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Abstract: A robust sparse least-mean mixture-norm (LMMN) algorithm is proposed, and its
performance is appraised in the context of estimating a broadband multi-path wireless channel.
The proposed algorithm is implemented via integrating a correntropy-induced metric (CIM) penalty
into the conventional LMMN algorithm to modify the basic cost function, which is denoted as the
CIM-based LMMN (CIM-LMMN) algorithm. The proposed CIM-LMMN algorithm is derived in
detail within the kernel framework. The updating equation of CIM-LMMN can provide a zero
attractor to attract the non-dominant channel coefficients to zeros, and it also gives a tradeoff
between the sparsity and the estimation misalignment. Moreover, the channel estimation behavior
is investigated over a broadband sparse multi-path wireless channel, and the simulation results
are compared with the least mean square/fourth (LMS/F), least mean square (LMS), least mean
fourth (LMF) and the recently-developed sparse channel estimation algorithms. The channel
estimation performance obtained from the designated sparse channel estimation demonstrates that
the CIM-LMMN algorithm outperforms the recently-developed sparse LMMN algorithms and the
relevant sparse channel estimation algorithms. From the results, we can see that our CIM-LMMN
algorithm is robust and is superior to these mentioned algorithms in terms of both the convergence
speed rate and the channel estimation misalignment for estimating a sparse channel.

Keywords: adaptive filters; LMS; least-mean mixed-norm; least mean fourth; broadband multi-path
sparse channel estimation; correntropy-induced metric

1. Introduction

The adoption of adaptive filtering in wireless communication, speech signal processing, radar
signal processing and adaptive control applications, for obtaining fast convergence and stability in
estimation, has been studied over many years [1–3]. In recent decades, adaptive filtering has been
receiving ever increasing attention, thanks to new developments, such as sparse signal processing [4–6]
and compressive sensing [7–9]. The improved adaptive filtering techniques pave the way to new
added-value for dealing with practical engineering problems and enable a full exploitation of the
sparsity-aware property of the practical signals in our life [4–6,10–13], such as a broadband multi-path
channel. However, traditional adaptive filter algorithms used in sparse channel estimation have
unique challenges, both in terms of their convergence and estimation misalignment, thus requiring
new algorithms.
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The broadband multi-path wireless communication channel is commonly found to be sparse
based on the measurement results [14–18]. For example, in broad-band wireless communication
systems, a “hilly terrain (HT)” delay profile generally takes a sparsely-distributed multipath form,
which has been considered for channel estimation and equalization [15,16]. Furthermore, the adaptive
filter technique has been widely considered to get good channel state information to enhance the
performance of a wireless communication system, in which the adaptive filter has been used for
channel estimation [1–3,19]. Among the various adaptive filter algorithms, the least mean square (LMS)
algorithm has been extensively used for channel estimation. Although the LMS algorithm can obtain
good channel estimation performance, it is inappropriate to deal with sparse channels [10–13]. As is
well-known, the broadband signal transmission technique will be implemented over a wireless
channel in the next-generation of wireless communication systems [11]. As a broadband wireless
communication channel, it often incurs a frequency-selective phenomenon, which relates to channel
fading behavior. Thus, the broadband channel in such environments can be defined as a sparse channel
structure, which is dominated by very few large taps.

To address this problem, sparse adaptive filtering algorithms have been presented and proposed
for sparse broadband channel estimation and sparse system identification applications [4–6,10–13,20–29].
In [11], a broadband sparse multi-path channel is used for the sparse channel estimation application,
which is implemented by using sparse normalized LMS (NLMS) algorithms. These sparse adaptive
algorithms can be categorized into two groups, namely proportionate-type algorithms [20–22] and
zero-attracting algorithms [4–6,10–13,23–28]. The proportionate-type algorithms aim to assign different
weighting to each coefficient according to the magnitudes of the channel coefficients [20], which will
increase the computational load. Recently, a new kind of sparse adaptive filter algorithm has been
proposed on the basis of compressive sensing concepts. One of the most popular sparse adaptive filter
algorithms is the zero-attracting LMS (ZA-LMS) algorithm [4], which is realized by incorporating an
l1-norm penalty into the cost function of the traditional LMS algorithm to give rise to a zero attractor
term. As a result, the proposed ZA-LMS can accelerate the convergence rate because of the designed
zero attractor term, which quickly attracts the zero coefficients and near zero coefficients to zero.
Furthermore, an enhanced ZA-LMS algorithm named the reweighted ZA-LMS (RZA-LMS) has been
reported based on a log-sum penalty [4], which provides a reweighting factor in comparison with
the ZA-LMS algorithm to selectively exert zero attraction on the channel coefficients. After that,
several variants of LMS based on zero attracting theory have been reported and used for channel
estimation [5,6,23]. Although these sparse LMS algorithms can provide good channel estimation
performance for ensuring the stability of the broadband wireless propagation, they are sensitive to the
scaling of the inputs [24–26].

