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Abstract: In this paper, the fractional equations of the mass-spring-damper system with
Caputo and Caputo–Fabrizio derivatives are presented. The physical units of the system
are preserved by introducing an auxiliary parameter σ. The input of the resulting equations
is a constant and periodic source; for the Caputo case, we obtain the analytical solution,
and the resulting equations are given in terms of the Mittag–Leffler function; for the
Caputo–Fabrizio approach, the numerical solutions are obtained by the numerical Laplace
transform algorithm. Our results show that the mechanical components exhibit viscoelastic
behaviors producing temporal fractality at different scales and demonstrate the existence of
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material heterogeneities in the mechanical components. The Markovian nature of the model
is recovered when the order of the fractional derivatives is equal to one.

Keywords: Caputo fractional derivative; Caputo–Fabrizio fractional derivative;
Mittag–Leffler function; fractional-order dynamics; oscillations; mechanical oscillators

1. Introduction

In recent years, fractional calculus (FC) has been increasingly applied in different fields of
science [1–7]. Physical phenomena related to electromagnetism, propagation of energy in dissipative
systems, thermal stresses, models of porous electrodes, relaxation vibrations, viscoelasticity and
thermoelasticity are successfully described by fractional differential equations [8–19]. FC allows for the
investigation of the nonlocal response of mechanical systems, this is the main advantage when compared
to the classical calculus. Some research concerning classical mechanics introduces FC, for example
in [20], the authors investigated the relationship of the Fourier transform of fractional order to harmonic
oscillation. Ryabov in [21] studied the fractional oscillator engaging the Riemann–Liouville fractional
derivative. In [22], the authors found the analytical solution of the fractional damped oscillator equation
using the Caputo derivative. In [23], Stanislavsky dealt with generalization of the mechanical oscillator
using fractional derivatives. Tarasov in [24] considered the oscillator of fractional order as a system
with memory; the author suggested independent harmonic oscillators to define the environment. Caputo
in [25] studied the classic second order differential equation of the damped oscillator; using this model,
the author quantifies the response and the decaying oscillations of a seismograph and applied the FC
approach; this model introduces the mathematical memory operator represented by the fractional order
derivative in order to model the response curves of more complex instruments realistically. Recently,
in [26], the mass-spring and the spring-damper systems without the source term were analyzed; the
authors considered fractional time derivatives of the Caputo type. Other applications of FC to mechanical
oscillators are given in [27–29].

In the literature, a number of definitions of the fractional derivatives have been introduced, namely
the Hadamard, Erdelyi–Kober, Riemann–Liouville, Riesz, Weyl, Grünwald–Letnikov, Jumarie and the
Caputo representation [30–33]. A thorough analysis of fractional dynamical systems is necessary to
achieve an appropriate definition of the fractional derivative. For example, the Riemann–Liouville
definition entails physically unacceptable initial conditions (fractional order initial conditions) [34];
conversely, for the Caputo representation, the initial conditions are expressed in terms of integer-order
derivatives having direct physical significance [35]; this definition is mainly used to include memory
effects. Recently, Michele Caputo and Mauro Fabrizio in [36] presented a new definition of the
fractional derivative without a singular kernel; this derivative possesses very interesting properties, for
instance the possibility to describe fluctuations and structures with different scales. Furthermore, this
definition allows for the description of mechanical properties related to damage, fatigue and material
heterogeneities. The properties of this new fractional derivative are reviewed in detail in the paper [37].
Recently, Abdon Atangana and Badr Alkahtani [38,39] studied the resistor–inductor–capacitor electrical
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circuit and the Keller–Segel model based on the Caputo–Fabrizio definition; in both works, the authors
showed the application of the new proposed fractional derivative without a singular kernel.

In the present work, we use both the Caputo and the Caputo–Fabrizio fractional derivatives to present
the analytical and numerical solutions of the mass-spring-damper systems for different source terms; the
idea proposed in [26] is applied to construct the fractional differential equations, and our representation
preserves the physical units of the physical system for any value by the fractional derivative exponent.
The main reason for this work is to investigate and model the displacement of the oscillator in fractal
geometries using the fractional derivative with a singular kernel (Caputo approach) and the fractional
derivative without a singular kernel (Caputo–Fabrizio approach).

