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Abstract: In this paper, we build a model of energy-savings and emission-reductions with two delays.
In this model, it is assumed that the interaction between energy-savings and emission-reduction and
that between carbon emissions and economic growth are delayed. We examine the local stability
and the existence of a Hopf bifurcation at the equilibrium point of the system. By employing System
Complexity Theory, we also analyze the impact of delays and the feedback control on stability and
entropy of the system are analyzed from two aspects: single delay and double delays. In numerical
simulation section, we test the theoretical analysis by using means bifurcation diagram, the largest
Lyapunov exponent diagrams, attractor, time-domain plot, Poincare section plot, power spectrum,
entropy diagram, 3-D surface chart and 4-D graph, the simulation results demonstrating that the
inappropriate changes of delays and the feedback control will result in instability and fluctuation
of carbon emissions. Finally, the bifurcation control is achieved by using the method of variable
feedback control. Hence, we conclude that the greater the value of the control parameter, the better
the effect of the bifurcation control. The results will provide for the development of energy-saving
and emission-reduction policies.
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1. Introduction

Energy resources are the backbone of any national economy. Scholars worldwide have been
studying energy prices, the low-carbon economy and energy-savings and emission-reduction. Lv and
Zhou [1] studied the dynamic behavior of the energy price model with time delay. They explained the
reasons why the energy price model was developed and maintained periodically by the bifurcation
theory. Tian et al. [2] developed a nonlinear model for the development of oil, gas and other energy
resources against the backdrop of the energy structure in Jiangsu, China, one that predominantly
relies on the coal consumption, and evidenced empirically the feasibility of the corresponding
energy countermeasures.

Despite the fact that energy promotes economic development and improves people’s living
standards, excessive energy consumption undoubtedly damages the environment, so it is necessary to
adopt a low-carbon economy and reduce the possible environmental damage. In fact, the energy-saving
and emission-reduction system is a complex nonlinear system, which involves the interactions between
a variety of factors such as energy-saving and emission-reduction, carbon emissions, economic
growth, energy efficiency, carbon tax and energy intensity, and so forth [3–5]. In view of this,
a novel three-dimensional energy-saving and emission-reduction chaotic system is proposed [6].
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The system is established in accordance with the complicated relationship among energy-savings and
emission-reduction, carbon emissions and economic growth. This system displays a very complex
phenomenon by including a special chaotic attractor named the energy-saving and emission-reduction
attractor (the EE attractor for short), which is different from the previous chaotic attractor, such as
Lorenz attractor [7], Chen attractor [8], Lü attractor [9], Energy resource attractor [10–12] and so
on. Moreover, drawing up rational and effective policies and laws will ensure a better progress in
energy-saving and emission-reduction [13,14]. Wang and Xu [15] reported a new four-dimensional
energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the
complicated relationship among energy-saving and emission-reduction, carbon emission, economic
growth and new energy development. The model is described as follows:

.
x(t) = a1x(t)( y(t)

M − 1)− a2y(t) + a3z(t),
.
y(t) = −b1x(t) + b2y(t)(1− y(t)

C ) + b3z(t)(1− z(t)
E )− b4u(t),

.
z(t) = c1x(t)( x(t)

N − 1)− c2y(t)− c3z(t) + c4u(t)( u(t)
L − 1),

.
u(t) = d1y(t) + d2z(t)( z(t)

K − 1)− d3u(t),

(1)

where x(t) is the time-dependent variable of energy-saving and emission-reduction; y(t) the
time-dependent variable of carbon emissions; z(t) the time-dependent variable of economic growth
(GDP) and u(t) the time-dependent variable of new energy development. ai, di, bj, cj, (i = 1, 2, 3;
j = 1, 2, 3, 4) are coefficients and M, N, L, K, C, E positive constants [15]. Model (1) stands for the
development and utilization of new energy sources. Therefore, the four-dimensional model of
energy-saving and emission-reduction is a step closer to the actual conditions.

In view of the current mode of economic development and technological conditions, economic
development will increase the consumption of coal and oil, and in turn this will cause an increase in
carbon emissions. However, there are many other approaches to promote economic growth, such as
those in the modern service sector that are low energy-consuming but high value-added, so economic
development may not immediately cause a substantial energy consumption load. In other words,
it might not lead to an obvious increase in carbon emissions in the short term. In this essay, we have
included the delay between economic development and the significant growth of carbon emission in
this kind of economic model.

Moreover, energy-savings and emission-reduction reduce carbon emissions by saving or reducing
energy consumption. However, due to the complexity of the economic system, the implementation
of energy-saving and emission-reduction measures normally will not lead to a significant reduction,
showing a certain lag. Meanwhile, energy-saving and emission-reduction will slow down the pace of
economic development. This will force enterprises to change their mode of economic development,
strengthen energy conservation and efficient use, and actively comply with a recycling economy
and low carbon economy, so energy-savings and emission-reduction will promote the sound and
fast development of economy, but it still demonstrates an obvious delay. Therefore, the impact of
energy-saving and emission-reduction on carbon emission and economic development is estimated as
delayed. On the basis of Model (1), we propose a two-delay model as follows:

.
x(t) = a1x(t)( y(t)

M − 1)− a2y(t) + a3z(t− τ1),
.
y(t) = −b1x(t− τ2) + b2y(t)(1− y(t)

C ) + b3z(t− τ1)(1− z(t−τ1)
E )− b4u(t),

.
z(t) = c1x(t− τ2)(

x(t−τ2)
N − 1)− c2y(t)− c3z(t) + c4u(t)( u(t)

L − 1),
.
u(t) = d1y(t) + d2z(t)( z(t)

K − 1)− d3u(t),

(2)

where τ1 represents the delay time between economic development and carbon emission, and τ2

represents the delay time among energy-saving and emission-reduction, economic development and
carbon emission.