Consequently, the zero attracting techniques have been utilized to exploit sparse least
mean fourth (LMF) [24], the sparse affine projection (AP) algorithm [12,13], sparse least mean
square/fourth (LMS/F) [25–27] and other sparse adaptive filtering algorithms [28]. Although these
sparse adaptive filter algorithms can effectively improve the performance of the LMS algorithms, some
of them are computationally complex, and others should tradeoff the key parameter to give a balance
in performance. To take advantage of the zero attraction and to improve the drawbacks of the LMS
algorithm, a mixture sparse adaptive filter algorithm denoted as sparse least-mean mixture-norm
(LMMN) [30,31] has been proposed and used for broadband sparse channel estimation applications,
including the zero-attracting (ZA) LMMN (ZA-LMMN) and reweighted ZA-LMMN (RZA-LMMN)
algorithms [32]. As a result, these sparse LMMN algorithms can provide a better performance in
comparison with the LMS, LMF, LMS/F and their relevant sparse forms.

In this paper, a robust correntropy-induced metric-constrained LMMN (CIM-LMMN) algorithm
is proposed to fully exploit the sparse property for the sparse broadband wireless multi-path channel
estimation application. In the proposed CIM-LMMN algorithm, a correntropy-induced metric criterion
is implemented within the kernel framework and integrated into the cost function of the traditional
LMMN algorithm to create a zero attractor in the update function. The derivation of the proposed
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CIM-LMMN algorithm is given in detail, and its channel estimation behavior is evaluated over a
sparse multi-path wireless communication channel. The channel estimation results obtained from
computer simulation are given to show that the proposed CIM-LMMN algorithm is superior to the
traditional LMS, LMF, LMS/F and their sparse forms in terms of the convergence speed rate and the
steady-state misalignment.

The rest of this paper is organized as follows. In Section 2, the traditional LMMN algorithm
and ZA techniques are addressed and stated within the adaptive filtering framework. In Section 3,
we propose our CIM-LMMN algorithm in the framework of the mixed error criterion, CIM and ZA
theories. In Section 4, the channel estimation behaviors of the proposed CIM-LMMN algorithm are
investigated in the context of a sparse finite impulse response (FIR) multi-path channel. Finally, we
summarize this work in Section 5.

2. Traditional LMMN Algorithm and ZA Technique

2.1. Traditional LMMN Algorithm

We address the traditional LMMN algorithm [30,31] based on the framework of a channel
estimation system. Considering a broadband multi-path wireless communication channel whose
finite impulse response (FIR) channel vector is defined as h = [h0, h1, · · · , hN−1]

T , where N is the total
number of channel coefficients, which contains K dominated channel coefficients whose magnitudes are
non-zeros. Herein, K � N. A training signal x(n) = [x(n), x(n− 1), · · · , x(n− N − 1)]T is conveyed
to the unknown sparse broadband multi-path channel h. Thus, a measured desired signal d(n) at the
receiver side can be depicted as:

d(n) = hTx(n) + u(n), (1)

where u(n) is a zero mean Gaussian noise, which is always present in wireless communication channels.
Furthermore, u(n) is assumed to be independent with the training signal x(n). The purpose of channel
estimation based on the LMMN algorithm is to estimate h by minimizing the instantaneous error e(n),
which is the difference between the desired signal d(n) and the channel estimation output ŷ(n) given
by ŷ(n) = ĥT(n)x(n). Here, ĥ(n) is an estimated channel vector. As reported by adaptive filtering
theory, the cost function of the traditional LMMN algorithm is written as [30,31]:

