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Abstract:

 In this paper we investigate statistical manifolds with almost quaternionic structures. We define the concept of quaternionic Kähler-like statistical manifold and derive the main properties of quaternionic Kähler-like statistical submersions, extending in a new setting some previous results obtained by K. Takano concerning statistical manifolds endowed with almost complex and almost contact structures. Finally, we give a nontrivial example and propose some open problems in the field for further research.
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1. Introduction

It is well known that the concept of statistical manifold arises naturally from divergencies—like Kullback–Leibler relative entropy—in statistics, information theory and related fields [1,2]. On the other hand, the notion of statistical submersion between statistical manifolds was introduced in 2001 by N. Abe and K. Hasegawa [3], the authors generalizing some basic results of B. O’Neill [4,5] concerning Riemannian submersions and geodesics. Later, K. Takano defined the concepts of Kähler-like statistical manifold and Kähler-like statistical submersion [6], Sasaki-like statistical manifold and Sasaki-like statistical submersion [7], and obtained several geometric properties. Particularly relevant examples of statistical manifolds are the exponential families, whose points are probability densities of exponential form depending on a finite number of parameters. For some important exponential families, like the multinomial distribution, the multivariate normal distribution, and the Dirichlet and von Mises–Fisher distributions, it is proved in [8] that they admit almost complex structures. Also, in [9] H. Matsuzoe and J. Inoguchi investigate the extensions of statistical structures on manifolds to their tangent bundles, proving that the tangent bundle of a flat statistical manifold has a natural almost complex statistical structure with Norden metric. Moreover, in [10] the author considers the statistical model of the multivariate normal distribution as the Riemannian manifold and constructs an interesting example of statistical submersion.

We remark that a complex version of the notion of statistical structure was also considered in [11], where the author derived a condition for the curvature of a statistical manifold to admit a kind of standard hypersurface. On the other hand, the existence of symplectic structures on statistical manifolds was investigated in [12], where the author obtained a duality relation between the Fubini–Study metric on a projective space and the Fisher metric on a statistical model on a finite set. Other interesting results concerning the geometry of statistical manifolds were recently obtained in [13,14,15,16,17,18,19,20,21]. In this paper, we investigate very natural kind of statistical manifold, namely those endowed with almost quaternionic structures, extending the results of K. Takano in a new setting and obtaining new curvature properties of statistical submersions. In particular, we generalize some previous results of S. Ianuş et al. [22] concerning Riemannian submersions between quaternionic manifolds. Recall that an almost quaternionic structure on a smooth manifold M is a 3-dimensional subbundle of [image: there is no content] which is locally spanned by an almost hypercomplex structure, i.e., three almost complex structures satisfying the quaternionic identities [23]. We also note that the quaternionic structures generalize many relevant properties of 4-dimensional semi-Riemannian manifolds to higher [image: there is no content]-dimensional manifolds, some of them being relevant for mathematical physics, with important applications in string theory, solitons, theory of liquid crystals, gravity and general relativity (see [24,25] and references therein).

The present work is organized as follows. Section 2 contains definitions and basic properties of statistical manifolds and statistical submersions. In Section 3 we investigate statistical manifolds with almost quaternionic structures and introduce the concept of quaternionic Kähler-like statistical manifold. Section 4 is devoted to the study of the quaternionic Kähler-like statistical submersions. This paper ends with conclusions and several open problems in the field for further research.



2. Preliminaries

Let [image: there is no content] be a semi-Riemannian manifold and ∇ a torsion free linear connection on M. Then ∇ is said to be compatible to g if the covariant derivative [image: there is no content] is symmetric. Moreover, the pair [image: there is no content] is called a statistical structure on M and the triple [image: there is no content] is said to be a statistical manifold.

For a statistical manifold [image: there is no content], let [image: there is no content] be an affine connection on M such that



[image: there is no content]



(1)




for all [image: there is no content], where [image: there is no content] denotes the set of smooth tangent vector fields on M. Then it is easy to see that the affine connection [image: there is no content] is torsion free and [image: there is no content]g is symmetric. This connection, [image: there is no content], is called the dual connection of ∇; the triple (M,[image: there is no content],g) is said to be the dual statistical manifold of [image: there is no content]; and the triple (∇,[image: there is no content],g) is called the dualistic structure on M [26]. We note that the concept of dual connections, whose name is motivated by the fact that ([image: there is no content])*=∇, was originally introduced by S. Amari in his seminal work [1] and later applied in various fields, like statistical physics, neural networks and information theory.
It is also easy to check that the curvature tensor [image: there is no content] of [image: there is no content] vanishes if and only if the curvature tensor R of ∇ does, and then the triple (∇,[image: there is no content],g) is called the dually flat structure [2]. In fact, the two curvature tensors R and [image: there is no content] on M, defined with the sign convention