The rest of this paper is organized as follows: in Section 2, we focus on the local stability and the
existence of Hopf bifurcation at the equilibrium point. In Section 3, we study the effects of delays and
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the feedback control on the stability of the system. In Section 4, the effective Hopf bifurcation control
of the system is examined. Finally, conclusions are drawn in Section 5.

2. Equilibrium Points and Local Stability

The calculation formulas of equilibrium points of Equation (2) are fairly complicated, so the
equilibrium points can be calculated directly by using specific parameters value in numerical
simulation section. We assume that Equation (2) has an equilibrium point, called hereafter by
E(x∗, y∗, z∗, u∗). It means that x(t), y(t), z(t) and u(t) can be in an equilibrium state through dynamic
game. In this paper, we focus on the influence of τ1, τ2 and the feedback control on the stability of
system (2) at the equilibrium point.

Next, Equation (2) is linearized at the equilibrium point E(x∗, y∗, z∗, u∗) by Jacobian matrix
as follows: 

.
x(t) = (a1

y∗
M − a1)x(t) + (a1

x∗
M − a2)y(t) + a3z(t− τ1),

.
y(t) = −b1x(t− τ2) + (b2 − 2b2y∗

C )y(t) + (b3 − 2b3z∗
E )z(t− τ1)− b4u(t),

.
z(t) = ( 2c1x∗

N − c1)x(t− τ2)− c2y(t)− c3z(t) + ( 2c4u∗
L − c4)u(t),

.
u(t) = d1y(t) + ( 2d2z∗

K − d2)z(t)− d3u(t),

(3)

The characteristic equation of Equation (3) is:∣∣∣∣∣∣∣∣∣
λ− J11 −J12 −J13e−λτ1 −J14

−J21e−λτ2 λ− J22 −J23e−λτ1 −J24

−J31e−λτ2 −J32 λ− J33 −J34

−J41 −J42 −J43 λ− J44

∣∣∣∣∣∣∣∣∣ = 0

where:
J11 = (a1

y∗

M
− a1), J12 = a1

x∗

M
− a2, J13 = a3, J14 = 0,

J21 = −b1, J22 = b2 −
2b2y∗

C
, J23 = (b3 −

2b3z∗

E
), J24 = −b4,

J31 = (
2c1x∗

N
− c1), J32 = −c2, J33 = −c3, J34 =

2c4u∗

L
− c4,

J41 = 0, J42 = d1, J43 =
2d2z∗

K
− d2, J44 = −d3.

We further get:

λ4 + A3λ3 + A2λ2 + A1λ + A0 + (B2λ2 + B1λ + B0)e−λτ1+

(C2λ2 + C1λ + C0)e−λτ2 + (D2λ2 + D1λ + D0)e−λ(τ1+τ2) = 0
(4)

where:
A3 = −J11 − J22 − J33 − J44,

A2 = J11 J22 + J11 J33 + J11 J44 − J14 J41 + J22 J33 + J22 J44 − J24 J42 + J33 J44 − J34 J43,

A1 = −J11 J22 J33 − J11 J22 J44 + J11 J24 J42 − J12 J24 J41 + J14 J22 J41 − J11 J33 J44

+J11 J34 J43 + J14 J33 J41 − J22 J33 J44 + J22 J34 J43 − J24 J32 J43 + J24 J33 J42
,

A0 = J11 J22 J33 J44 − J11 J22 J34 J43 + J11 J24 J32 J43 − J11 J24 J33 J42 + J12 J24 J33 J41 − J14 J22 J33 J41,

B2 = J23 J32, B1 = J11 J23 J32 − J13 J34 J41 + J23 J32 J44 − J23 J34 J42,

B0 = −J11 J23 J32 J44 + J11 J23 J34 J42 − J12 J23 J34 J41 + J13 J22 J34 J41 − J13 J24 J32 J41 + J14 J23 J32 J41,

C2 = J2
12, C1 = J2

12 J33 + J2
12 J44 − J12 J14 J42 − J14 J31 J43,

C0 = J2
12 J33 J44 + J2

12 J34 J43 − J12 J14 J32 J43 + J12 J14 J33 J42 − J12 J24 J31 J43 + J14 J22 J31 J43,
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D2 = J13 J31, D1 = J12 J13 J32 − J12 J23 J31 + J13 J22 J31 + J13 J31 J44,

D0 = J12 J13 J32 J44 − J12 J13 J34 J42 + J12 J23 J31 J44 − J13 J22 J31 J44 + J13 J24 J31 J42 − J14 J23 J31 J42.

2.1. Case 1 τ1 > 0, τ2 = 0

For τ2 = 0, Equation (4) can be simplified as follows:

λ4 + M3λ3 + M2λ2 + M1λ + M0 + (N2λ2 + N1λ + N0)e−λτ1 = 0, (5)

where:
M3 = A3, M2 = A2 + C2, M1 = A1 + C1, M0 = A0 + C0,

N2 = B2 + D2, N1 = B1 + D1, N0 = B0 + D0,

Let λ = iω1 (ω1 > 0) be the root of Equation (5). Separating the real and imaginary parts,
we obtain the following:{

N1ω1cosω1τ1 + (N2ω2
1 − N0)sinω1τ1 = M3ω3

1 −M1ω1

N1ω1sinω1τ1 − (N2ω2
1 − N0)cosω1τ1 = M2ω2

1 −ω4
1 −M0

. (6)

From Equation (6), we can get:

cosω1τ1 =
N2ω6

1 + (N1M3 − N2M2 − N0)ω
4
1 + (N2M0 + N0M2 − N1M1)ω

2
1 − N0M0

N2
1 ω2

1 + (N2ω2
1 − N0)

2 . (7)

Squaring both sides, adding both equations and regrouping by powers of ω1, we obtain that ω1

(ω1 > 0) satisfies the following polynomial:

ω8
1 + (M6

3 − 2M2)ω
6
1 + (M2

2 − 2M1M3 + 2M0 − N2
2 )ω

4
1 + (M2

1 − 2M0M2 − N2
1 + 2N0N2)ω

2
1 + M2

0 − N2
0 = 0. (8)

Let r1 = ω2
1 , Equation (8) transformed into:

r4
1 + q3r3

1 + q2r2
1 + q1r1 + q0 = 0, (9)

where:
q3 = M6

3 − 2M2, q2 = M2
2 − 2M1M3 + 2M0 − N2

2 ,

q1 = M2
1 − 2M0M2 − N2

1 + 2N0N2, q0 = M2
0 − N2

0 .

