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Abstract: According to the chaotic features and typical fractional order characteristics of the bearing
vibration intensity time series, a forecasting approach based on long range dependence (LRD)
is proposed. In order to reveal the internal chaotic properties, vibration intensity time series
are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C
method and the optimal embedding dimension and saturated correlation dimension are calculated
via the Grassberger–Procaccia (G-P) method, respectively, so that the chaotic characteristics of
vibration intensity time series can be jointly determined by the largest Lyapunov exponent and
phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent
is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes
Oscillator (DHO). The Hurst exponent and long range dependence prediction method are proposed
to verify the typical fractional order features and improve the prediction accuracy of bearing
vibration intensity time series, respectively. Experience shows that the vibration intensity time
series have chaotic properties and the LRD prediction method is better than the other prediction
methods (largest Lyapunov, auto regressive moving average (ARMA) and BP neural network
(BPNN) model) in prediction accuracy and prediction performance, which provides a new approach
for running tendency predictions for rotating machinery and provide some guidance value to the
engineering practice.
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1. Introduction

Rolling bearings are widely used as the most common and key components in rotating
machinery systems. Generally, the working environment of rolling bearings is complex, with high
speeds and heavy loads, and various failures such as wear, pitting, cracking and spalling, etc. always
appear. Many unexpected failures deteriorate rapidly and may cause catastrophic accidents and
financial losses or even personnel casualties [1–3]. Therefore, condition prognostics and health
management (CPHM) have become a particularly crucial issue and appealing field in mechanical
fault diagnosis (MFD).

Vibration intensity time series of bearing systems belongs to a special kind of highly
non-stationary and nonlinear data due to bearing systems that are restricted by the complicated
operating mode and conditions, hence, modeling and prognostics approaches of time series is a
challenge for researchers. Vibration intensity time series are composed of various components such as
Gaussian noise, impulse, variation trend, model perturbations and other uncontrolled features, etc.,
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so various traditional statistical methods and prediction models are unsuitable for those time series.
In the present paper, recent studies of prediction approaches of time series can be classified into three
major categories:

1. Statistical time series modeling approaches.
2. Computational intelligence (CI) approaches.
3. Prediction methods for chaos time series.

The statistical time series modeling approaches include auto regressive (AR), auto regressive
moving average (ARMA), auto regressive integrated moving average (ARIMA), and generalized auto
regressive conditional heteroskedasticity (GARCH) [4–6] methods, however, the use of those models
is often restricted by linearity, normality and stationarity characteristics and although they are very
well suited to capture short range dependence and stable periodicity, they are not well suited to deal
with nonlinearity, thus resulting in poor prediction accuracy.

Computational intelligence (CI) approaches include artificial neural networks (ANNs) (Elman
neural networks [7], recurrent neural networks [8], radial basis function neural networks [9], etc.),
support vector machines (SVMs) [10,11] and Kalman filter algorithms [12], etc. Artificial neural
networks have good nonlinear prediction and self-learning ability, but the network structures of
ANNs are hard to determine by experiment and theory, and ANNs is easy to fall into local optima and
additionally they suffer from slow convergence speed. SVMs are powerful for problems characterized
by small samples, nonlinearity, high dimensionality and local minima, and have high generalization
ability, but the key kernel parameters of SVM are difficult to optimize and train. In addition, the
main drawbacks of the Kalman filter prediction method are that it requires accurate system models,
the statistics properties of the process and observation noise. Unfortunately, vibration intensity time
series are very complicated and it is difficult to establish an accurate mathematical model.

Chaos time series prediction methods, such as adaptive prediction and local adaptive prediction,
Volterra series method and largest Lyapunov Exponent (LLE) [13,14] are based on the theory
of chaos phase space reconstruction, and the weight parameters are regulated automatically, In
addition, reference [15] proposed a method for reconstructing dynamical systems based on time-delay
embedding and use it on the bearing fault diagnostics, then compares the reconstructed bearing
vibration data with a baseline reconstruction from normal bearing data to generate a severity index
over time with Wasserstein distance and the earth mover’s distance (EMD), but these studies can't
make full use of the advantages of the adaptive algorithm for its inability to adjust the filter
parameters owing to the unknown real-value during multi-step prediction.