R(E,F)G=[∇E,∇F]G-∇[E,F]G,[image: there is no content](E,F)G=[∇E*,∇F*]G-∇[E,F]*G,








are related by [7]


g(R(E,F)G,H)=-g(G,[image: there is no content](E,F)H),



(2)




for all [image: there is no content].
We remark that the geometry of statistical manifolds simply reduces to the usual semi-Riemannian geometry when ∇ and [image: there is no content] coincide [27]. Moreover, we note that on a statistical manifold one can define a parametric family of torsion free connections [image: there is no content], called α-connections, by



[image: there is no content]=1+α2∇+1-α2[image: there is no content].



(3)




We remark that [image: there is no content], ∇(-1)=[image: there is no content] and [image: there is no content] is the Levi–Civita connection of the metric g. This family of α-connections has been investigated in [28], where the author obtains that [image: there is no content] is equiaffine for any real number α, provided that (∇,[image: there is no content],g) is a dually flat structure, as previously noted in [29].

Let [image: there is no content] and [image: there is no content] be two connected semi-Riemannian manifolds of index s and [image: there is no content] respectively, with [image: there is no content], 0≤[image: there is no content]≤dim[image: there is no content] and [image: there is no content]≤s. A semi-Riemannian submersion is a smooth map [image: there is no content] which is onto and satisfies the following conditions [30]:


	(i)

	[image: there is no content] is onto for all [image: there is no content];



	(ii)

	The fibers π-1(p′),p′∈[image: there is no content], are semi-Riemannian submanifolds of M;



	(iii)

	[image: there is no content] preserves scalar products of vectors normal to fibers.





It is well known that the vectors tangent to fibers are called vertical and those normal to fibers are called horizontal. We denote by [image: there is no content] the vertical distribution, by [image: there is no content] the horizontal distribution and by v and h the vertical and horizontal projection. An horizontal vector field X on M is said to be basic if X is π-related to a vector field [image: there is no content] on [image: there is no content]. It is clear that every vector field [image: there is no content] on [image: there is no content] has a unique horizontal lift X to M and X is basic. Moreover, if X and Y are basic vector fields on M, π-related to [image: there is no content] and [image: there is no content] on [image: there is no content], then we have the following properties (see [5,31]):


	(i)

	g(X,Y)=g′([image: there is no content],[image: there is no content])∘π;



	(ii)

	[image: there is no content] is a basic vector field and [image: there is no content]h[X,Y]=[[image: there is no content],[image: there is no content]]∘π.





Next we consider [image: there is no content] a statistical manifold, [image: there is no content] a semi-Riemannian manifold and let [image: there is no content] be a semi-Riemannian submersion. We denote by [image: there is no content] and [image: there is no content]* the affine connections induced on fibers by the dual connections ∇ and [image: there is no content] from M. We remark that [image: there is no content] and [image: there is no content]* are well-defined, namely



[image: there is no content]UV=v∇UV,[image: there is no content]U*V=v∇U*V



(4)




for all U,V∈Γ([image: there is no content]). Moreover, we can easily see that [image: there is no content] and [image: there is no content]* are torsion free and conjugate to each other with respect to the induced metric on fibers. On the other hand, if we define S:=∇-[image: there is no content], then S is symmetric, i.e., [image: there is no content], for all vector fields [image: there is no content] on M, and we also find [6]:


2g(∇XY,Z)=g(SXY,Z)+Xg(Y,Z)+Yg(Z,X)-Zg(X,Y)-g(X,[Y,Z])+g(Y,[Z,X])+g(Z,[X,Y])



(5)




for all X,Y,Z∈Γ([image: there is no content]). Similarly, if [image: there is no content] and [image: there is no content] are affine connections on [image: there is no content], then we can define S′=[image: there is no content]-[image: there is no content] and we have that [image: there is no content] is basic and π-related to S[image: there is no content]′[image: there is no content] if and only if [image: there is no content] (or [image: there is no content]) is basic and π-related to ∇[image: there is no content]′[image: there is no content] (or ∇[image: there is no content]*[image: there is no content]).
Definition 1. [7] Let [image: there is no content]and ([image: there is no content],[image: there is no content],g′)be two statistical manifolds. Then a semi-Riemannian submersion [image: there is no content]is said to be a statistical submersion if [image: there is no content](∇XY)p=(∇[image: there is no content]′[image: there is no content])π(p)for all basic vector fields [image: there is no content]on M π-related to [image: there is no content]and [image: there is no content]on [image: there is no content], and [image: there is no content].