JLMMN(n) =
χ

2
J2(n) +

1− χ

4
J4(n), (2)

where J2(n) is defined as J2(n)
∆
= E{e2(n)} and J4(n) is given by J4(n)

∆
= E{e4(n)}. It is worth noting

that the cost function JLMMN(n) of the traditional LMMN algorithm shown in (2) is a linear combination
of J2(n) and J4(n). Furthermore, parameter χ ∈ [0, 1] is to give a balance of the combination between
J2(n) and J4(n). The gradient of JLMMN(n) with respect to ĥ(n) is given by:

∇JLMMN(n) =
∂JLMMN(n)

∂ĥ(n)
= −E

{
e(n)

{
χ + (1− χ) e2(n)

}
x(n)

}
, (3)

where E[·] is an expectation operator. By using the stochastic gradient minimization method, we can
approximate the exact gradient shown in (3). Then, we can write the updating equation of the
traditional LMMN algorithm as [31]:

ĥ(n + 1) = ĥ(n) + µe(n){χ + (1− χ)e2(n)}x(n), (4)

where µ is added to act as a step size to control the convergence of the traditional LMMN algorithm.
It is clear to see that the traditional LMMN algorithm is a basic LMS algorithm for χ = 1, while it
converts to an LMF algorithm for χ = 0. Thus, the LMMN algorithm can fully utilize the advantages
of both the LMS and LMF algorithms by properly choosing χ.
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2.2. ZA Technique

Here, we will discuss the ZA technique on the basis of the traditional LMMN algorithm. According
to our previous work, a modified cost function has been constructed to give rise to the ZA-LMMN
algorithm. Then, the cost function of the ZA-LMMN algorithm is expressed as [32]:

JZA(n) =
χ

2
J2(n) +

1− χ

4
J4(n) + λ

∥∥∥ĥ(n)
∥∥∥

1
, (5)

where λ ∈ R+ is a regularization parameter used for providing a balance between channel estimation
error and the sparsity penalty. Here,

∥∥∥ĥ(n)
∥∥∥

1
is the l1-norm of ĥ(n). We use the stochastic gradient

approximation method to form a solution of the ZA-LMMN algorithm whose updating equation is
described as [32]:

ĥ(n + 1) = ĥ(n) + µZAe(n)
{

χ + (1− χ) e2(n)
}

x(n)︸ ︷︷ ︸
Traditional LMMN

− ρZAsgn
{

ĥ(n)
}

︸ ︷︷ ︸
Sparse penalty︸ ︷︷ ︸

ZA−LMMN

, (6)

where ρZA = λµZA is a ZA controlling factor, which is to tradeoff the ZA ability, µZA is the step size of
the ZA-LMMN algorithm and sgn{ĥ(n)} denotes the element-wise sign operator. In comparison with
the traditional LMMN algorithm, we find that the ZA-LMMN algorithm provides an additional term
ρZAsgn

{
ĥ(n)

}
, which is used for attracting the zero channel coefficients to zero quickly. Furthermore,

ρZAsgn
{

ĥ(n)
}

is defined as a zero attractor in the ZA-LMMN algorithm. Generally speaking, this
zero attractor can give an accelerated convergence for the ZA-LMMN algorithm to handle a broadband
multi-path sparse channel whose coefficients are dominated by zeros.

3. Proposed Sparse CIM-LMMN Algorithm

Since the LMMN algorithm combines the advantages of both the LMS and LMF algorithms, we
propose a CIM-LMMN algorithm to fully exploit the sparsity property of the broadband multi-path
wireless channel. Based on the ZA techniques [4–6,10–13,22–28,32] and CIM theory [33–40], we propose
a robust sparse LMMN algorithm by exerting a CIM penalty on the channel coefficient vector, and we
utilize this constrained term to modify the cost function of the traditional LMMN algorithm. As we
know, in the CIM theory, CIM can be used for measuring a similarity in kernel space between two
random vectors p = { p1, · · · , pN } and q = { q1, · · · , qN }, which can be described as [33–40]:

CIM (p, q) =
(
k (0)− V̂ (p, q)

)1/2
, (7)

where k(0) = 1
σ
√

2π
, and:

V̂(p, q) = E(k(p, q)) =
∫

k(p, q)dFPQ(p, q), (8)

where σ represents the kernel width, k(·, ·) denotes a shift-invariant Mercer kernel [38–41] and FPQ(p, q)
is a joint distribution. In practical engineering, the distribution of the data is unknown. Thus,
the correntropy is rewritten as V̂ (p, q) = 1/N ∑ N

i=1k (pi, qi). Here, we consider a typical kernel in
correntropy, which is a Gaussian kernel defined as:

k (p, q) =
1

σ
√

2π
exp

(
− e2

2σ2

)
, (9)
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where e = p− q. The CIM can be used for accounting for the number of non-zero channel coefficients,
and hence, we have:

CIM2 (p, 0) =
k (0)

N ∑N
i=1

(
1− exp

(
− (pi)

2

2σ2

))
. (10)

It also can be seen that the CIM is a nonlinear metric in the input space.
Then, we present our proposed CIM-LMMN algorithm by using the ZA technique and CIM

theory. Herein, we integrate the Gaussian kernel-based CIM into the cost function of the traditional
LMMN algorithm. As a result, we can get the cost function of the proposed CIM-LMMN algorithm,
which is given by:

JCIM(n) =
χ

2
J2(n) +

1− χ

4
J4(n) + λCIMCIM2(ĥ(n), 0) ∼= ĴCIM(n)

=
χ

2
e2(n) +

1− χ

4
e4(n) + λCIM

k(0)
N

N

∑
i=1

(1− exp(−ĥi(n)/2σ2))
, (11)

where e(n) is the instantaneous error at instant n and e(n) = d(n)− ŷ(n). Here, 0 ≤ χ ≤ 1, which is
used for controlling the mixture of J2(n) and J4(n). Furthermore, we employ the stochastic gradient
approximation to form the final term in Equation (11). The stochastic gradient of Equation (11), which
defines the search direction, is illustrated as:

∇ ĴCIM(n) ∆
=

∂ ĴCIM(n)
∂ĥ(n)

= −{e(n){χ + (1− χ)e2(n)}x(n)}+ λCIM
1

Nσ3
√

2π
ĥi(n) exp

(
−

ĥ2
i (n)
2σ2

)
. (12)

By introducing a step size η, the updating equation of the proposed CIM-LMMN algorithm for
each coefficient can be expressed as:

ĥi(n + 1) = ĥi(n)− η∇ ĴCIM(n)

= ĥi(n) + ηe(n){χ + (1− χ)e2(n)}xi(n)− ρCIM
1

Nσ3
√

2π
ĥi(n) exp

(
−

ĥ2
i (n)
2σ2

)
, (13)

where ρCIM = ηλCIM > 0 is a regularization parameter used for balancing the estimation error and
sparsity penalty. The matrix-vector form of Equation (13) converts to:

ĥ(n + 1) = ĥ(n) + ηe(n){χ + (1− χ)e2(n)}x(n)− ρCIM
1

Nσ3
√

2π
ĥ(n) exp

−
∥∥∥ĥ(n)

∥∥∥2

2σ2

 . (14)

Compared with the traditional LMMN algorithm, there is a ZA term in the iterations of the
proposed CIM-LMMN algorithm. The ZA ability is controlled by parameter ρCIM. Moreover,
the computational complexity is still low, which needs only 3N additions, 2N multiplications and N
exponential calculations.