The manuscript is organized as follows: Section 2 explains the basic concepts of the FC; Section 3
presents the analytic solution of the systems and the simulations with different source terms; and the
conclusions are given in Section 4.

2. Basic Concepts

The Caputo derivative (CD) is defined as follows [32]:

C
0D

γ
t f(t) =

1

Γ(n− γ)

∫ t

0

f (n)(α)

(t− α)γ−n+1
dα, (1)

where dϕ

dtϕ
=CaD

ϕ
t is a CD with respect to t, ϕ ε R is the order of the fractional derivative and Γ(·) represents

the gamma function.
The Laplace transform of the CD has the form [32]:

L[C0D
γ
t f(t)] = SγF (S)−

m−1∑
k=0

Sγ−k−1f (k)(0). (2)

Some common Laplace transforms are:

1

sα + a
= tα−1Eα,α(−atα) (3)

sα

s(sα + a)
= Eα(−atα), (4)

a

s(sα + a)
= 1− Eα(−atα). (5)

The Mittag–Leffler function [40] is defined by a power as:

Ea(t) =
∞∑
m=0

tm

Γ(am+ 1)
, (a > 0), (6)

The Caputo–Fabrizio derivative (CF) is defined as follows [36,37]:

CF
0 D

γ
t f(t) =

M(γ)

1− γ

∫ t

0

ḟ(α) exp
[
− γ(t− α)

1− γ

]
dα, (7)

where dγ

dtγ
=CF0 Dγ

t is a CF with respect to t, M(γ) is a normalization function, such that
M(0) = M(1) = 1; in this definition, the derivative of a constant is equal to zero, but unlike the
usual Caputo definition (1), the kernel does not have a singularity at t = α.
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If n ≥ 1 and γ ∈ [0, 1], the CF fractional derivative, CF0 D
(γ+n)
t f(t), of order (n+ γ) is defined by:

CF
0 D

(γ+n)
t f(t) =CF

0 D(γ)
t (CF0 D

(n)
t f(t)). (8)

The Laplace transform of (7) is defined as follows [36,37]:

L[CF0 D
(γ+n)
t f(t)] =

1

1− γ
L
[
f (γ+n)t

]
L
[

exp
(
− γ

1− γ
t
)]

(9)

=
sn+1L[f(t)]− snf(0)− sn−1f ′(0) . . .− f (n)(0)

s+ γ(1− s)
, (10)

for this representation in the time domain, it is suitable to use the Laplace transform [36,37].
From this expression, we have:

L[CF0 D
γ
t f(t)] =

sL[f(t)]− f(0)

s+ γ(1− s)
, n = 0, (11)

L[CF0 D
(γ+1)
t f(t)] =

s2L[f(t)]− sf(0)− ḟ(0)

s+ γ(1− s)
, n = 1. (12)

3. Mass-Spring-Damper System

According to [26], to be consistent with the dimensionality of the physical equation, an auxiliary
parameter σ is introduced into the fractional temporal operator:

d

dt
→ 1

σ1−γ ·
dγ

dtγ
, m− 1 < γ ≤ m, m ∈M = 1, 2, 3, . . . (13)

and:
d2

dt2
→ 1

σ2(1−γ) ·
d2γ

dt2γ
, m− 1 < γ ≤ m, m ∈M = 1, 2, 3, . . . (14)

where γ represents the order of the fractional temporal operator and σ has the dimension of seconds.
The auxiliary parameter σ is associated with the temporal components in the system (these components
change the time constant of the system) [41]; for the case γ = 1, Expressions (13) and (14) become
ordinary temporal operators. Following this idea, the equation of the mass-spring-damper system
represented in Figure 1 is given by:

m

σ2(1−γ)
C
0D

2γ
t x(t) +

β

σ1−γ
C
0D

γ
t x(t) + kx(t) = F (t), 0 < γ ≤ 1, (15)

and for the CF, we have:
m

σ2(1−γ)
CF
0 D

2γ
t x(t) +

β

σ1−γ
CF
0 D

γ
t x(t) + kx(t) = F (t), 0 < γ ≤ 1, (16)

where the mass ism, the damping coefficient is β, the spring constant is k and F (t) represents the forcing
function.