If [image: there is no content] is a statistical submersion, then we can define as well as in the semi-Riemannian case [32], two (1,2) tensor fields T and A on M, by the formulas:



[image: there is no content]



(6)




and similarly:


[image: there is no content]



(7)




for any [image: there is no content].
We can also define, in a similar way, the tensor fields [image: there is no content] and [image: there is no content] on M by replacing ∇ by [image: there is no content] in Equations (6) and (7). It is easy to check now that [image: there is no content] and [image: there is no content]. Moreover, using the above Definitions one can easily prove the following result.


Lemma 1.
[3,6] T, A, [image: there is no content]and [image: there is no content]have the following properties:



TUV=TVU,TU*V=TV*U,



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)






∇XY=h∇XY+AXY,∇X*Y=h∇X*Y+AX*Y,



(11)






∇UV=TUV+[image: there is no content]UV,∇U*V=TU*V+[image: there is no content]U*V,



(12)






∇UX=h∇UX+TUX,∇U*X=h∇U*X+TU*X,



(13)






∇XU=AXU+v∇XU,∇X*U=AX*U+v∇X*U,



(14)






[image: there is no content]



(15)






[image: there is no content]



(16)




for all X,Y∈Γ([image: there is no content])and U,V∈Γ([image: there is no content]).


Therefore, we deduce that T (or A) vanishes identically if and only if [image: there is no content] (or [image: there is no content]) vanishes identically. Moreover, from (9) we deduce that if [image: there is no content] then [image: there is no content] is integrable. We note that if [image: there is no content], for all U,V∈Γ([image: there is no content]) then π is called a statistical submersion with isometric fibers [6].

We also recall that N. Abe and K. Hasegawa [3] provided necessary and sufficient conditions for the total space of a semi-Riemannian submersion to be a statistical manifold. In particular, we note that if [image: there is no content] is a statistical submersion then any fiber is a statistical manifold (see also [6,7]).



3. Statistical Manifolds with almost Quaternionic Structures

Let M be a differentiable manifold and assume that there is a rank 3-subbundle σ of [image: there is no content] such that a local basis [image: there is no content] exists on sections of σ satisfying for all [image: there is no content]:



[image: there is no content]



(17)




where Id denotes the identity tensor field of type (1, 1) on M and the indices are taken from [image: there is no content] modulo 3. Then the bundle σ is called an almost quaternionic structure on M and [image: there is no content] is called a canonical local basis of σ. Moreover, [image: there is no content] is said to be an almost quaternionic manifold [33]. It is easy to see that any almost quaternionic manifold is of dimension [image: there is no content], [image: there is no content].
A semi-Riemannian metric g on M is said to be adapted to the almost quaternionic structure σ if it satisfies:



g([image: there is no content]E,[image: there is no content]F)=g(E,F),α∈[image: there is no content]



(18)




for all vector fields E,F on M and any canonical local basis [image: there is no content] of σ. Moreover, [image: there is no content] is said to be an almost Hermite quaternionic manifold [33].
Definition 2. Let [image: there is no content]be a semi-Riemannian manifold endowed with an almost quaternionic structure σ which has for any canonical local basis [image: there is no content]of σ three other tensor fields [image: there is no content]of type [image: there is no content]on M, satisfying



g([image: there is no content]E,F)+g(E,[image: there is no content]F)=0,α∈[image: there is no content]



(19)




for all vector fields E,F on M. Then [image: there is no content]is said to be an almost Hermite-like quaternionic manifold. Moreover, if [image: there is no content]is equipped with a torsion free linear connection ∇ such that [image: there is no content]is symmetric, then [image: there is no content]is said to be an almost Hermite-like quaternionic statistical manifold.
We remark that [image: there is no content] defined by (19) satisfy (17) and hence we can consider the subbundle [image: there is no content] of [image: there is no content] locally spanned by [image: there is no content]. We also see that



[image: there is no content]








and


[image: there is no content]








for all vector fields E,F on M and [image: there is no content].
Definition 3. Let [image: there is no content]be an almost Hermite-like quaternionic statistical manifold. Then [image: there is no content]is said to be a quaternionic Kähler-like statistical manifold if for any local basis [image: there is no content]of σ there exist three locally defined 1-forms [image: there is no content], [image: there is no content], [image: there is no content]on M such that we have for all [image: there is no content]:



[image: there is no content]



(20)




for all vector fields [image: there is no content]on M, where the indices are taken from [image: there is no content]modulo 3.
We note that if [image: there is no content]=[image: there is no content]=[image: there is no content]=0 in (20), then [image: there is no content] is said to be a locally hyper-Kähler-like statistical manifold. Moreover, if [image: there is no content] are globally defined on M, then [image: there is no content] is said to be a hyper-Kähler-like statistical manifold.