Despite these preliminary efforts mentioned above, all the statistical models and conventional
methods were found to be insufficient to address the characteristics of bearing vibration intensity.
One reason for such an inadequacy might be the existence of long range dependence features [16–19]
in bearing vibration intensity time series; another reason might be this time series is a typical
fractional order system, so fractional order signal processing (FOSP) [20] techniques are likely to be
applicable to this time series and able to predict it accurately. FOSP is based on the knowledge of
fractional order differential equations (FODE) and fractional order calculus (FOC), which can analyze
fractional order systems such as Short-Range Dependence (SRD), LRD and times series with heavy
tailed distributions [21].

This paper discusses the prediction problem of vibration intensity chaotic time series, and the
chaotic characteristics of vibration intensity time series is explored and judged first, then in order
to overcome the adaptability weaknesses of this chaotic time series and examine the existence of
long range dependence and fractional order features, the FOSP technique f -ARIMA is proposed.
f -ARIMA (LRD) models can parsimoniously represent LRD through the single parameter d, which
is characterized by a slow decay in its autocorrelation function compared to the other models and it
avoids excessive complexity and keeps the model solvable. In addition, the f -ARIMA (LRD) model
can acquire the corresponding fractional differenced value based on the characteristics of a time series,
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and fit complex nonlinear time series well, thus it has good generalization ability for different LRD
time series. Finally, the suitability of this prediction model of chaotic time series for obtaining more
accurate multi-step forecasts will be demonstrated later.

The remainder of the paper is organized as follows: in Section 2, the chaotic characteristics of
bearing vibration intensity time series are described with phase space reconstruction, LLE [22] and
Duffing-Holmes Oscillator (DHO) [23]. In Section 3, the LRD modeling, Hurst parameter estimation
and the prediction steps of LRD are presented. In Section 4, the forecasting results and discussion of
LRD and other different previous approaches are given in detail. Section 5 presents the conclusions
and a summary.

2. Chaotic Characteristics Analysis of Bearing Vibration Intensity Series

2.1. Phase Space Reconstruction

A chaos attractor can estimate whether a times series is chaotic or stochastic, thus attractor
reconstruction is a key step in chaotic time series analyses. Vibration intensity time series should be
expanded into a high-dimensional space to reveal its dynamic characteristics, which was proposed
by Takens [24]. For a given time series txpiqu , i “ 1, 2, ¨ ¨ ¨, N, selecting an optimal delay time τ and an
optimal embedding dimension m, the phase space can be expressed as follows:

Xpiq “ rxpiq, xpi` τq, ¨ ¨ ¨, xpi` pm´ 1qτqs (1)

where, i “ 1, 2, ¨ ¨ ¨, M, M “ N´pm´ 1qτ, is the number of elements in the reconstructed phase space,
so it is clear that the phase space can be reconstructed for an optimal embedding dimension m and
delay time τ.

2.2. The Optimal Delay Time τ

In order to reduce the reconfiguration calculation cost and keep the nonlinear characteristics of
the time series, the delay time τ can be computed based on the C-C method [25], which was obtained
by statistical results and has a strong ability of resist noise.

For embedding dimension m = 2, 3, 4, 5, radius ri “ iˆ 0.5ε, t is index lag, i = 1, 2, 3, 4, ε is time
series standard deviation, then calculate the following three formulas:

Sptq “
1
16

5
ÿ

m“2

4
ÿ

i“1

Spm, ri, tq (2)

∆Sptq “
1
4

5
ÿ

m“2

∆Spm, tq (3)

Scorptq “ ∆Sptq ` |Sptq| (4)

where, Sptq and ∆Sptq can reflect the correlation of bearing vibration intensity series, and the delay
time τ will correspond to the first zero crossings point times of Sptq or the first local minimum value
times of ∆Sptq, and the minimum of the quantity Scorptq, respectively.