X(t)

F(t)
m

k

 

Figure 1. Mass-spring-damper system.
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From Equations (15) and (16), we derive the particular cases:

1. Mass-spring system, β = 0

C
0D

2γ
t x(t) +

k

m
σ2(1−γ)x(t) =

F (t)

m
σ2(1−γ), 0 < γ ≤ 1, (17)

and:
CF
0 D

2γ
t x(t) +

k

m
σ2(1−γ)x(t) =

F (t)

m
σ2(1−γ), 0 < γ ≤ 1. (18)

2. Damper-spring system, m = 0:

C
0D

γ
t x(t) +

k

β
σ1−γx(t) =

F (t)

β
σ1−γ, 0 < γ ≤ 1, (19)

and:
CF
0 D

γ
t x(t) +

k

β
σ1−γx(t) =

F (t)

β
σ1−γ, 0 < γ ≤ 1. (20)

Now, we obtain the analytic and numerical solutions of Equations (15)–(16) corresponding to the
particular Cases 1 and 2 for different source terms.

3.1. Mass-Spring System

Case 1: Consider a constant source, F (t) = f0, x(0) = x0, (x0 > 0), ẋ(0) = 0; Equation (17) may
be written as follows:

C
0D

2γ
t x(t) =

η2

k
f0 − η2x(t), (21)

where:

η2 =
kσ2(1−γ)

m
= η20 · σ2(1−γ), (22)

is the fractional angular frequency and η20 = k
m

is the frequency in the classical case.
The solution of (21) is:

x(t) = (x0 −
f0
k

) · E2γ

{
− η2t2γ

}
+
f0
k
, (23)

where E2γ is given by (6).
Concerning the classical case, from (22), we have η2 = η20 = k

m
; then, the solution of Equation (21) is:

x(t) = (x0 −
f0
k

) · cos(η0t) +
f0
k
, (24)

In this case, a physical relationship exists between Equation (17), the order γ and σ:

γ =
k

m
σ. (25)

For Expression (25), the solution (23) is given by:

x(t) = (x0 −
f0
k

) · E2γ

{
− γ2(1−γ)t2γ

}
+
f0
k
. (26)

The plots for different values of the fractional order γ are shown in Figure 2.
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Figure 2. Mass-spring system with a constant source, Caputo derivative approach.

For Equation (18), we have:
CF
0 D

2γ
t x(t) =

η2

k
f0 − η2x(t), (27)

the Laplace transform (10) of (27) yields:

x(s) = x0 ·
s2γ−1

s2 + η2[s+ γ(1− s)]
+
η2f0
k

( s+ γ(1− s)
s(s2 + η2[s+ γ(1− s)])

)
, (28)

applying the numerical inverse Laplace transform algorithm [42] to (28), we obtain the time response.
The plots for different values of the fractional order γ are shown in Figure 3.
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Figure 3. Mass-spring system with a constant source, Caputo–Fabrizio derivative approach.

Case 2: Consider a periodic source, F (t) = f0 cos(ωt), x(0) = x0, (x0 > 0), ẋ(0) = 0; Equation (17)
may be written as follows:

C
0D

2γ
t x(t) =

η2

k
f0 cos(ωt)− η2x(t), (29)

where η2 is given by (22).
The solution of Equation (29) is:

x(t) = x0 · E2γ

{
− η2t2γ

}
− f0
k

∫ t

0

cosω(t− u)E2γ

{
− η2u2γ

}
du, (30)
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where E2γ is given by (6).
For the classical case, from (22), we have η2 = η20 = k

m
; the solution of Equation (29) is:

x(t) = x0 · cos(η0t)−
f0
k

∫ t

0

cosω(t− u)cos(η0u)du, (31)

Taking into account Expression (25), the solution (30) is:

x(t) = x0 · E2γ

{
− γ2(1−γ)t2γ

}
− f0
k

∫ t

0

cosω(t− u)E2γ

{
− γ2(1−γ)u2γ

}
du. (32)

The plots for different values of the fractional order γ are shown in Figure 4.
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Figure 4. Mass-spring system with a periodic source, Caputo derivative approach.