From the deduction of the proposed CIM-LMMN algorithm, we can see that the CIM2(p, 0) is
close to the l0-norm when σ → 0 [41] if

∣∣∣ĥi(n)
∣∣∣ > σ, ∀ĥi(n) 6= 0. Thus, the CIM given in (10) can

provide an approximation for the l0-norm, which has been widely used for sparsity exploitation.
By using this CIM in the cost function of the traditional LMMN algorithm, a new cost function JCIM(n)
has been created. Similarly, the updating equation of the proposed CIM-LMMN algorithm is obtained
by using a stochastic gradient minimization method, which is shown in (14). It is found that there is
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an additional term −ρCIM
1

Nσ3
√

2π
ĥ(n) exp(−‖ĥ(n)‖2

2σ2 ), which is an extra zero attractor. Thus, we can
conclude that the proposed CIM-LMMN algorithm can be denoted as:

ĥ(n + 1) = ĥ(n) + ηe(n){χ + (1− χ)e2(n)}x(n)︸ ︷︷ ︸
LMMN algorithm

+CIM− based zero attractor

︸ ︷︷ ︸
CIM−LMMN algorithm

. (15)

Thus, the proposed CIM-LMMN is also a zero-attracting adaptive filtering algorithm, which is
implemented by integrating a CIM-based zero attractor term into the update equation of the traditional
LMMN algorithm. Moreover, the designated zero attractor can also be realized by using lp-norm [6,22],
combined l0 and l1 norms [4,5,10,27] and smooth approximated l0-norm [5,11].

4. Channel Estimation Performance Investigation

On the basis of the previous research, we give the channel estimation behaviors of the
newly-developed CIM-LMMN algorithm over a broadband sparse multi-path wireless communication
channel, which is similar to the experiment setup in [6,11,13,22–28,32]. To verify the effectiveness of
the proposed CIM-LMMN algorithm, we also compare its performance with the traditional LMS, LMF,
LMS/F and their relevant sparsity-aware algorithms. In the experiments, each point for all of the
used adaptive filtering algorithms is set to 500 Monte Carlo runs. In this paper, we use a multi-path
FIR channel with 16 taps to evaluate the channel estimation behaviors of the CIM-LMMN algorithm.
Moreover, the number of dominant channel coefficients is defined as the sparsity level, and it is
marked as K. Herein, we investigate the sparsity level for K = 1, K = 2 and K = 4, which is similar
to [4–6,10–13,22–28,32]. In fact, as a sparse channel, K taps are non-zeros, while the other (N − K)
channel taps are set to zeros. In all of the simulations, K dominant channel coefficients are created
under a random distribution, and the positions of the K taps are also randomly distributed within the

length of the designated sparse channel, which is subjected to
∥∥∥ĥ
∥∥∥2

2
= 1. A white Gaussian random

signal is used as the training signal, and the noise signal u(n) is assumed to be independent of x(n).
The received signal is normalized, and the noise power is set to be 1× 10−1 in all of the experiments.
We use the mean square error (MSE) to measure the channel estimation behavior, and the MSE is

defined as MSE = 10 log
∥∥∥h− ĥ(n)

∥∥∥2
.

Firstly, we will investigate the convergence of the proposed CIM-LMMN algorithm. To the best
of our knowledge, the previously-presented mixed LMS/F algorithm converges faster than the
LMS and LMF algorithm. Thus, we compare the convergence of the CIM-LMMN algorithm
with the LMS, LMS/F, LMMN, ZA-LMS/F, reweighted ZA-LMS/F (RZA-LMS/F), ZA-LMMN and
reweighted ZA-LMMN (RZA-LMMN) algorithms. In this experiment, the simulation parameters are:
µLMS = 0.004, µLMSF = 0.01, µ = 0.0065, χ = 0.5, µZALMSF = 0.15, µZA = 0.0104, µRZALMSF = 0.022,
µRZA = 0.012, η = 0.015, σ = 0.01, ρZALMSF = 5× 10−5, ρZA = 6× 10−5, ρRZALMSF = 5× 10−3,
ρRZA = 2× 10−4, ρCIM = 1.8× 10−4, where µLMS, µLMSF, µZALMSF, µRZALMSF and µRZALMMN are the
step sizes of the LMS, LMS/F, ZA-LMS/F, RZA-LMS/F and RZA-LMMN algorithms, while ρZALMSF,
ρRZALMSF and ρRZALMMN are the regularization parameters of the ZA-LMS/F, RZA-LMS/F and
RZA-LMMN algorithms. The results of the convergence study of the proposed CIM-LMMN algorithm
are reported in Figure 1. In this simulation, step sizes are chosen to obtain the same MSE for each
algorithm. From this figure, one can foresee that our proposed CIM-LMMN algorithm converges fastest
with the same channel estimation error floor. Compared with the previously-proposed ZA-LMMN and
RZA-LMMN algorithms, the CIM-LMMN algorithm achieves a stable MSE floor in 100 fewer iterations.
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Figure 1. Convergence comparisons of the proposed CIM-LMMN algorithm with previously-reported
sparse channel estimation algorithms.
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Figure 2. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS/F
algorithm for K = 1.