In the following, we need to seek conditions under which Equation (9) has at least one positive
root. Denote:

h(r1) = r4
1 + q3r3

1 + q2r2
1 + q1r1 + q0.

Since lim
r1→∞

h(r1) = ∞, we conclude that if q0 < 0, then Equation (9) has at least one positive

root [16].
Suppose that Equation (9) has positive roots. Without loss of generality, we assume that it has four

positive roots, defined by r11, r12, r13 and r14, respectively. Then Equation (8) has four positive roots:

ω11 =
√

r11, ω12 =
√

r12, ω13 =
√

r13, ω14 =
√

r14.

For each fixed ω1k (k = 1, 2, 3, 4), there exists a sequence {τ(j)
1k |k = 1, 2, 3, 4; j = 0, 1, 2, ...} that

satisfies Equation (6). According to Equation (7), we can get:

τ
(j)
1k = 1

w1k
arccos N2ω6

1k+(N1 M3−N2 M2−N0)ω
4
1k+(N2 M0+N0 M2−N1 M1)ω

2
1k−N0 M0

N2
1 ω2

1k+(N2ω2
1k−N0)

2 + 2jπ
ω1k

k = 1, 2, 3, 4; j = 0, 1, 2, 3, ...
(10)
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Let τ10 = min{τ(j)
1k |k = 1, 2, 3, 4; j = 0, 1, 2, ...} = min

k∈{1,2,3,4}
{τ(0)

1k } = τ1k0 , ω10 = ω1k0 . So the τ10 is:

τ10 =
1

ω10
arccos

N2ω6
10 + (N1M3 − N2M2 − N0)ω

4
10 + (N2M0 + N0M2 − N1M1)ω

2
10 − N0M0

N2
1 ω2

10 + (N2ω2
10 − N0)

2 (11)

Based on the above analysis, the main results are presented as below:

Lemma 1. If q0 < 0, Equation (5) has a pair of pure imaginary roots ±iω10 when τ1 = τ10. Next, take the
derivative with respect to τ1 in Equation (5) and we can obtain:[

dλ

dτ1

]−1
=

(4λ3 + 3M3λ2 + 2M2λ + M1)eλτ1 + (2N2λ + N1)

(N2λ3 + N1λ2 + N0λ)
− τ1

λ

Re
[

dλ(τ10)

dτ1

]−1

λ=iω10

=
P1P3 + P2P4

P2
1 + P2

2

where:
P1 = −N1ω2

10, P2 = N0ω10 − N2ω3
10,

P3 = 4ω3
10sinω10τ10 − 3M3ω2

10cosω10τ10 − 2M2ω10sinω10τ10 + M1cosω10τ10,

P4 = −4ω3
10cosω10τ10 − 3M3ω2

10sinω10τ10 + 2M2ω10cosω10τ10 + M1sinω10τ10 + 2N2ω10 + N1,

Lemma 2. Suppose that P1P3 + P2P4 6= 0, then dReλ(τ10)
dτ1

∣∣∣
λ=iω10

= Re
[

dλ(τ10)
dτ1

]−1

λ=iω10
6= 0. So it satisfies

the transversality condition.

According to the Lemmas 1–2 and the Hopf bifurcation theorem in [17], we obtain the
following results:

Theorem 1: The equilibrium point E(x∗, y∗, z∗, u∗) of Equation (2) is asymptotically stable for τ1 ∈ [0, τ10)

and unstable for τ1 > τ10; Equation (2) undergoes a Hopf bifurcation when τ1 = τ10.

2.2. Case 2 τ1 > 0, τ2 > 0

For τ1 > 0, τ2 > 0, we consider the characteristic Equation (4) with τ1 in its stable intervals
(the range of τ1 when the stability of the system is not affected), that is to say, τ1 ∈ [0, τ10) [18].
We study the influence of τ2 on the stability of the system when τ1 is fixed.

Proposition 1. Suppose that L0 < 0, then the characteristic Equation (4) has a pair of pure imaginary roots
±iω20 for τ2 = τ20. where:

τ20 =
1

ω20
arccos

h6ω6
20 + h5ω5

20 + h4ω4
20 + h3ω3

20 + h2ω2
20 + h1ω20 + h0

f4ω4
20 + f3ω3

20 + f2ω2
20 + f1ω20 + f0

(12)

Proof. Let λ = iω2 (ω2 > 0) be a root of Equation (4). Then we get:

(C2ω2
2 − C0 + D2ω2

2cosω2τ1 − D1ω2sinω2τ1 − D0cosω2τ1)sinω2τ2

+(C1ω2 + D2ω2
2sinω2τ1 + D1ω2cosω2τ1 − D0sinω2τ1)cosω2τ2

= A3ω3
2 − A1ω2 − B2ω2

2sinω2τ1 − B1ω2cosω2τ1 + B0sinω2τ1,
−(C2ω2

2 − C0 + D2ω2
2cosω2τ1 − D1ω2sinω2τ1 − D0cosω2τ1)cosω2τ2

+(C1ω2 + D2ω2
2sinω2τ1 + D1ω2cosω2τ1 − D0sinω2τ1)sinω2τ2

= A2ω2
2 −ω4

2 − A0 + B2ω2
2cosω2τ1 − B1ω2sinω2τ1 − B0cosω2τ1

(13)
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From Equation (13), we can obtain:

cosω2τ2 =
h6ω6

2 + h5ω5
2 + h4ω4

2 + h3ω3
2 + h2ω2

2 + h1ω2 + h0

f4ω4
2 + f3ω3

2 + f2ω2
2 + f1ω2 + f0

(14)

where:
h6 = C2 + D2cosω2τ1,

h5 = D2 A3sinω2τ1 − D1sinω2τ1

h4 = C1 A3 − D2B2 + D1 A3cosω2τ1 − C2 A2 − C2B2cosω2τ1 − C0 − D2 A2cosω2τ1 − D0cosω2τ1,

h3 = C2B1sinω2τ1 − C1B2sinω2τ1 − D2 A1sinω2τ1 − D0 A3sinω2τ1 + D1 A2sinω2τ1,

h2 = −C1 A1 − C1B1cosω2τ1 + D2B0 − D1 A1cosω2τ1 − D1B1 + D0B2 + C2 A0

+C2B0cosω2τ1 + C0 A2 + C0B2cosω2τ1 + D2 A0cosω2τ1 + D0 A2cosω2τ1
,

h1 = C1B0sinω2τ1 + D1B0cosω2τ1sinω2τ1 + D0 A1sinω2τ1

−C0B1sinω2τ1 − D1 A0sinω2τ1 − D1B0sinω2τ1cosω2τ1
,

h0 = −D0B0 − C0 A0 − C0B0cosω2τ1 − D0 A0cosω2τ1,

f4 = C2
2 + D2

2 + 2D2C2cosω2τ1,

f3 = −2D1C2sinω2τ1 + 2C1D2sinω2τ1,

f2 = 2D2C0cosω2τ1 − 2C0C2 + D2
1 − 2D0C2cosω2τ1 − 2D0D2 + C2

1 + 2D1C1cosω2τ1,

f1 = 2D1C0sinω2τ1 − 2D0C1sinω2τ1,

f0 = C2
0 + D2

0 + 2C0D0cosω2τ1.

Similar to Case 1, from Equation (13), we have:

ω8
2 + L7ω7

2 + L6ω6
2 + L5ω5

2 + L4ω4
2 + L3ω3

2 + L2ω2
2 + L1ω2 + L0 = 0 (15)

where
L7 = 0, L6 = A2

3 − 2A2 − 2B2cosω2τ1, L5 = 2B2 A3sinω2τ1 − 2B1sinω2τ1,

L4 = B2
2 − 2A1 A3 − 2A3B1cosω2τ1 + A2

2 + 2A0 + 2A2B2cosω2τ1 + 2B0cosω2τ1 − C2
2 − D2

2 − 2D2C2cosω2τ1,

L3 = 2B2 A1sinω2τ1 + 2B0 A3sinω2τ1 − 2B1 A2sinω2τ1 + 2D1C2sinω2τ1 − 2C1D2sinω2τ1,

L2 = A2
1 + B2

1 + 2A1B1cosω2τ1 − 2B0B2 − 2A0 A2 − 2B2 A0cosω2τ1 − 2B0 A2cosω2τ1

−2D2C0cosω2τ1 + 2C0C2 + D2
1 + 2D0C2cosω2τ1 + 2D0D2 − C2

1 − 2D1C1cosω2τ1
,

L1 = −2B0 A1sinω2τ1 + 2B1 A0sinω2τ1 − 2D1C0sinω2τ1 + 2D0C1sinω2τ1,

L0 = A2
0 + 2B0 A0cosω2τ1 − C2

0 − D2
0 − 2D0C0cosω2τ1,

We turn Equation (15) into the following form:

f (ω2) = ω8
2 + L7ω7

2 + L6ω6
2 + L5ω5

2 + L4ω4
2 + L3ω3

2 + L2ω2
2 + L1ω2 + L0 (16)

Since lim
ω2→∞

f (ω2) = ∞, we conclude that if L0 < 0, then Equation (15) has at least one positive

root. Without loss of generality, we assume that Equation (15) has a finite number of positive roots
defined by {ω21, ω22, ..., ω2s}.

From Equation (14), we denote:

τ
(j)
2k = 1

ω2k
arccos h6ω6

2k+h5ω5
2k+h4ω4

2k+h3ω3
2k+h2ω2

2k+h1ω2k+h0

f4ω4
2k+ f3ω3

2k+ f2ω2
2k+ f1ω2k+ f0

+ 2jπ
ω2k

, k = 1, 2, ..., s; j = 0, 1, 2, ...
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Then (τ
(j)
2k , ω2k) be a root of Equation (13). Therefore, when τ2 = τ

(j)
2k , the characteristic

Equation (4) has a pair of pure imaginary roots ±iω2k. Define:

τ20 = min{τ(j)
2k |k = 1, 2, ..., s; j = 0, 1, 2, ...} = min

k∈{1,2,...,s}
{τ(0)

2k } = τ2k0 , ω20 = ω2k0 .

Let λ(τ2) = α(τ2) + iω(τ2) be the root of the characteristic Equation (4) near τ2 = τ
(j)
2k satisfying:

α
(

τ
(j)
2k

)
= 0, ω

(
τ
(j)
2k

)
= ω2k.