2.3. Optimal Embedding Dimension and Saturated Correlation Dimension

The saturated correlation dimension can measure the complexity of the reconstruction attractor
in phase space. The saturated correlation dimension D and optimal embedding dimension m are
calculated using the Grassberger–Procaccia (G-P) algorithm [26,27]. This algorithm uses the phase
space reconstruction of time series in Equation (1), which can be estimated by embedding dimension
m through the principle that the correlation dimension increases with the increases of embedding
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dimension and reaching a saturated state. Given a small values of m0, the correlation integral Cpr, mq
is given by:

Cpr, mq “
1

NpN ´ 1q

ÿ

i,j

Hpr´ ||Xpiq ´ Xpjq||q (5)

where, r is the radius of the sphere centered on Xpiq or Xpjq, ||Xpiq ´ Xpjq|| is calculated as Euclidean
norm, N is the length of time series, H(x) is the Heaviside function, defined as follows:

Hpxq “

#

0, x ď 0
1, x ą 0

(6)

There is a linear relationship between attractor dimension and cumulative distribution function,

namely, Dpmq “ |
lnCpr, mq

lnr
|, thus the asymptotic curve was established by lnC(r,m)-lnr, then the

correlation dimension D and embedding dimension m can be obtained by the formula m ě 2D` 1.

2.4. Largest Lyapunov Exponent (LLE)

Lyapunov exponents generally measure the exponential rates of divergence or convergence of
nearby trajectories in phase space, which are calculated to characterize chaotic time series. Given a
time series, which is embedded in K-dimensional phase space, and has K Lyapunov exponents
(λ1, λ2, ¨ ¨ ¨, λk), if the largest LLE is positive, λ ą 0, it means that the time series is chaotic.
Similarly, the phase plane trajectory is a chaotic state, which can be obtained by the Duffing-Holmes
Oscillator [23]. In this paper, the LLE is calculated by using Wolf’s algorithm [22], which is given as
follows: given a initial point of reconstruct phase space X(t0), locate a nearest neighbor point to the
initial point X0(t0), and denote the distance between those two points L0. At a later time t1, if the
distance outside of the parameters specified ε, that is L1

0 “ |Xpt1q ´ X0pt1q| ą ε, then this procedure
is repeated by selecting the new neighbor points at the replacement points on the attractor until the
fiducial trajectory has traversed the entire data, the Lyapunov exponents λ is given by:

λ “
1

tM ´ t0

M
ÿ

i“0

ln
L1

i
Li

(7)

where, L1

i and Li are the Euclidean distances calculated between the two nearest neighboring points
on the different trajectories, M is the total number of iteration steps. Therefore m and τ must be
selected for the LLE mentioned above first. In addition, the maximum predictable steps (MPS) term
is the reciprocal of the largest Lyapunov index, namely, tMPS “ 1{λ.

3. Prognostic Model of Long Range Dependence

3.1. Theory of Long Range Dependence

Long range dependence (LRD) of a process can be defined by an asymptotic power-law decrease
of its autocorrelation function (ACF) and power spectral density (PSD) [28]. Let X “ pxt : t “ 1, 2, 3...q
be a stochastic process with the ACF rxxpτq “ Erxptqxpt` τqs, then X is called SRD series if rxxpτq is
integrable [16,29], that is

ş8

0 rxxpτqdτ ă 8, on the other side, X is LRD if rxxpτq is nonintegrable, that
is
ş8

0 rxxpτqdτ “ 8. Moreover, the autocorrelation function follows asymptotically:

rxxpτq „ c1|τ|
´β, for pτ Ñ8q (8)

where c1 > 0 is a constant and 0 < β < 1.
Equivalently, its two-sided PSD follows asymptotically:

Sxpτq „ c2|τ|
´α, for τ Ñ 0 , 0 ă α ă 1 (9)
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where, c2 > 0 is a constant.
The f -ARIMA (p, d, q) [30,31] process arises as a special case of LRD when the differencing

parameter d in the range (´0.5,0.5). Let X “ pxt : t “ 1, 2, 3...q represent the time series of vibration
intensity. Then, LRD for the series can be formulated as:

ΦpBqp1´ BqdXt “ ΘpBqεt (10)

where εt is white Gaussian noise (WGN), d “ p´0.5, 0.5q, B the backshift operator, defined by
BXt “ Xt´1, BX2

t “ Xt´2, ¨ ¨ ¨, ΦpBq and ΘpBq are polynomial functions of the backshift operator B
given by:

ΦpBq “ 1´ φ1B´1 ´ φ2B´2 ´ ¨ ¨ ¨ ´ φpB´p (11)

ΘpBq “ 1´ θ1B´1 ´ θ2B´2 ´ ¨ ¨ ¨ ´ θqB´q (12)

and ∆ “ p1´ Bq is fractional differencing operator defined by:

∆d “ p1´ Bqd “
8
ÿ

k“0

˜

d
k

¸

p´Bqk (13)

where,

˜

d
k

¸

“
Γpd` 1q

Γpk` 1qΓpd´ k` 1q
, and Γ is the Gamma function.

Generally, we judge whether a stochastic time series is long-range dependent or not, from the
perspective of the definition directly, the discrete integral of the time series is difficult and there
might exists trend errors in the result; from another perspective, references [32,33] proposed that
LRD exhibits self similarity that is characterized by the parameter H or Hurst parameter H P p0.5, 1q,
thus the degree of self-similarity is expressed by the Hurst parameter. Clearly, fractional parameter
d in f -ARIMA (p, d, q) is the indicator of LRD, d can be calculated by the Hurst exponent H.
This parameter represents the speed of decay of a process’ autocorrelation function. If 0.5 < H < 1,
then the series is consistent with LRD and the closer it is to 1, the stronger the long memory or
self-similarity; Otherwise H = 0.5 and 0 < H < 0.5 indicates that the time series is an anti-persistent
process (or standard Brownian motion) [32] and SRD, respectively. The Hurst exponent H can be
estimated by several methods, in this paper, R/S method is introduced to calculate the parameter
H [33].

3.2. Hurst with R/S Method

Given a stochastic sample series X “ pxt : t “ 1, 2, 3...q, with the average xpnq and the variance
S2pnq, then R/S method can be expressed by:

Rpnq
Spnq

“
1

Spnq
pmaxp0, w1, w2, ¨ ¨¨, wnq ´minp0, w1, w2, ¨ ¨¨, wnqq (14)

where, wk “ px1 ` x2 ` ¨ ¨ ¨ ` xkq ´ kxpnq, k “ 1, 2, 3 ¨ ¨¨, n.
If the sample series satisfy LRD process, then:

Ep
Rpnq
Spnq

q „ CnH , n Ñ8

If the sample series consistent with SRD process, then:

Ep
Rpnq
Spnq

q „ Cn0.5, n Ñ8
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For the formulas above, C > 0 is a constant, and the Hurst exponent H can be obtained by the
least squares fitting algorithm for the R/S curve (Log(n)-logRS curve) in the logarithmic coordinates.

3.3. LRD Prediction Steps

The vibration intensity can reflect the overall running trend of the equipment, thus the bearing
vibration intensity time series before the predicted point are selected as forecast samples, and the
prediction steps of LRD algorithm are given below:

Step 1: By means of abnormal data deletion and zero mean normalization for original time series
samples in preprocessing operation in order to improve the prediction precision.

Step 2: The Hurst exponent of vibration intensity series was estimated by the R/S method.
Step 3: Then the differencing parameter d can be calculated by the formula H “ d` 0.5. Then the

fractional differencing can be defined as follows:

Yt “ ∆dXt “ p1´ z´1q
d
Xt “

8
ÿ

k“0

˜

d
k

¸

´

´z´1
¯k

Xt “

8
ÿ

k“0

πkXt´k, for πk “
Γpd` 1q

Γpk` 1qΓpd´ k` 1q
(15)

Generally, for fractional differencing, it is the key of the whole prediction process.
Step 4: Process Y “ tYt, t “ 1, 2, 3 ¨ ¨¨, Nu is considered as an ARMA model, and then the model

parameters and orders can be determined by the Akaike information criterion (AIC), and the concrete
operation process can be stated as follows: first, we determine the AR model parameters rφ1,φ2, ¨ ¨¨, φps

with the Yule–Walker equation:

¨

˚

˚

˚

˝

´φ1

´φ2

¨ ¨ ¨

´φp

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

rp0q, rp1q, ¨ ¨ ¨, rpp´ 1q
rp1q, rp0q, ¨ ¨ ¨, rpp´ 2q

¨ ¨ ¨

rpp´ 1q, rpp´ 2q, ¨ ¨ ¨, rp0q

˛

‹

‹

‹

‚

´1 ¨

˚

˚

˚

˝

rp1q
rp2q
¨ ¨ ¨

rppq

˛

‹

‹

‹

‚

(16)

where,rpkq is autocorrelation function (ACF).
Then, process Y “ tYt, t “ 1, 2, 3 ¨ ¨¨, Nu is filtered by the Finite Impulse Response (FIR) filter

ZpBq “ 1`
p
ř

i“1
φiB´k, and treating process Z “ tZt, t “ 1, 2, 3 ¨ ¨¨, Nu as a MA(q) model. Finally, the

m orders AR model can be established with Z “ tZt, t “ 1, 2, 3 ¨ ¨¨, Nu, where m ąą q, and using this
model for linear prediction, that is equivalent to a AR(q), and the rθ1,θ2, ¨ ¨¨, θqs can be generated by
the Yule–Walker equation again.

Step 5: Using ARMA model to predict future time series.
Step 6: The prediction values of finally actual vibration intensity can be acquired by

anti-fractional difference from Step 5, and the differential value is –d. The specific forecast process
is as shown in Figure 1.
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4. Experimental Verification

4.1. Experimental Setup

The vibration signal was generated by the NSF I/UCR Center for Intelligent Maintenance
Systems (Cincinnati, OH, USA; IMS-www.imscenter.net) and the University of Cincinnati [34,35].
Four Rexnord ZA-2115 double row bearings were installed on the shaft as shown in Figure 2.
The shaft is driven by an AC motor and coupled by rub belts. Accelerometers were installed on
bearing housing. Four thermocouples were attached to the outer race of each bearing to record
bearing temperature for the purpose of monitoring the lubrication. Vibration data was collected
every 10 min by a NI 6062E DAQ Card. The sampling rate set at 20 kHz and the data length is
20,480 points. Inner race fault vibration signal of bearing 3 was produced by a National Instruments
LabVIEW program from 22 October 2003 12:06:24 to 25 November 2003 23:39:56 (from normal to
severe fault), that is to say, the overall test data had 2156 sets.
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In this study, vibration intensity was selected as forecast samples instead of the original
acceleration signals or another indicator because the vibration fault acceleration signal has potential
cyclical and non-stationary characteristics, whereas the vibration intensity time series is highly
nonlinear, non-stationary and aperiodic. Therefore the vibration intensity time series is more suitable
for the LRD method. The vibration intensity is defined as the root mean square (RMS) value of the
vibration velocity ranging from 10 Hz to 1000 Hz, which is integrated and an effective characteristic
to reflect the equipment operational condition. Vibration intensity value is the vibration level of
the vibration velocity, and it includes the main parameters and features of the vibration signals.
Moreover, it reflects the overall operating state of the mechanical equipment, hence the value of
vibration intensity was selected as the sensitive factor for the bearing status [36]. Given a discrete
vibration velocity signal vpnqwith N points, the vibration intensity can be expressed as:

Vrms “

g

f

f

e

1
N

N´1
ÿ

0

v2pnq (17)