We remark that, if in the above definition ∇ is the Levi–Civita connection of g, then [image: there is no content], usually denoted by [image: there is no content], is called a quaternionic Kähler manifold [23,33,34].

Definition 4. Let [image: there is no content]be a quaternionic Kähler-like statistical manifold. If the curvature tensor R with respect to ∇ satisfies



[image: there is no content]










+∑α=13[g(E,[image: there is no content]F)-g([image: there is no content]E,F)][image: there is no content]G},



(21)




for all vector fields [image: there is no content]on M, where c is a real constant, then the statistical manifold [image: there is no content]is said to be of type quaternionic space form.
We remark that changing [image: there is no content] for [image: there is no content] in (21), we get the curvature tensor [image: there is no content] with respect to the dual connection [image: there is no content]. If [image: there is no content] is a quaternionic Kähler manifold satisfying (21), then M is said to be a space of constant quaternionic sectional curvature, or quaternionic space form. It is known that quaternionic space forms are locally congruent to either a quaternionic projective space [image: there is no content] of quaternionic sectional curvature [image: there is no content], a quaternionic Euclidean space [image: there is no content] of null quaternionic sectional curvature or a quaternionic hyperbolic space [image: there is no content] of quaternionic sectional curvature [image: there is no content] [35].


Theorem 1.
[image: there is no content]is a quaternionic Kähler-like statistical manifold if and only if (M,[image: there is no content],[image: there is no content],g)is.




Proof.
First of all, it is obvious that the triple [image: there is no content] is an almost Hermite-like quaternionic manifold if and only if (M,[image: there is no content],g) is. Now, we take a canonical local basis [image: there is no content] of σ. Then, using (1) and (19) we derive for all [image: there is no content]:



g((∇G[image: there is no content])E,F)=g(∇G[image: there is no content]E,F)-g([image: there is no content]∇GE,F)=-g([image: there is no content]E,∇G*F)+Gg([image: there is no content]E,F)+g(∇GE,[image: there is no content]F)=g(E,[image: there is no content]∇G*F)+Gg([image: there is no content]E,F)+Gg(E,[image: there is no content]F)-g(E,∇G*[image: there is no content]F)=-g(E,(∇G*[image: there is no content])F),



(22)




for all vector fields [image: there is no content] on M, where the indices are taken from [image: there is no content] modulo 3.


On the other hand, making use of (19)and (20), we obtain



g((∇G[image: there is no content])E,F)=ωα+2(G)g(Jα+1E,F)-ωα+1(G)g(Jα+2E,F)=-ωα+2(G)g(E,Jα+1*F)+ωα+1(G)g(E,Jα+2*F)=g(E,-ωα+2(G)Jα+1*F+ωα+1(G)Jα+2*F).



(23)




From (22) and (23) we deduce



(∇G*[image: there is no content])F=ωα+2(G)Jα+1*F-ωα+1(G)Jα+2*F,








for all vector fields [image: there is no content] on M and for all [image: there is no content], where the indices are taken from [image: there is no content] modulo 3. Therefore we conclude that (M,[image: there is no content],[image: there is no content],g) is a quaternionic Kähler-like statistical manifold. ☐

Corollary 1.
[image: there is no content]is a hyper-Kähler-like statistical manifold if and only if (M,[image: there is no content],[image: there is no content],g)is.




Proof.
The assertion is clear from Theorem 1. ☐



Remark 1. We note that the concepts of almost Hermite-like quaternionic manifold and quaternionic Kähler-like statistical manifold proposed in this section generalize the classical notions of almost quaternionic Hermitian manifold and quaternionic Kähler manifold [23,33]. In fact, an almost quaternionic Hermitian manifold is a particular case of almost Hermite-like quaternionic manifold with [image: there is no content]=[image: there is no content], [image: there is no content], and hence with σ=[image: there is no content]. Similarly, any quaternionic Kähler manifold is a particular case of quaternionic Kähler-like statistical manifold, where ∇=[image: there is no content]is the Levi–Civita connection of the metric g.