Then on the basis of above analysis, we can get the following conclusion:

τ20 =
1

ω20
arccos

h6ω6
20 + h5ω5

20 + h4ω4
20 + h3ω3

20 + h2ω2
20 + h1ω20 + h0

f4ω4
20 + f3ω3

20 + f2ω2
20 + f1ω20 + f0

(17)

The characteristic Equation (4) has a pair of pure imaginary roots ±iω20 when τ2 = τ20. �

Proposition 2. Suppose that ∆ 6= 0, then Re
[

dλ(τ20)
dτ2

]−1

λ=iω20
6= 0, Re

[
dλ(τ20)

dτ2

]−1

λ=iω20
and ∆ have the same

sign, where:
∆ = Q1Q3 + Q2Q4

Proof. Substituting λ(τ2) (the root of the characteristic Equation (4), which is defined above) into
Equation (4) and taking the derivative with respect to τ2, we obtain:[

dλ

dτ2

]−1
=

Q10 + Q20 + Q30 + Q40

λe−λ(τ1+τ2)(D2λ2 + D1λ + D0) + λe−λτ2(C2λ2 + C1λ + C0)
− τ2

λ
(18)

Q10 = 4λ3 + 3A3λ2 + 2A2λ + A1, Q20 = (2B2λ + B1 − τ1B2λ2 − τ1B1λ− τ1B0)e−λτ1 ,

Q30 = (2C2λ + C1)e−λτ2 , Q40 = (2D2λ + D1 − τ1D2λ2 − τ1D1λ− τ1D0)e−λ(τ1+τ2),

From Equation (18), we have:

Re
[

dλ(τ20)

dτ2

]−1

λ=iω20

=
Q1Q3 + Q2Q4

Q2
1 + Q2

2
=

∆
Q2

1 + Q2
2

where:
Q1 = −D1ω2

20cos(τ1 + τ20)− D2ω3
20sin(τ1 + τ20) + D0ω20sin(τ1 + τ20)

−C1ω2
20cosω20τ20 − C2ω3

20sinω20τ20 + C0ω20sinω20τ20

Q2 = −D2ω3
20cos(τ1 + τ20) + D0ω20cos(τ1 + τ20) + D1ω2

20sin(τ1 + τ20)

−C2ω3
20cosω20τ20 + C0ω20cosω20τ20 + C1ω2

20sinω20τ20

Q3 = −3A3ω2
20 + A1 + 2B2ω20sinω20τ1 + B1cosω20τ1 + τ1B2ω2

20cosω20τ1 − τ1B1ω20sinω20τ1

−τ1B0cosω20τ1 + 2C2ω20sinω20τ20 + C1cosω20τ20 + 2D2ω20sin(τ1 + τ20)

+D1cos(τ1 + τ20) + τ1D2ω2
20cos(τ1 + τ20)− τ1D1ω20sin(τ1 + τ20)− τ1D0cos(τ1 + τ20)

Q4 = −4ω3
20 + 2A2ω20 + 2B2ω20cosω20τ1 − B1sinω20τ1 − τ1B2ω2

20sinω20τ1 − τ1B1ω20cosω20τ1

+τ1B0sinω20τ1 + 2C2ω20cosω20τ20 − C1sinω20τ20 + 2D2ω20cos(τ1 + τ20)

−D1sin(τ1 + τ20)− τ1D2ω2
20sin(τ1 + τ20)− τ1D1ω20cos(τ1 + τ20) + τ1D0sin(τ1 + τ20)

Since Q2
1 + Q2

2 > 0, thus Re
[

dλ(τ20)
dτ2

]−1

λ=iω20
6= 0. We conclude that Re

[
dλ(τ20)

dτ2

]−1

λ=iω20
and ∆ have

the same sign. �
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Thus, according to propositions 1 and 2 and the Hopf bifurcation theorem in [17], we have the
following theorem.

Theorem 2: For τ1 ∈ [0, τ10), τ10 is defined by Equation (11). The equilibrium point E(x∗, y∗, z∗, u∗) of
Equation (2) is asymptotically stable for τ2 ∈ [0, τ20) and unstable when τ2 > τ20. Equation (2) has a Hopf
bifurcation at τ2 = τ20.

3. Numerical Simulation and Analysis

In this section, the numerical simulation is carried out in order to support the theoretical analysis.
Let x(0) = 0.3; y(0) = 0.5; z(0) = 0.7; u(0) = 0.9; a1 = 4.5; a2 = 1.3; a3 = 20; b1 = 0.25; b2 = 0.85;
b3 = 0.35; b4 = 0.04; c1 = 0.5; c2 = 0.3; c3 = 0.2; c4 = 0.1; d1 = 0.01; d2 = 0.02; d3 = 0.06; M = 10;
C = 1; E = 8; N = 12; L = 2; K = 2. We consider the following system with given parameter values:

.
x(t) = 4.5x(t)( y(t)

10 − 1)− 1.3y(t) + 20z(t− τ1),
.
y(t) = −0.25x(t− τ2) + 0.85y(t)(1− y(t)) + 0.35z(t− τ1)(1− z(t−τ1)

8 )− 0.04u(t),
.
z(t) = 0.5x(t− τ2)(

x(t−τ2)
12 − 1)− 0.3y(t)− 0.2z(t) + 0.1u(t)( u(t)

2 − 1),
.
u(t) = 0.01y(t) + 0.02z(t)( z(t)

2 − 1)− 0.06u(t),

(19)

The following equilibrium points can be obtained by simple calculation:

E0(0, 0, 0, 0), E1(−0.6625, 1.1410,−0.0578, 0.2100),

E2(−5.2219± 54.1330i,−3.8795± 0.7677i,−0.9477± 17.0453i,−48.6048± 10.9389i),

E3(13.3977± 0.7680i, 0.4248± 1.7180i, 2.9437± 0.2407i, 0.5241± 0.1303i),

E4(−251.5640± 371.2492i, 14.7184± 1.4202i, 15.8006± 47.5443i,−337.9472± 234.7986i),

E5(−48.6048± 10.9389i, 6.9068± 6.8940i,−28.3090± 13.8694i, 112.0947± 134.3508i),

E6(131.6126± 3.3325i, 3.3618± 6.3095i, 19.4028± 18.7720i,−1.8941± 114.1013i),

According to actual economic meaning, only E1 is Nash Equilibrium point. So we examine the
system stability of the system at the equilibrium point E1(−0.6625, 1.1410,−0.0578, 0.2100).