Next, vibration acceleration signals that are captured from each location and direction must
be changed into velocity signals. Velocity signals can be obtained from accelerometer signals using
numerical integration, however, the velocity signals always contain a trend of errors. Reference [37]
proved that the errors trend can be eliminated by a polynomial fitting of the extreme value, thus
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more precise velocity signals can be acquired from this algorithm, and the vibration intensity can be
calculated with Equation (17), thus the equivalent vibration intensity (EVI) is defined as:

vs “

d

p

ř

vx

Nx
q

2
` p

ř

vy

Ny
q

2

` p

ř

vz

Nz
q

2
(18)

where, Vx, Vy, Vz are the vibration intensity direction of axis X, Y, Z, and the unit is mm/s; Nx,
Ny, Nz are measuring points of axis X, Y, Z, respectively. Therefore, 2156 sets of vibration velocity
points of bearing 3 are captured using Equation (18), Figure 3 shows the relationship between the
whole accelerated life data and experimental data in this paper. According to equipment vibration
international standard ISO-2372 (Class I), the vibration intensity across the fault critical line 7.1 in the
last few points (see Figure 3a), and this sudden fault was caused by an artificially increased load in
the laboratory. However, in a practical engineering application, incipient bearing faults occur based
on the slowly changing characteristics over the whole life. Thus the vibration intensity time series in
Figure 3b were selected to investigate the prediction efficiency of the LRD model, which could have
some guidance value for engineering practice.
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4.2. Chaotic Characteristic Analysis of Bearing Vibration Intensity Time Series

In this section, the chaotic characteristic can be evaluated based on the proposed 200 sets of
bearing vibration intensity time series. Sptq and ∆Sptq curves of vibration intensity time series with
C-C method as shown in Figure 4a,b. The result of Figure 4a pointed out that the first zero crossings
point times of Sptq is t = 2, similarily, the first local minimum value times of ∆Sptq is t = 2 in Figure 4b,
therefore the optimal delay time of vibration intensity time series is τ = 2.
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Figure 4. Sptq and ∆Sptq curves for time delay. (a) Sptq curve for time delay; (b) ∆Sptq curve for
time delay.

The curves between lnC(r,m) and lnr according to the G-P method are shown in Figures 5 and 6
presents the relation between the embedding dimension m and the saturated correlation dimension
D. Figures 5 and 6 prove that the curve region reaches a saturated state gradually as the embedding
dimension m increases. Figure 6 shows that the convergence value of the correlation dimension is
6.5336, hence the embedding dimension of the vibration intensity time series is m = 14 according to
the formula m ě 2D` 1, which means that vibration intensity time series can be completely revealed
in 14-dimensional space.
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Further, the largest Lyapunov exponent of the vibration intensity time series is calculated using
the Wolf method, and the result is λ “ 0.0316, that is λ ą 0, which means that the vibration intensity
time series is chaotic. In addition, the maximum predictable steps tmps “ 1{λ “ 31.64, therefore, the
maximum prediction time is 31 (point number or steps), and the prediction step is creditable under
the condition of t ď 31. Figure 7 is the phase plane trajectory of vibration intensity time series with
the Duffing-Holmes Oscillator (DHO), which also indicates that the vibration intensity time series
belongs to a chaotic sequence.
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4.3. Prediction Analysis of LRD

The Hurst exponent H is obtained by the R/S method as shown in Figure 8. The resulting
H = 0.5933 > 0.5 shows that the vibration intensity chaotic time series is consistent with the LRD
property, equivalently, the ACF rxxpτq is nonintegrable, thus the LRD model can be applied to chaotic
time series to predict the future running vibration intensity points. Considering the prediction steps
obtained above is 31, thus the LRD is applied to predict 30 points vibration intensity ahead, that is
300 min.
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The predicted values of the chaotic time series generated by the LRD model, largest Lyapunov
model (L-Lyap), ARMA model and BP neural network (BPNN) are illustrated in Figure 9.
From Figure 9, it can be observed that the models are able to reasonably track the vibration intensity
variation trend. The quantitative prediction results, prediction absolute error (AE) and relative error
(RE) of four models are shown in Appendix. The forecasting errors that differ between actual and
predicted values with the proposed models are shown in Figure 10. It is clear that the predicted results
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using the LRD model have better a match with the actual vibration intensity than the predicted result
using other prediction methods, and the LRD method can offer more accurate forecasting result than
other methods.
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Furthermore, in order to determine quantitatively the better model, the following error criteria
are employed for a comprehensive model comparison as shown in Table 1.

Table 1. Different predict error criterions.