For Equation (18), we have:

CF
0 D

2γ
t x(t) =

η2

k
f0 · cos(ωt)− η2x(t), (33)

the Laplace transform (10) of (33) yields:

x(s) = x0 ·
s2γ−1

s2 + η2[s+ γ(1− s)]
+
η2f0
k

( s(s+ γ(1− s))
(s2 + ω2)(s2 + η2[s+ γ(1− s)])

)
, (34)

applying the numerical inverse Laplace transform algorithm [42] to (34), we obtain the time response.
The plots for different values of the fractional order γ are shown in Figure 5.
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Figure 5. Mass-spring system with a periodic source, Caputo–Fabrizio derivative approach.
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3.2. Damper-Spring System

Case 1: Consider a constant source, F (t) = f0, x(0) = x0, (x0 > 0); Equation (19) may be rewritten
as follows:

C
0D

γ
t x(t) =

τ

k
f0 − τx(t), (35)

where:
τ =

k

β
σ1−γ. (36)

The solution for Equation (35) is:

x(t) = (x0 −
f0
k

) · Eγ
{
− τtγ

}
+
f0
k
, (37)

where Eγ is given by (6).
For the classical case, Expression (37) becomes:

x(t) = (x0 −
f0
k

) · exp(−τt) +
f0
k
, (38)

In this case, there is a physical relation between Equation (19), the order γ and σ:

γ =
k

β
σ, (39)

considering Expression (39); the solution (37) is:

x(t) = (x0 −
f0
k

) · Eγ
{
− γ1−γtγ

}
+
f0
k
. (40)

The plots for different values of the fractional order γ are shown in Figure 6.
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Figure 6. Damper-spring system with a constant source, Caputo derivative approach.

For Equation (20), we have:
CF
0 D

γ
t x(t) =

τ

k
f0 − τx(t), (41)

the Laplace transform (10) of (41) yields:

x(s) = x0 ·
sγ−1

s+ τ [s+ γ(1− s)]
+
τf0
k

( s+ γ(1− s)
s(s+ τ [s+ γ(1− s)])

)
, (42)
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applying the numerical inverse Laplace transform algorithm [42] to (42), we obtain the time response.
The plots for different values of the fractional order γ are shown in Figure 7.
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Figure 7. Damper-spring system with a constant source, Caputo–Fabrizio derivative
approach.

Case 2: Consider a periodic source, F (t) = f0 cos(ωt), x(0) = x0, (x0 > 0); Equation (19) may be
written as follows:

C
0D

γ
t x(t) =

τ

k
f0 cos(ωt)− τx(t), (43)

the solution for Equation (43) is:

x(t) = x0 · Eγ
{
− τtγ

}
− f0
k

∫ t

0

cosω(t− u)Eγ

{
− τuγ

}
du, (44)

where Eγ is given by (6).
For the classical case, Expression (44) becomes:

x(t) = x0 · exp(−τt)− f0
k

∫ t

0

cosω(t− u) exp(−τu)du, (45)

considering Expression (39), the solution (44) is:

x(t) = x0 · Eγ
{
− γ1−γtγ

}
− f0
k

∫ t

0

cosω(t− u)Eγ

{
− γ1−γuγ

}
du, (46)

the plots for different values of the fractional order γ are shown in Figure 8.
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Figure 8. Damper-spring system with a periodic source, Caputo derivative approach.
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For Equation (20), we have:

CF
0 D

γ
t x(t) =

τ

k
f0 cos(ωt)− τx(t), (47)

the Laplace transform (10) of (47) is:

x(s) = x0 ·
sγ−1

s+ τ [s+ γ(1− s)]
+
τf0
k

( s(s+ γ(1− s)
(s2 + ω2)(s+ τ [s+ γ(1− s)])

)
, (48)

applying the numerical inverse Laplace transform algorithm [42] to (48), we obtain the time response.
The plots for different values of the fractional order γ are shown in Figure 9.
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Figure 9. Damper-spring system with periodic source, Caputo–Fabrizio derivative approach.