For Case 1, from Equations (8) and (11), we can obtain ω10 = 4.5329, τ10 = 0.4618,
so Equation (5) has a pair of pure imaginary roots ±iω10 when τ1 = τ10 and τ2 = 0. We also get
P1P3 + P2P4 = 37.4226 6= 0. By theorem 1, the equilibrium point E1 of Equation (2) is asymptotically
stable when τ1 ∈ [0, 0.4618) and unstable when τ1 > 0.4618. It has a Hopf bifurcation at τ1 = 0.4618.

For Case 2, Let τ1 = 0.4 ∈ [0, τ10), from Equations (16) and (17), we can obtain ω20 = 39.6736,
τ20 = 0.0622, so Equation (4) has a pair of pure imaginary roots ±iω20 when τ1 = 0.4 and τ2 = τ20.
At this point, Q1Q3 + Q2Q4 = 23.8153 6= 0. By theorem 2, the equilibrium point E1 of Equation (2) is
asymptotically stable when τ2 ∈ [0, 0.0622) for τ1 = 0.4 and unstable when τ2 > 0.0622 for τ1 = 0.4.
Equation (2) undergoes a Hopf bifurcation when τ2 = 0.0622 for τ1 = 0.4.

3.1. The Influence of τ1 on the Stability of Equation (19)

Equation (19) moves from stable to unstable with the increase in τ1 and undergoes Hopf
bifurcation at τ1 = 0.4618 when τ2 = 0. Figure 1a shows the dynamic evolution process of
Equation (19). In this paper, we calculate the largest Lyapunov exponent (LLE) by the method
of Wolf reconstruction [19]. We judge whether the system is stable according to the exponent value.
If it is less than 0, the system is stable. If it is greater than 0, the system is unstable. If it is equal
to 0, the system appears bifurcation. In Figure 1b, we can know that the system has a bifurcation at
τ1 = 0.4618. This is consistent with the conclusion of theoretical analysis.
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Figure 1. The influence of τ1 on the stability of Equation (19) when τ2 = 0. (a) bifurcation diagram;
(b) the largest Lyapunov exponent plot.

According to Theorem 1, Equation (19) is stable when τ1 = 0.4 < τ10 = 0.4618 and τ2 = 0.
In this case, x(t), y(t), z(t) and u(t) will converge to the equilibrium point E1 through the game.
Figures 2 and 3 show the above properties.

Equation (19) is unstable when τ1 = 0.5 > τ10 = 0.4618 and τ2 = 0 by Theorem 1. At this point,
the frequency spectrum plot is discrete, which means that the system has a periodic solution. The x(t),
y(t), z(t) and u(t) will lie on the basin of attraction [20] through the game. These analyses can be
illustrated by Figures 4 and 5.

We discover that economic growth (slowdown) will lead to an increase (reduction) in carbon
emissions when other parameters are fixed. The two variables share a consistent pattern, but with
a certain delay in time. Based on the above simulation, we find out that when the delay is greater
than the bifurcation value, the carbon emissions pattern will not be consistent with the economic
growth trend and volatility surfaces. Therefore, we should guarantee the timing of achieving the goal
of reducing emissions and make it less than the bifurcation value. Only in such a stable environment,
the implementation of energy-saving and emission-reduction policies will intend a favorable effect.
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Figure 3. The EE attractor when τ1 = 0.4 < τ10 = 0.4618, τ2 = 0 and (x(0), y(0), z(0), u(0)) = (0.3, 0.5,
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3.2. The Influence of τ1 on the Entropy of Equation (19)

Kolmogorov entropy can be used to measure the degree of complexity of the system. Let k be the
value of Kolmogorov entropy. If the system is stable and in regular motion, then k = 0, otherwise k > 0.
The greater the value of k is, the more complex the system is. We have already found that Equation (19)
displays bifurcation at τ1 = 0.4618, as is shown in Figure 1. Based on the above analysis, we can get
that if τ1 < 0.4618, then k = 0, otherwise k > 0. The more complex the system is, the longer and the
more difficult it will be for the system to return to stability. The entropy properties are displayed in
Figure 6.
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3.3. The Influence of τ1, b3, b4 on the Stability of Equation (19)

The influence of τ1 and b3 on y is shown in Figure 7. The system shows a sign of instability
at τ1 = 0.4618. However, b3 has no obvious impact on y when τ1 < 0.55. With the increase of
b3, y becomes larger and then decreases when τ1 > 0.55. The minimum value of y is −1.448 for
(τ1, b3) = (0.5, 0.85) while the maximum value of y is 5.124 for (τ1, b3) = (0.6, 0.55). The value of y is
−0.66 approximately when τ1 < 0.4618. Thus, the impact of b3 on y can be ignored when τ1 < 0.4618.
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Figure 7. The influence of τ1 and b3 on y when τ2 = 0.

Figure 8 shows that b4 has a greater impact on y. With an increase in b4, the system shifts from
unstable to stable. When b4 = 0.2, the system is beginning to become stable. The minimum value of y
is −1.838 for (τ1, b4) = (0.5, 0.15) and the maximum value of y is 4.207 for (τ1, b4) = (0.6, 0). The value
of y is stable at 2.889, but τ1 has little effect on y. Therefore, we should consider the effect of b4 on the
stability of the system.
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Figure 8. The influence of τ1 and b4 on y when τ2 = 0.

We focus on the influence of τ1, b3 and b4 on y in Figure 9. The system is stable when τ1 < 0.4618,
and unstable when τ1 > 0.4618. The change in b3 and b4 leads only to a larger fluctuation but when
τ1 > 0.4618, the fluctuation trend is basically symmetrical. However, b3 and b4 have no effect on y
when τ1 < 0.4618. We conclude that the stability of energy-saving and emission-reduction system can
be maintained, only controlling for the value of delay parameter τ1.
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3.4. The Influence of τ2 on the Stability of Equation (19)

In this part, we study the effect of τ2 on the stability of the system when τ1 is fixed.
With an increase in τ2, Equation (19) will lose stability. Figure 10 displays that Equation (19) undergoes
bifurcation at τ2 = 0.0622 for τ1 = 0.4. This is consistent with the theoretical analysis.
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Equation (19) is stable when τ1 = 0.4, τ2 = 0.04 < τ20 = 0.0622 by Theorem 2. x(t), y(t), z(t)
and u(t) will converge to the equilibrium point E1 through the game. The properties are shown in
Figures 11 and 12.
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Figure 12. The EE attractor when 
1 2 200.4 , 0 .04 0.0622τ τ τ= = < =  and 

( (0), (0), (0), (0)) (0.3,0.5,0.7,0.9)x y z u = . (a) ( ), ( ), ( )x t y t z t ; (b) ( ), ( ), ( )x t y t u t ; (c) ( ), ( ), ( )x t z t u t ; 
(d) ( ), ( ), ( )y t z t u t . 