Secondly, we will investigate the channel estimation performance with respect to the MSE floor
to show the superior behavior of the CIM-LMMN algorithm. Furthermore, we will compare its
channel estimation behavior with the LMS, LMS/F, LMMN, ZA-LMS/F, ZA-LMMN, RZA-LMS/F
and RZA-LMMN algorithms. Furthermore, we also investigate the effects of the sparsity levels for
K = 1, K = 2 and K = 4. The CIM-LMMN adaptive filtering algorithm is affected by the step size,
regularization parameter, kernel width, χ and sparsity level. Thus, in this experiment, the simulation
parameters related to the above-mentioned algorithms are set to give nearly same initial convergence to
compare the MSE at different sparsity levels, and these parameters are: µLMS = 0.006, µLMSF = 0.0125,
µ = 0.0065, µZALMSF = µRZALMSF = 0.012, µZA = µRZA = 0.006, ρZALMSF = ρZA = 5 × 10−5,
ρRZALMSF = 2 × 10−4, ρRZA = 3 × 10−4, η = 0.006, ρCIM = 5 × 10−5. The channel estimation
performance of the proposed CIM-LMMN algorithm for K = 1, K = 2 and K = 4 are illustrated
in Figures 2–4, respectively. We can see that the proposed CIM-LMMN algorithm has the lowest
MSE for K = 1. Our proposed CIM-LMMN algorithm can achieve a 3-dB gain in comparison with
the RZA-LMMN algorithm. The sparsity level effects on the CIM-LMMN algorithm from K = 2 to
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K = 4 given in Figures 3 and 4 show that our proposed CIM-LMMN algorithm is still superior to the
mentioned adaptive filtering algorithm for sparse channel estimation. It is found that the CIM-LMMN
algorithm has about 2.5-dB and 1-dB gains compared with the RZA-LMMN algorithm for K = 2 and
K = 4, respectively.
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Figure 3. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS/F
algorithm for K = 2.
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Figure 4. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS/F
algorithm for K = 4.

As we know, the LMMN algorithm can be used as the traditional LMS algorithm for χ = 1. Thus,
we herein compare the channel estimation behavior with the LMS, ZA-LMS and RZA-LMS algorithms.
Furthermore, the ZA-LMMN and RZA-LMMN are included to further verify the effectiveness and
the superiority of the CIM-LMMN algorithm. In this experiment, the simulation parameters for the
used algorithms are: µLMS = µ = µZALMS = µZA = µRZA = 0.004, µLMSF = 0.008, µRZA = 0.0038,
ρZALMS = ρRZALMS = 5× 10−5, ρZA = ρRZA = 3× 10−5, η = 0.004, ρCIM = 5× 10−5. The channel
estimation behaviors for different sparsity levels, namely K = 1, K = 2 and K = 4, are reported in
Figures 5–7, respectively. When K = 1, the steady-state error floor of our proposed CIM-LMMN
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algorithm is much lower than those of previously-reported algorithms. Such a low MSE is more and
more significant for achieving good channel state information, which can potentially enhance the
quality of the wireless communication system in practical engineering applications. With an increment
of K ranging from K = 2 to K = 4, the sparsity of the channel is reduced, and hence, the MSE floor is
increased. However, our proposed CIM-LMMN algorithm still outperforms the previously-reported
ZA-LMMN and RZA-LMMN algorithms for handling sparse channel estimation.
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Figure 5. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS algorithm
for K = 1.
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Figure 6. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS algorithm
for K = 2.
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Figure 7. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS algorithm
for K = 4.
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Figure 8. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMF algorithm
for K = 1.

