

∂q1
, (66)

where we have used the definition of the horizontal basis (13) and the fact that in these coordinates,
ξ = ∂/∂w. Indeed, it can by directly verified that:

η′(ξ′) =
1

p1

dw

(
∂

∂q1

)
+ dq1

(
∂

∂q1

)
+

n∑
a=2

pa
p1

dqa
(
∂

∂q1

)
= 1, (67)

whereas, noting that ∂/∂q1 = Q1 + p1∂/∂w,

dη′
(
Q1 + p1

∂

∂w

)
=

[
1

p1

dη + d

(
1

p1

)
∧ η
](

Q1 + p1
∂

∂w

)
=

1

p1

dη(Q1)− 1

2
η

(
Q1 + p1

∂

∂w

)
d

(
1

p1

)
= − 1

2p1

dp1 +
1

2p1

dp1 = 0. (68)

The transformation for Φ is just a straightforward calculation, whose result is:

Φ′ = Φ +
p1

2
η ⊗

[
G−1

(
d

1

p1

)]
= Φ− 1

p1

η ⊗Q1. (69)

Finally, in order to obtain the expression for the transformed metric, note that for this gauge, ζ is a
re-scaling of a null vector (cf. Equation (65) together with (21)). Hence, its squared norm, G(ζ, ζ), is
identically zero. Thus, it only remains to evaluate the expression:

G(ζ) = −
n∑
a=1

[
dpa

s
⊗ dqa

]
(ζ) = −1

2

n∑
a=1

[dqa(ζ)dpa] = − 1

2p1

dp1. (70)

Therefore, the primed metric takes the form:

G′ =
1

p1

[
G− 1

p1

η
s
⊗ dp1

]
+

[
1− p1

p2
1

]
η ⊗ η, (71)

whose restriction on vectors belonging to the equilibrium connection Γ at any point of the neighborhood
is simply:

G′|Γ =
1

p1

G|Γ . (72)

The relevance of this exercise is that the conformal gauge transformation presented here corresponds
to a change of thermodynamic representation. To see this, let us consider a closed system with the
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change of gauge defined in (7). It is clear that the equilibrium directions for both ηs and ηu are the same,
as shown in the previous section. Hence, they both annihilate the vectors in Γp. Moreover, noticing that
p1 = −T in this case and that by Equation (29):

Φu = − (T ds− p dv)⊗ ∂

∂u
− ds⊗ ∂

∂s
− dv ⊗ ∂

∂v
+ dT ⊗ ∂

∂T
+ dp⊗ ∂

∂p
, (73)

we can use Equations (66), (69) and (71) to obtain:

ξ′u = −T
[
∂

∂u
− 1

T

(
∂

∂s
+ T

∂

∂u

)]
=

∂

∂s
= ξs, (74)

Φ′u = Φu −
1

T
ηu ⊗Q1 = Φu +

(
ds− 1

T
du− p

T
dv

)
⊗
(
∂

∂s
+ T

∂

∂u

)
= − (T ds− p dv)⊗ ∂

∂u
− ds⊗ ∂

∂s
− dv ⊗ ∂

∂v
+ dT ⊗ ∂

∂T
+ dp⊗ ∂

∂p

= −
(

1

T
du+

p

T
dv

)
⊗ ∂

∂s
− du⊗ ∂

∂u
− dv ⊗ ∂

∂v
+ dT ⊗ ∂

∂T
+ dp⊗ ∂

∂p
= Φs, (75)

G′u = − 1

T

(
Gu +

1

T
ηu

s
⊗ dT

)
+

1

T

(
1

T
+ 1

)
ηU ⊗ ηU

= − 1

T

(
ηu ⊗ ηu + ds

s
⊗ dT − dv

s
⊗ dp+

1

T
ηu

s
⊗ dT

)
+

1

T

(
1

T
+ 1

)
ηu ⊗ ηu

= ηs ⊗ ηs + du
s
⊗ d

(
1

T

)
+ dv

s
⊗ d

( p
T

)
= Gs . (76)

Equation (76) means that the metrics Gu and Gs on T are related to each other by the precise
conformal gauge transformation that corresponds to a change in the thermodynamic representation
(cf. Equations (6) and (7)). Moreover, it follows that on the equilibrium connection Γ, we obtain:

Φu|Γ = Φs|Γ and Gu|Γ = − 1

T
Gs|Γ . (77)

Thus, we see explicitly that the restriction of Φ to Γ is invariant under conformal gauge transformations,
whereas we obtain a conformal relationship between Gu and Gs when they are restricted to Γ,
which exactly induces the re-scaling between Weinhold and Ruppeiner’s metrics on each Legendre
sub-manifold (cf. (6)).