On the basis of theorem 2, Equation (19) is unstable when 
1 2 200.4 , 0 .08 0.0622τ τ τ= = > = . 

Meanwhile, the Poincare plot has five discrete points, which means that the system has a periodic 
solution. ( )x t , ( )y t , ( )z t  and ( )u t  will lie on the basin of attraction through the game. Figures 
13 and 14 show these characteristics. 
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Figure 13. Equation (19) is unstable when 
1 2 200.4 , 0 .08 0.0622τ τ τ= = > = . (a) Time-domain plot; 

(b) Poincare plot. 

Figure 12. The EE attractor when τ1 = 0.4, τ2 = 0.04 < τ20 = 0.0622 and (x(0), y(0), z(0), u(0)) = (0.3,
0.5, 0.7, 0.9). (a) x(t), y(t), z(t); (b) x(t), y(t), u(t); (c) x(t), z(t), u(t); (d) y(t), z(t), u(t).

On the basis of theorem 2, Equation (19) is unstable when τ1 = 0.4, τ2 = 0.08 > τ20 = 0.0622.
Meanwhile, the Poincare plot has five discrete points, which means that the system has a periodic
solution. x(t), y(t), z(t) and u(t) will lie on the basin of attraction through the game. Figures 13 and 14
show these characteristics.
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From Figure 10, we know that Equation (19) has a bifurcation when 
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Equation (19) is unstable for 
2 0.0622τ > , then the entropy value is more than 0. As in Section 3.2, the 

growth in the value of entropy shares the same pattern with that in 
2τ . The change of entropy is 

shown in Figure 15. With the increase of entropy value, the system will be more unstable. In this 
case, the implementation effect of energy-saving and emission-reduction is poorly maintained. 
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Figure 14. The EE attractor when τ1 = 0.4, τ2 = 0.08 > τ20 = 0.0622 and (x(0), y(0), z(0), u(0)) = (0.3,
0.5, 0.7, 0.9). (a) x(t), y(t), z(t); (b) x(t), y(t), u(t); (c) x(t), z(t), u(t); (d) y(t), z(t), u(t).

3.5. The Influence of τ2 on the Entropy of Equation (19)

From Figure 10, we know that Equation (19) has a bifurcation when τ1 = 0.4, τ2 = 0.0622.
Equation (19) is unstable for τ2 > 0.0622, then the entropy value is more than 0. As in Section 3.2,
the growth in the value of entropy shares the same pattern with that in τ2. The change of entropy is
shown in Figure 15. With the increase of entropy value, the system will be more unstable. In this case,
the implementation effect of energy-saving and emission-reduction is poorly maintained.
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3.6. The Influence of τ2, b3, b4 on the Stability of Equation (19)

Figure 16 shows that the influence of τ2 on y is greater. With an increase in τ2, the system moves
from stable to unstable. The system is becoming unstable at τ2 = 0.06. The minimum value of y is
1.048 for (τ2, b3) = (0.1, 0.1) and the maximum value of y is 1.212 for (τ2, b3) = (0.09, 0.1). The value
of y is stable in the vicinity of 1.1. But b3 has little effect on y. Only when τ2 > 0.06, the value of y
will turn from large to small with the increase of b3. Therefore, we have to make τ2 < 0.06, so as to
guarantee the effective implementation of energy-savings and emission-reduction.
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It can be seen from Figure18 that the system loses stability if 1τ  shows an increase. In that case, 
x  demonstrates a large range of ups and downs. On the other hand, 2τ  has no impact on x . 

Figure 16. The influence of τ2 and b3 on y when τ1 = 0.4.

When τ2 and b3 are larger and b4 is smaller, the value of y is closer to 1. Otherwise, y approximates
−1. The change in the value of the parameters will cause the transformation of y between two states.
These properties are shown in Figure 17. Therefore, we have to ensure that τ2 and b3 are as small as
possible, so as to reduce carbon emissions.
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3.7. The Influence of τ1, τ2 on the Stability of Equation (19)

It can be seen from Figure 18 that the system loses stability if τ1 shows an increase. In that case,
x demonstrates a large range of ups and downs. On the other hand, τ2 has no impact on x.
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4. Bifurcation Control 

The fact that the system loses stability at the bifurcation will seriously impact the effectiveness 
of the implementation of the policy. Thus we have to take measures to ensure the stability of the 
system. The system can be controlled by some approaches, for example, modified straight-line 
stabilization method [21], pole placement method [22], the OGY method (a control method of chaos 
proposed by Ott, Grebogi and Yorke) [23], time-delayed feedback method [24], and so forth. Here, 
we adopt the method of variable feedback control (see, e.g., [25], and references therein) to control 
for the Hopf bifurcation. The controlled system is given as follows: 
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Figure 18. The influence of τ1 and τ2 on x when τ1 ∈ [0.1, 0.6], τ2 ∈ [0.01, 0.1].