3.3. Mass-Spring-Damper System

Case 3: Consider F (t) = 0 and initial conditions equal to zero; Equation (15) may be written as
follows:

C
0D

2γ
t x(t) + τC0D

γ
t x(t) = η2x(t), (49)

where η2 and τ are given by (22) and (36), respectively. The solution of Equation (49) is:

x(t) = x0 · Eγ
{
− β

2m
σ1−γtγ

}
· E2γ

{
−
[ k
m
− β2

4m2

]
σ2(1−γ)t2γ

}
(50)

where Eγ is given by (6).
For the classical case, Expression (50) becomes:

x(t) = x0 · exp
(
− β

2m
t
)
· cos

(√ k

m
− β2

4m2
t
)
, (51)

In this case, there is a physical relation between Equation (15), the order γ and σ:

γ =

√
k

m
− β2

4m2
σ, (52)

considering Expression (52), the solution (50) is:

x(t) = x0 · Eγ
{
− γ1−γtγ

}
· E2γ

{
− γ2(1−γ)t2γ

}
. (53)
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The plots for different values of the fractional order γ are shown in Figure 10.
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Figure 10. Mass-spring-damper system without a source, Caputo derivative approach.

For Equation (16), we have:

CF
0 D

2γ
t x(t) + τCF0 D

γ
t x(t) = η2x(t), (54)

and the Laplace transform (10) of (54) yields:

x(s) = x0 ·
( s+ a

s2 + τs+ η2(s+ γ(1− s)

)
, (55)

where η2 and τ are given by (22) and (36), respectively. Applying the numerical inverse Laplace
transform algorithm [42] to (55), we obtain the time response. The plots for different values of the
fractional order γ are shown in Figure 11.
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Figure 11. Mass-spring-damper system without a source, Caputo–Fabrizio derivative
approach.

4. Conclusion

In this work, we present alternative fractional differential equations using Caputo and
Caputo–Fabrizio fractional derivatives for modeling oscillating systems. The proposed equations
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provide a universal behavior (see Equations (25), (39) and (52)); the solutions presented preserve the
dimensionality of the studied system for any value of the exponent of the fractional derivative. The
advantage of this alternative representation when compared to the models presented in the literature is
the physical compatibility of the solutions.

For the classical Caputo approach, the solutions incorporate and describe long-term memory effects
(attenuation or dissipation); these effects are related to an algebraic decay related to the Mittag–Leffler
function; when γ is less than one, the fractional differentiation with respect to time represents the
non-local displacement effects of dissipation of energy (internal friction) represented by the fractional
order γ, which is related to the displacement of the oscillator in fractal geometries. For the
Caputo–Fabrizio fractional derivative, the numerical solutions show a change of the amplitude variation
and the phase; these behaviors depend on the fractional derivative order and modify the constant time;
particularly, when the fractional operator is less than one, the systems exhibit a fast stabilization.
This new fractional definition allows describing the relaxation phenomena characteristic of viscoelastic
materials, and the numerical solution exhibits temporal fractality at different scales, as well as the
existence of material heterogeneities in the mechanical components. The two definitions of fractional
derivatives must apply conveniently depending on the materials treated; the choice of the fractional
derivative depends upon the problem studied and on the phenomenological behavior of the system. For
both definitions, when γ = 1, the displacement has the ordinary behavior.

The results gathered in Figures 2–11 briefly show that when γ = 1, the system displays the Markovian
nature. However, for values of γ < 1, the equations describe systems that are non-conservative
(non-local in time); in this context, the different γ values are modified the time constant of the systems
and exhibit fractional structures (components that show an intermediate behavior between a system that
is conservative and dissipative). In the range γ ∈ (0.85, 1), the figures show that the system presents
dissipative effects that correspond to the nonlinear situation of the physical process (realistic behavior
that is non-local in time). In these cases, the systems modified the damping capacity, for example when
γ = 0.85, the damping capacity is bigger than when γ = 0.95. Furthermore, the figures show that the
Caputo fractional derivative is more affected by the past compared to the Caputo–Fabrizio fractional
derivative, which shows a rapid stabilization.

The resulting equations represent a generalization of the classical mass-spring-damper model; the
proposed representation can be used to describe a wide variety of systems, which had not been addressed
due to the limitations of the classical calculus. In this context, we consider that these results are useful to
understand the behavior of dynamical complex systems, mechanical vibrations, control theory, relaxation
phenomena, viscoelasticity, viscoelastic damping and oscillatory processes.
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