Predict Error Criterions Computational Formula

Mean Absolute Error MAE “
1
N

N
ř

k“1
|xpkq ´

^
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N
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The four models discussed in the paper are applied to vibration intensity chaotic time series,
and the performance comparison results are shown in Table 2. It can be observed in all the cases
that Mean Absolute Error (MAE), Root-Mean-Square Error (RMSE), Normalized Mean Square Error
(NMSE), Maximum of Absolute Error (Max-AE) obtained with the LRD model are considerably lower
than those calculated with the other models, which clear shows that the LRD model for chaotic time
series has high accuracy, therefore theLRD prediction model provides a new way for predicting the
running tendency or remaining useful lifetime of rotating machinery in practical engineering.

Table 2. Performance comparison for vibration intensity chaotic time series.

Prediction Method MAE RMSE NMSE Max-AE

LRD 0.000592 0.0033 1.3274 1.2703
L-Lyap 0.0090 0.0500 1.5462 1.6773
ARMA 0.0241 0.1345 1.6106 1.5077
BPNN 0.2061 1.1484 1.8524 1.3635

5. Conclusions

In this paper, a chaotic time series prediction approach for bearing vibration intensity based on
LRD method is proposed. Results obtained from this research are as follows:

1. The vibration intensity time series have chaotic properties, and the chaotic characteristics of
vibration intensity time series can be jointly determined by the largest Lyapunov exponent and
phase plane trajectory.

2. Experimental results and analysis demonstrate the unique ability of the f -ARIMA model
for chaotic time series. The long range dependence prediction method is powerful for
problems characterized by chaotic time series, small samples and nonlinearity. The LRD
prediction method is better than other prediction methods in prediction accuracy and prediction
performance, thus providing a new approach for the running tendency prediction of rotating
machinery and some guidance value for engineering practice. In addition, the Hurst exponent
can be calculated by the time series self-feature, instead of a subjective integer difference.

3. High prediction accuracy is the key and critical to CPHM for improving reliability and reducing
overall maintenance costs. The significant economic impact of prediction accuracy or prediction
errors in rotating machinery status prediction on the mechanical equipment market and the
systematic chaotic and self-similarity properties of different rotating machinery prediction
models would be meaningful topics for further research.
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Appendix A

Table A1. The prediction results of bearing vibration intensity.

NO Real LRD LRD_AE LRD_RE L-Lyap L-Lyap_AE L-Lyap_RE ARMA ARMA_AE ARMA_RE BPNN BPNN_AE BPNN_RE

1 4.5522 3.9986 ´0.5536 ´0.121612 4.427 ´0.1252 ´0.027503 3.5635 ´0.9887 ´0.217192 4.0736 ´0.4786 ´0.105136
2 3.6649 3.3793 ´0.2856 ´0.077928 2.8398 ´0.8251 ´0.225136 3.1812 ´0.4837 ´0.131982 3.3158 ´0.3491 ´0.095255
3 3.036 3.199 0.163 0.0536891 2.7735 ´0.2625 ´0.086462 2.668 ´0.368 ´0.121212 3.2062 0.1702 0.0560606
4 3.3038 4.5551 1.2513 0.3787457 4.3493 1.0455 0.3164538 4.8115 1.5077 0.4563533 4.6673 1.3635 0.4127066
5 2.8203 2.948 0.1277 0.0452789 3.0233 0.203 0.0719782 3.5361 0.7158 0.2538028 3.6186 0.7983 0.283055
6 3.2525 3.2578 0.0053 0.0016295 3.3853 0.1328 0.0408301 2.9159 ´0.3366 ´0.10349 3.1038 ´0.1487 ´0.045719
7 4.1008 3.8482 ´0.2526 ´0.061598 3.2006 ´0.9002 ´0.219518 4.4296 0.3288 0.0801795 4.1213 0.0205 0.004999
8 3.2772 3.7583 0.4811 0.1468021 4.6817 1.4045 0.4285671 3.2749 ´0.0023 ´0.000702 3.5804 0.3032 0.092518
9 2.4798 3.0703 0.5905 0.238124 3.3767 0.8969 0.3616824 2.9644 0.4846 0.195419 3.3707 0.8909 0.3592628