Example 1. Let [image: there is no content]be an almost Hermite-like statistical manifold (see [6,36] for basic definitions and examples). Next we prove that [image: there is no content]can be endowed with an almost Hermite-like quaternionic statistical structure. First of all, we note that the tangent bundle [image: there is no content]can be equipped with the Sasaki metric G defined by



G(A,B)=g(KA,KB)+g([image: there is no content]A,[image: there is no content]B),








for all vector fields [image: there is no content]on [image: there is no content], where π is the natural projection of [image: there is no content]onto M and K is the connection map associated with the Levi–Civita connection of the metric g (see [37]).
We note that if [image: there is no content], then there exists exactly one vector field on [image: there is no content], denoted by [image: there is no content]and called the horizontal lift, and denoted [image: there is no content]and called the vertical lift of X, such that we have for all [image: there is no content]:



[image: there is no content]XUh=Xπ(U),[image: there is no content]XUv=0π(U),KXUh=0π(U),KXUv=Xπ(U).








We recall now that, according to Theorem 3 in [38], one can define a torsion free linear connection [image: there is no content]on [image: there is no content]compatible to the Sasaki metric G. Hence (TM,[image: there is no content],G)is a statistical manifold. Moreover, using the almost complex structure ϕ on M, we can also define three tensor fields [image: there is no content]on [image: there is no content]by the equalities:



J1[image: there is no content]=[image: there is no content]J1[image: there is no content]=-[image: there is no content],










J2[image: there is no content]=(ϕX)vJ2[image: there is no content]=(ϕX)h,










J3[image: there is no content]=-(ϕX)hJ3[image: there is no content]=(ϕX)v.








It is easy to see that [image: there is no content]satisfy the quaternionic identities (17) and, defining σ to be the 3-subbundle of [image: there is no content]generated by ([image: there is no content])[image: there is no content], we derive immediately that (TM,[image: there is no content],σ,G)is an almost Hermite-like quaternionic statistical manifold. Moreover it can be proved that (TM,[image: there is no content],σ,G)is a hyper-Kähler-like statistical manifold if and only if [image: there is no content]is a flat Kähler-like statistical manifold.



4. Quaternionic Kähler-like Statistical Submersions

Definition 5. Let [image: there is no content]and ([image: there is no content],[image: there is no content],g′)be two almost Hermite-like quaternionic manifolds. Then:


	i.

	A map f:M→[image: there is no content]is called a [image: there is no content]holomorphic map at a point [image: there is no content]if for any [image: there is no content]exists [image: there is no content]such that [image: there is no content]. Moreover, we say that f is a [image: there is no content]-holomorphic map if f is a [image: there is no content]-holomorphic map at each point [image: there is no content].



	ii.

	A semi-Riemannian submersion [image: there is no content]which is a [image: there is no content]-holomorphic map is called an almost Hermite-like quaternionic submersion.



	iii.

	A statistical submersion [image: there is no content]between two almost Hermite-like quaternionic statistical manifolds [image: there is no content]and ([image: there is no content],[image: there is no content],[image: there is no content],g′)such that π is a [image: there is no content]-holomorphic map is said to be an almost Hermite-like quaternionic statistical submersion.



	iv.

	An almost Hermite-like quaternionic statistical submersion [image: there is no content], where [image: there is no content]is a quaternionic Kähler-like statistical manifold, is called a quaternionic Kähler-like statistical submersion. In particular, if [image: there is no content]is a (locally) hyper-Kähler-like statistical manifold, then π is called a (locally) hyper-Kähler-like statistical submersion.





Remark 2. We can easily check that:


	i.

	A map f:M→[image: there is no content]between two almost Hermite-like quaternionic manifolds is a [image: there is no content]-holomorphic map at a point [image: there is no content]if and only if for any canonical local basis [image: there is no content]of [image: there is no content]there exists a canonical local basis [image: there is no content]of [image: there is no content]such that f*∘[image: there is no content]=Jα′∘f*, for [image: there is no content].



	ii.

	A semi-Riemannian submersion [image: there is no content]between two almost Hermite-like quaternionic statistical manifolds [image: there is no content]and ([image: there is no content],[image: there is no content],[image: there is no content],g′)is a [image: there is no content]-holomorphic map if and only if it is a ([image: there is no content],σ′*)-holomorphic map.