3.8. The Influence of τ1, τ2 on the Entropy of Equation (19)

Figure 19 shows that the entropy becomes greater than 0 with an increase in τ1. Meanwhile,
the system is unstable. According to Section 3.4, (τ1, τ2) = (0.4, 0.0622) is a bifurcation point, so we
can infer that the point (0.4, 0.0622) is on the boundary of the entropy change. τ2 still has no effect on
entropy. So keeping the other parameters constant, the system is stable when τ1 < 0.4.
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4. Bifurcation Control

The fact that the system loses stability at the bifurcation will seriously impact the effectiveness of
the implementation of the policy. Thus we have to take measures to ensure the stability of the system.
The system can be controlled by some approaches, for example, modified straight-line stabilization
method [21], pole placement method [22], the OGY method (a control method of chaos proposed by
Ott, Grebogi and Yorke) [23], time-delayed feedback method [24], and so forth. Here, we adopt the
method of variable feedback control (see, e.g., [25], and references therein) to control for the Hopf
bifurcation. The controlled system is given as follows:

.
x(t) = a1x(t)( y(t)

M − 1)− a2y(t) + a3z(t− τ1)− kx(t),
.
y(t) = −b1x(t− τ2) + b2y(t)(1− y(t)

C ) + b3z(t− τ1)(1− z(t−τ1)
E )− b4u(t)− ky(t),

.
z(t) = c1x(t− τ2)(

x(t−τ2)
N − 1)− c2y(t)− c3z(t) + c4u(t)( u(t)

L − 1),
.
u(t) = d1y(t) + d2z(t)( z(t)

K − 1)− d3u(t),

(20)

where k is a feedback control parameter. The state of Equation (20) can be changed by adjusting the
value of k. If k is greater than the critical value, then Equation (20) returns to the stable state, otherwise
the system is still in an unstable state.



Entropy 2016, 18, 371 18 of 20

4.1. Bifurcation Value of Equation (20) to k

In Case 1, we know that Equation (2) demonstrates the bifurcation when τ1 = 0.4618, τ2 = 0 and
it is unstable for τ1 = 0.5, τ2 = 0. It can be seen from Figures 4 and 5.

Figure 20 shows the dynamic evolution process of Equation (20) to k for (τ1, τ2) = (0.5, 0). We find
out that Equation (20) undergoes bifurcation at k = 0.1689. In other words, Equation (20) is unstable
when k < 0.1689 and is stable when k > 0.1689.
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Figure 20. The influence of k on the stability of Equation (20) when (τ1, τ2) = (0.5, 0). (a) bifurcation
diagram; (b) the largest Lyapunov exponent plot.

4.2. Equation (20) is Unstable When k < 0.1689

Keep the values of other parameters unchanged and let k = 0.05 < 0.1689, and the time-domain
plot and the EE attractor of Equation (20) are shown in Figure 21. We find out that the system (20) is
unstable and has a basin of attraction. It fails to achieve bifurcation control.
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Keep the values of other parameters unchanged and let 0.05 0.1689k = < , and the 
time-domain plot and the EE attractor of Equation (20) are shown in Figure 21. We find out that 
the system (20) is unstable and has a basin of attraction. It fails to achieve bifurcation control. 
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Figure 21. Equation (20) is unstable when 0.05 0.1689k = <  for 
1 2( , ) (0 .5 , 0 )τ τ = . (a) time-domain 

plot; (b) the EE attractor. 

4.3. Equation (20) is Stable When 0.1689k >  

When the other parameters are consistent with the original, let 0.2 0.1689k = >  and the 
time-domain plot and the EE attractor of Equation (20) are displayed in Figure 22. We can see that 
Equation (20) maintains stable and x , y and z  tend to equilibrium point. Therefore, bifurcation 

Figure 21. Equation (20) is unstable when k = 0.05 < 0.1689 for (τ1, τ2) = (0.5, 0). (a) time-domain
plot; (b) the EE attractor.

4.3. Equation (20) is Stable When k > 0.1689

When the other parameters are consistent with the original, let k = 0.2 > 0.1689 and the
time-domain plot and the EE attractor of Equation (20) are displayed in Figure 22. We can see that
Equation (20) maintains stable and x, y and z tend to equilibrium point. Therefore, bifurcation control
is successful as k > 0.1689. We can conclude that the control effect will be larger if the control parameter
k stands higher.
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emission-reduction model with two delays. We focus on the impacts of delays and the feedback 
control on the stability of the system. The system shifts from stable to unstable when the delays are 
larger than the bifurcation values. In this case, a large fluctuation shows up in the system and 
affects the implementation of energy-saving and emission reduction policies. However, we can 
control the bifurcation of the system by adopting the variable feedback control approach and the 
system will return to a stable state when the control parameters are set. 

The results show that time delays play an important role in the stability of the system. Only 
when the energy-savings and emission-reduction system is stable, can the purpose of reducing 
carbon emissions be achieved. Therefore, we must ensure that the delay parameters are in a stable 
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Based on the above analysis, we assume that the unstable system can return to stability if effective
control is exerted. This means that when problems arise from energy-saving and emission-reduction
policies and lead to market volatility, we can take control measures to ensure that the system returns to
a stable state.

5. Conclusions

In this paper, we examine the stability of a four dimensional energy-saving and emission-reduction
model with two delays. We focus on the impacts of delays and the feedback control on the stability of
the system. The system shifts from stable to unstable when the delays are larger than the bifurcation
values. In this case, a large fluctuation shows up in the system and affects the implementation of
energy-saving and emission reduction policies. However, we can control the bifurcation of the system
by adopting the variable feedback control approach and the system will return to a stable state when
the control parameters are set.

The results show that time delays play an important role in the stability of the system. Only when
the energy-savings and emission-reduction system is stable, can the purpose of reducing carbon
emissions be achieved. Therefore, we must ensure that the delay parameters are in a stable region and
then add other parameters to maintain a long-term stable system.

According to the above analysis, if we want to keep the energy-saving and emission-reduction
system running in a stable state, we can take the following strategies when other things are equal.
First, when τ2 = 0, we must make sure that τ1 < 0.4618 or b4 > 0.5. Second, when τ1 = 0.4, we must
keep τ2 < 0.0622.
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