5. Closing Remarks

In thermodynamics, equilibrium (i.e., reversible) processes are defined by the first law (1). In this
work, we have given a general geometric statement of the first law in terms of a connection on the
thermodynamic phase space. Indeed, we have shown that (1) defines the equilibrium connection Γ

(cf. Equations (10) and (11)). Note that the connection one-form η defining Γ is not unique. Indeed, any
non-vanishing re-scaling η′ = Ωη shares the same kernel with η and, thus, defines the same equilibrium
connection. Therefore, we call a fixing of a particular one-form determining Γ a conformal gauge choice.
The name conformal is in place to denote a difference with gauge theories, such as electromagnetism,
where one demands gauge invariance on the curvature of the connection, also referred to as field strength.
There, a choice of gauge refers to selecting a one-form generating the same field, whereas in our case, a
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choice of conformal gauge refers to selecting a one-form generating the same connection. An interesting
property of the equilibrium connection is that it is always non-integrable, which means that its curvature
does not vanish, independently of the choice of the conformal gauge.

To introduce a further notion of orthogonality between the horizontal (i.e., reversible) and vertical
(i.e., irreversible) directions with respect to the equilibrium connection Γ, we followed the work
of Mrugala et al. [27] and equipped the thermodynamic phase space with the indefinite metric
structure (19). One can justify such a choice by means of the statistical mechanical arguments contained
in [27] and [28]. Interestingly, the null directions of such a metric correspond precisely to the basis
elements generating the horizontal directions (13). The physical significance of such directions remains
to be explored and will be the subject of future work. Here, we have given a coordinate invariant
formulation (31) of the metric (19), which highlights the role played by the connection one-form η, as
well as by the curvature dη in the definition of the distance and explicitly shows that this is an associated
metric in the sense of contact Riemannian geometry [36,37].

The main use of presenting equilibrium thermodynamics as a connection theory relies on the notion of
gauge invariance, i.e., those geometric objects that are independent of the particular gauge choice. From
the mathematical point of view, the conformal gauge transformations presented here are relevant because
they preserve the para-Sasakian structure [29]. As we have argued, in thermodynamics, the curvature
of the equilibrium connection is not a gauge-invariant object, nor is the metric. Here, we found the
explicit transformations relating the various geometric objects defining the thermodynamic phase space
under a conformal gauge transformation. The explicit formulas are summarized by Equations (57)–(60).
We observed that the null directions of the metric are gauge invariant. Additionally, when restricted
to horizontal directions, the tensor field Φ is also gauge invariant, and the metric structures are
conformally related. As an example, we have shown that Metrics (8) and (9), which induce Weinhold
and Ruppeiner’s metrics on Legendre sub-manifolds, respectively, are precisely related by the conformal
gauge transformation that corresponds to the change in the thermodynamic representation from energy
to entropy. This in turn implies that the restriction of such metrics to the equilibrium connection Γ yields
the well-known conformal relation (6).

Finally, let us close this work with some comments on the geometry of the equilibrium connection, its
conformal gauge transformations and their physical relevance in various prospect applications. Firstly,
the construction presented here exhibits the principal bundle nature of the thermodynamic phase space.
That is, we readily have a 2n-dimensional (symplectic) base manifold together with a one-dimensional
fiber isomorphic to the real line. Such a construction might be suitable to make use of the theory of
characteristic classes to formulate universal statements about the nature of thermodynamic processes.
Secondly, from the fact that the curvature form of the connection is not preserved by a change of
thermodynamic representation together with its statistical origin, one can conclude that thermodynamic
fluctuations are not gauge invariant. This is interesting, because thermodynamic fluctuations enter
the description of irreversible processes. Therefore, our results can provide new geometric insights
on the different extremization problems that one encounters in non-equilibrium thermodynamics, e.g.,
minimizing dissipation versus maximizing work.
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