Property 1. Let [image: there is no content]be an almost Hermite-like quaternionic statistical submersion. Then:


	i.

	[image: there is no content]and [image: there is no content]are invariant under each [image: there is no content]and [image: there is no content]∈[image: there is no content], [image: there is no content]. Moreover, J and [image: there is no content]commute with the horizontal and vertical projectors.



	ii.

	If X is a basic vector field on M π-related to [image: there is no content]on [image: there is no content], then [image: there is no content]X(or [image: there is no content]X) is a basic vector field π-related to Jα′[image: there is no content](or Jα′*[image: there is no content]) on [image: there is no content], for [image: there is no content].






Proof.



	i.

	Since π is a [image: there is no content]-holomorphic map, we obtain for any V∈Γ([image: there is no content]):



[image: there is no content][image: there is no content]V=Jα′[image: there is no content]V=0








and thus we conclude that [image: there is no content]([image: there is no content])⊆[image: there is no content],∀α∈[image: there is no content], where [image: there is no content] is a canonical local basis of σ. Similarly it follows that [image: there is no content]([image: there is no content])⊆[image: there is no content],∀α∈[image: there is no content]. On the other hand, for any X∈Γ([image: there is no content]) and V∈Γ([image: there is no content]), we derive



g([image: there is no content]X,V)=-g(X,[image: there is no content]V)=0








and thus we conclude that [image: there is no content]([image: there is no content])⊆[image: there is no content],∀α∈[image: there is no content], where [image: there is no content] is a canonical local basis of σ. In a similar way, we obtain that [image: there is no content]([image: there is no content])⊆[image: there is no content],∀α∈[image: there is no content]. The second part of the statement now follows immediately.



	ii.

	If X is a basic vector field, then from i. [image: there is no content]X and [image: there is no content]X are horizontal vector fields. On the other hand, since π is a [image: there is no content]-holomorphic map and X is π-related to [image: there is no content] on [image: there is no content] we derive that



[image: there is no content][image: there is no content]X=Jα′[image: there is no content]X=Jα′[image: there is no content]








and similarly



[image: there is no content][image: there is no content]X=Jα′*[image: there is no content]X=Jα′*[image: there is no content]








for [image: there is no content] and the conclusion is now clear.





☐



Theorem 2.
If [image: there is no content]is an almost Hermite-like quaternionic statistical submersion, then the fibers are almost Hermite-like quaternionic statistical manifolds.




Proof.
Let [image: there is no content] be a fiber of the submersion, where p′∈[image: there is no content]. Then it is known from [3,6,7] that (F,[image: there is no content],g^=g|F) is a statistical manifold. Moreover, for any canonical local basis [image: there is no content] of σ, we can define



J^α:=[image: there is no content]|F,α=1,2,3,








and we can consider the subbundle [image: there is no content] locally spanned by [image: there is no content]. Now it follows immediately that (F,[image: there is no content],[image: there is no content],g^) is an almost Hermite-like quaternionic statistical manifold. ☐



Theorem 3.
If [image: there is no content]is a quaternionic Kähler-like statistical submersion, then ([image: there is no content],[image: there is no content],[image: there is no content],g′)is a quaternionic Kähler-like statistical manifold. Moreover, the fibers are also quaternionic Kähler-like statistical manifolds.




Proof.
If we take two basic vector fields [image: there is no content] on M π-related to [image: there is no content],[image: there is no content] on [image: there is no content], then using Proposition 1 we derive:



(∇[image: there is no content]′Jα′)[image: there is no content]=∇[image: there is no content]′(Jα′[image: there is no content])-Jα′(∇[image: there is no content]′[image: there is no content])=∇[image: there is no content]X′([image: there is no content]([image: there is no content]Y))-Jα′[image: there is no content](∇XY)=[image: there is no content](∇X([image: there is no content]Y))-[image: there is no content]([image: there is no content](∇XY))=[image: there is no content]((∇X[image: there is no content])Y).