On the other hand, as for the LMMN algorithm, it can also be used as an LMF algorithm when
χ is set to zero. To quantify the robust performance of the CIM-LMMN algorithm, the channel
estimation is also investigated and compared with the LMF, ZA-LMF and RZA-LMF algorithms.
Herein, to obtain nearly the same initial convergence rate, the parameters used in this experiment
are set to be: µLMSF = 0.005, µ = µZA = 0.003, µZALMF = µRZALMF = 0.0048, µRZA = 0.004,
ρZALMF = ρZA = ρRZALMSF = 3× 10−5, ρRZA = 3× 10−4, η = 0.0044, ρCIM = 2× 10−5. The channel
estimation performance compared with the LMF algorithms is shown in Figures 8–10. As expected,
the proposed CIM-LMMN algorithm is superior to the earlier reported LMF, LMS/F, LMMN,
ZA-LMF, RZA-LMF, ZA-LMMN and RZA-LMMN algorithms. Furthermore, we can see that our
proposed CIM-LMMN algorithm is better than the mentioned algorithms with respect to both the
initial convergence and the steady-state performance. Compared to the RZA-LMMN algorithm,
the convergence of the proposed CIM-LMMN algorithm is much faster for K = 1, which is because the
CIM-LMMN integrates a CIM penalty term to account for the non-zero channel coefficients. It is worth
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noting that the CIM-LMMN algorithm can achieve much gain in comparison with the RZA-LMMN
for K = 8 without sacrificing the convergence.
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Figure 9. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMF algorithm
for K = 2.
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Figure 10. Channel estimation behavior of the CIM-LMMN algorithm compared with the LMF
algorithm for K = 4.

From the above discussions and the previous studies [26,27], we know that the RZA-LMS/F
algorithm is better than the RZA-LMS and RZA-LMF algorithms for sparse channel estimation.
Moreover, the RZA-LMMN algorithm outperforms the ZA-LMMN and traditional LMMN algorithms
for dealing with sparse signals, which has been investigated in [32]. Thus, we will investigate the
tracking behavior of the proposed CIM-LMMN algorithm in comparison with the RZA-LMS/F and
RZA-LMMN algorithms. In this simulation, the simulation parameters are set to obtain the desired
final MSE of each algorithm with the same convergence rate at the initial stage, and these parameters
are: N = 16, µRZALMSF = 0.065, ρRZALMSF = 9× 10−6, µRZA = 0.0065, ρRZA = 1× 10−4, η = 0.0065,
ρ = 3× 10−5, σ = 0.01. Herein, the signal-to-noise ratio is set to 30 dB. The simulation result is shown
in Figure 11. It is found that the proposed algorithm can track the varying of the channel well, and it
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still outperforms the RZA-LMS/F and RZA-LMMN algorithms with respect to the MSE floor at the
same initial convergence rate.
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Figure 11. Tracking behavior of the proposed CIM-LMMN algorithm.

We next draw conclusions in terms of the considered channel estimation performance.
The proposed CIM-LMMN algorithm can provide the fastest convergence rate and lowest channel
estimation misalignment compared with traditional LMS/F, LMS, LMF and their related ZA algorithms.
However, as the goal is to get both fast convergence and low misalignment, a novel technique named as
CIM has been employed to utilize the sparsity property of the broadband multi-path wireless channel.
This is because the CIM measure can account for the dominant channel taps and is used to force the
non-dominant channel coefficients to zero quickly. Moreover, the ZA ability can be controlled by ρCIM
to provide good channel estimation performance. Thus, we can say that the CIM-LMMN algorithm is
robust and effective for sparse adaptive channel estimation.

5. Conclusions

An enhanced CIM-LMMN algorithm has been proposed, and it has been used for broadband
sparse multi-path wireless communication channel estimation applications. The proposed CIM-LMMN
algorithm is realized by utilizing a CIM penalty within the kernel framework to modify the cost
function so that it can give rise to a new ZA term in its iterations. The channel estimation performance
of the CIM-LMMN algorithm has been discussed in the context of a sparse channel, and the simulation
results showed that the CIM-LMMN algorithm can get at least a 0.5-dB gain in comparison with
LMF, LMS, LMS/F and their sparse ZA algorithms. Therefore, we can say that the CIM-LMMN
algorithm with low complexity is robust and effective for sparse channel estimation applications in
practical engineering.
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