10 3.9129 3.7449 ´0.168 ´0.042935 4.5568 0.6439 0.1645583 3.6133 ´0.2996 ´0.076567 3.9402 0.0273 0.0069769
11 4.5876 3.5724 ´1.0152 ´0.221292 4.3291 ´0.2585 ´0.056348 3.8472 ´0.7404 ´0.161392 3.8285 ´0.7591 ´0.165468
12 2.4631 1.8725 ´0.5906 ´0.239779 3.039 0.5759 0.2338111 2.8213 0.3582 0.1454265 2.8934 0.4303 0.1746986
13 4.55 4.2955 ´0.2545 ´0.055934 2.8727 ´1.6773 ´0.368637 3.7735 ´0.7765 ´0.170659 4.067 ´0.483 ´0.106154
14 4.146 3.3061 ´0.8399 ´0.202581 2.8231 ´1.3229 ´0.319079 3.3848 ´0.7612 ´0.183599 3.3941 ´0.7519 ´0.181356
15 2.7487 3.2427 0.494 0.1797213 3.1311 0.3824 0.1391203 2.5418 ´0.2069 ´0.075272 2.9592 0.2105 0.0765817
16 3.0865 3.8732 0.7867 0.2548842 4.1049 1.0184 0.329953 3.9403 0.8538 0.276624 4.3831 1.2966 0.4200875
17 4.1998 3.7001 ´0.4997 ´0.118982 2.7413 ´1.4585 ´0.347278 3.5695 ´0.6303 ´0.150079 3.6615 ´0.5383 ´0.128173
18 3.1988 3.0906 ´0.1082 ´0.033825 2.4823 ´0.7165 ´0.22399 3.3457 0.1469 0.0459235 3.7081 0.5093 0.159216
19 3.0569 3.8389 0.782 0.2558147 3.4847 0.4278 0.1399457 3.8914 0.8345 0.272989 4.2552 1.1983 0.3919984
20 3.8719 3.9799 0.108 0.0278933 4.5922 0.7203 0.1860327 4.0409 0.169 0.0436478 3.9445 0.0726 0.0187505
21 3.5429 2.5529 ´0.99 ´0.279432 2.6148 ´0.9281 ´0.261961 2.7855 ´0.7574 ´0.21378 3.0093 ´0.5336 ´0.150611
22 4.4554 3.5936 ´0.8618 ´0.193428 3.2339 ´1.2215 ´0.274162 3.1912 ´1.2642 ´0.283746 3.9563 ´0.4991 ´0.112021
23 4.2155 3.1371 ´1.0784 ´0.255818 3.383 ´0.8325 ´0.197485 3.0732 ´1.1423 ´0.270976 3.2859 ´0.9296 ´0.22052
24 2.521 2.788 0.267 0.1059104 2.3158 ´0.2052 ´0.081396 2.6854 0.1644 0.0652122 3.0682 0.5472 0.2170567
25 3.2362 3.7682 0.532 0.1643903 3.36 0.1238 0.0382547 4.1212 0.885 0.2734689 4.3122 1.076 0.3324887
26 3.1059 3.6585 0.5526 0.1779194 4.0435 0.9376 0.3018771 3.4948 0.3889 0.1252133 3.7854 0.6795 0.2187772
27 2.9839 3.0617 0.0778 0.0260733 3.6305 0.6466 0.2166963 3.8778 0.8939 0.2995744 3.4673 0.4834 0.1620027
28 2.7785 4.0488 1.2703 0.4571891 4.1086 1.3301 0.4787115 3.6614 0.8829 0.3177614 4.0978 1.3193 0.4748245
29 3.3918 3.6153 0.2235 0.0658942 3.7199 0.3281 0.0967333 3.2349 ´0.1569 ´0.046259 3.5432 0.1514 0.0446371
30 3.0046 2.8075 ´0.1971 ´0.065599 2.6517 ´0.3529 ´0.117453 2.581 ´0.4236 ´0.140984 3.1122 0.1076 0.0358118
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