(24)






Since [image: there is no content] is a quaternionic Kähler-like statistical manifold, we have (20) and we can define 1-forms [image: there is no content] on [image: there is no content] by:



ωα′([image: there is no content]):=ωα(X),α=1,2,3,



(25)




for any local vector field [image: there is no content] on [image: there is no content] and X a basic vector field on M such that [image: there is no content]X=[image: there is no content].
Next, making use of (20), (24) and (25), we obtain:



(∇[image: there is no content]′Jα′)[image: there is no content]=[image: there is no content](ωα+2(X)Jα+1Y-ωα+1(X)Jα+2Y)=ωα+2′([image: there is no content])Jα+1′[image: there is no content]-ωα+1′([image: there is no content])Jα+2′[image: there is no content],



(26)




where the indices are taken from [image: there is no content] modulo 3. Therefore ([image: there is no content],[image: there is no content],[image: there is no content],g′) is a quaternionic Kähler-like statistical manifold.
Next, we consider [image: there is no content], p′∈[image: there is no content], a fiber of the submersion. Then, from Theorem 2, it follows that (F,[image: there is no content],[image: there is no content],g^) is an almost Hermite-like quaternionic statistical manifold. Using (12) we derive for all U,V∈Γ([image: there is no content]):



(∇U[image: there is no content])V=([image: there is no content]U[image: there is no content])V+(TU[image: there is no content]V-[image: there is no content]TUV),α=1,2,3.



(27)




On the other hand, from (20) we have



(∇U[image: there is no content])V=ωα+2(U)J^α+1V-ωα+1(U)J^α+2V,α=1,2,3.



(28)




From (27) and (28) we deduce



([image: there is no content]U[image: there is no content])V=ωα+2(U)J^α+1V-ωα+1(U)J^α+2V,α=1,2,3



(29)




and


TU[image: there is no content]V=[image: there is no content]TUV,α=1,2,3.



(30)




Finally, from (29) it follows that (F,[image: there is no content],[image: there is no content],g^) is a quaternionic Kähler-like statistical manifold and the proof is now complete. ☐


Corollary 2.
If [image: there is no content]is a locally hyper-Kähler-like statistical submersion, then ([image: there is no content],[image: there is no content],[image: there is no content],g′)is a locally hyper-Kähler-like statistical manifold. Moreover, the fibers are also locally hyper-Kähler-like statistical manifolds.




Proof.
The assertion is immediate from Theorem 3. ☐




Theorem 4.
Let [image: there is no content]be a quaternionic Kähler-like statistical submersion. Then:


	i.

	[image: there is no content], for all U,V∈Γ([image: there is no content]);



	ii.

	[image: there is no content], for all X,Y∈Γ([image: there is no content]).








Proof.
Since T has the symmetry property for vertical vector fields (cf. (8)), using (17) and (30) we derive for all U,V∈Γ([image: there is no content]) and [image: there is no content]:



TUV+T[image: there is no content]U[image: there is no content]V=TUV+[image: there is no content]T[image: there is no content]UV=TUV+[image: there is no content]TV[image: there is no content]U=TUV+Jα2TVU=TUV-TVU=0.










Therefore, we deduce



[image: there is no content]



(31)




In particular, from (30) it follows that



[image: there is no content]



(32)




On the other hand, replacing in (31) U by [image: there is no content] and V by [image: there is no content], we derive



T[image: there is no content]J1V+TJ2UJ2V=0.



(33)




Now, from (32) and (33) we deduce that



T[image: there is no content]J1V=TJ2UJ2V=0



(34)




and finally, from (31) and (34) we conclude that [image: there is no content], for all U,V∈Γ([image: there is no content]).
Assertion ii. follows in a similar way. ☐


Corollary 3.
If [image: there is no content]is a quaternionic Kähler-like statistical submersion, then π has isometric fibers.




Proof.
The assertion is an obvious consequence of Theorem 4. ☐




Corollary 4.
If [image: there is no content]is a quaternionic Kähler-like statistical submersion, then [image: there is no content], for all X,Y∈Γ([image: there is no content]).




Proof.
The conclusion follows immediately from Theorem 4 and (10). ☐




Corollary 5.
If [image: there is no content]is a quaternionic Kähler-like statistical submersion, then the horizontal distribution is completely integrable.




Proof.
This assertion is clear from Theorem 4 and (9). ☐




Theorem 5.
Let [image: there is no content]be a quaternionic Kähler-like statistical submersion. If the total space of the submersion is of type quaternionic space form, then the base space of the submersion is of type quaternionic space form and each fiber is a totally geodesic submanifold of M of type quaternionic space form.




Proof.
The conclusions follow easily using the analogues of the O’Neill equations for a statistical submersion (Theorem 2.1 in [6]) and taking account of Theorem 4. ☐



Example 2. Let [image: there is no content]be an almost Hermite-like quaternionic statistical manifold. Then we can define a torsion free linear connection [image: there is no content]on [image: there is no content]such that (TM,[image: there is no content],G)is a statistical manifold [38], where G is the Sasaki metric. Next, we consider for any canonical local basis [image: there is no content]of σ the following tensor fields on [image: there is no content], denoted by [image: there is no content]:



Jα′[image: there is no content]=([image: there is no content]X)h,Jα′[image: there is no content]=([image: there is no content]X)v,α=1,2,3.








Defining now the vector bundle [image: there is no content]over [image: there is no content]generated by [image: there is no content](see [22,39]), one can easily conclude that (TM,[image: there is no content],[image: there is no content],g′)is an almost Hermite-like quaternionic statistical manifold. Moreover, we remark that



[image: there is no content]Jα′[image: there is no content]=[image: there is no content]([image: there is no content]X)v=0=[image: there is no content][image: there is no content][image: there is no content]








and


[image: there is no content]Jα′[image: there is no content]=[image: there is no content]([image: there is no content]X)h=[image: there is no content]X=[image: there is no content][image: there is no content][image: there is no content].








Hence [image: there is no content]Jα′=[image: there is no content][image: there is no content], [image: there is no content], and we conclude that the canonical projection [image: there is no content]is a [image: there is no content]-holomorphic map. Therefore π is an almost Hermite-like quaternionic statistical submersion. Moreover, it follows that π is a locally hyper-Kähler-like statistical submersion if and only if [image: there is no content]is a flat locally hyper-Kähler-like statistical manifold.


5. Conclusions and Future Research

It is well known there is a deep relationship between statistics and differential geometry. A first step in this connection was given by C.R. Rao [40], who introduced a Riemannian metric in the space of probability distributions, providing a general framework for discussing problems of statistical inference, information loss and estimation, and giving an impulse to construct a geometrical theory of statistics (see, e.g., [41,42,43,44,45,46,47,48]). The most natural frame in this context is the concept of a statistical manifold [49]. As it was pointed out in [50], the statistical manifolds are naturally associated to a family of affine-metric geometries and one can obtain interesting properties relating self-parallel curves to the relative entropy. Recently, H.V. Lê [51] proved that any smooth statistical manifold can be embedded into the space of probability measures on a finite set, giving a positive answer to an open problem of S. Amari and S.L. Lauritzen (see [2]). Therefore, any smooth statistical manifold is a finite-dimensional statistical model.

In the present paper, we introduced the notions of almost Hermite-like quaternionic statistical manifold and quaternionic Kähler-like statistical submersion, obtaining several properties. We also proved that the tangent bundle of an almost Hermite-like quaternionic statistical manifold has a natural almost Hermite-like quaternionic statistical structure and showed that the canonical projection provides us a very natural example of an almost Hermite-like quaternionic statistical submersion. We believe that the concepts investigated in this work can be also studied in some new settings, namely for statistical manifolds endowed with quaternionic structures of second kind [52] (also called paraquaternionic structures [39]), Kenmotsu structures [53], 3-Sasakian structures [54], almost para-Hermitian structures [55,56] and almost para-contact structure [57,58]. We note that all these structure are of great interest not only in differential geometry, but also in various fields of science and engineering, such as string theory, integrable systems, quantum systems, statistical mechanics, motion planning, robot control and sensing, sensor networks, and digital signal processing. We look forward to studying some of these problems in detail later. Finally, we would like to note another five open problems in the field for further research.

Problem 1. To investigate if it is possible to construct an infinite family of quaternionic Kähler-like statistical structures on the tangent bundle of an almost Hermite-like quaternionic statistical manifold. A possible answer could be obtained by deforming the almost Hermite-like quaternionic statistical structure defined in Example 2 in a similar way to [59].

Problem 2. To construct examples of locally hyper-Kähler-like statistical manifolds which are not hyper-Kähler ones. A possible solution could be to deform the almost Hermite-like quaternionic statistical structure from Example 1.

Problem 3. To investigate under what conditions the exponential families, including the well-known multinomial distribution, negative multinomial distribution, and multivariate normal distribution, admit hyper-Kähler or quaternionic Kähler structure.

Problem 4. To investigate the behavior of submanifolds in statistical manifolds of type quaternionic space form, as a quaternionic version of some recent results from [13] concerning submanifolds in statistical manifolds of constant curvature.

Problem 5. To define affine connections compatible with a hypercosymplectic structure [60] and to obtain necessary and sufficient conditions for two compatible connections to form a dualistic structure, as an extension of the results from [61]. Moreover, to define and investigate statistical submersions from almost Hermite-like quaternionic statistical submersions onto statistical manifolds equipped with hypercosymplectic structures.
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