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Abstract: We introduce the symplectic structure of information geometry based on Souriau’s Lie
group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances
through co-adjoint action of a group on its moment space, defining physical observables like energy,
heat, and moment as pure geometrical objects. Using geometric Planck temperature of Souriau
model and symplectic cocycle notion, the Fisher metric is identified as a Souriau geometric heat
capacity. The Souriau model is based on affine representation of Lie group and Lie algebra that we
compare with Koszul works on G/K homogeneous space and bijective correspondence between the
set of G-invariant flat connections on G/K and the set of affine representations of the Lie algebra of
G. In the framework of Lie group thermodynamics, an Euler-Poincaré equation is elaborated with
respect to thermodynamic variables, and a new variational principal for thermodynamics is built
through an invariant Poincaré-Cartan-Souriau integral. The Souriau-Fisher metric is linked to KKS
(Kostant–Kirillov–Souriau) 2-form that associates a canonical homogeneous symplectic manifold
to the co-adjoint orbits. We apply this model in the framework of information geometry for the
action of an affine group for exponential families, and provide some illustrations of use cases for
multivariate gaussian densities. Information geometry is presented in the context of the seminal work
of Fréchet and his Clairaut-Legendre equation. The Souriau model of statistical physics is validated
as compatible with the Balian gauge model of thermodynamics. We recall the precursor work of
Casalis on affine group invariance for natural exponential families.

Keywords: Lie group thermodynamics; moment map; Gibbs density; Gibbs equilibrium; maximum
entropy; information geometry; symplectic geometry; Cartan-Poincaré integral invariant; geometric
mechanics; Euler-Poincaré equation; Fisher metric; gauge theory; affine group

Lorsque le fait qu’on rencontre est en opposition avec une théorie régnante, il faut accepter
le fait et abandonner la théorie, alors même que celle-ci, soutenue par de grands noms,
est généralement adoptée

—Claude Bernard in “Introduction à l’Étude de la Médecine Expérimentale” [1]

Au départ, la théorie de la stabilité structurelle m’avait paru d’une telle ampleur
et d’une telle généralité, qu’avec elle je pouvais espérer en quelque sorte remplacer
la thermodynamique par la géométrie, géométriser en un certain sens la thermodynamique,
éliminer des considérations thermodynamiques tous les aspects à caractère mesurable
et stochastiques pour ne conserver que la caractérisation géométrique correspondante
des attracteurs.

—René Thom in “Logos et théorie des Catastrophes” [2]
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1. Introduction

This MDPI Entropy Special Issue on “Differential Geometrical Theory of Statistics” collects a
limited number of selected invited and contributed talks presented during the GSI’15 conference on
“Geometric Science of Information” in October 2015. This paper is an extended version of the paper [3]
“Symplectic Structure of Information Geometry: Fisher Metric and Euler-Poincaré Equation of Souriau Lie
Group Thermodynamics” published in GSI’15 Proceedings. At GSI’15 conference, a special session was
organized on “lie groups and geometric mechanics/thermodynamics”, dedicated to Jean-Marie Souriau’s
works in statistical physics, organized by Gery de Saxcé and Frédéric Barbaresco, and an invited talk
on “Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian
and Hamiltonian systems” by Charles-Michel Marle, addressing “Souriau’s thermodynamics of Lie groups”.
In honor of Jean-Marie Souriau, who died in 2012 and Claude Vallée [4–6], who passed away in 2015,
this Special Issue will publish three papers on Souriau’s thermodynamics: Marle’s paper on “From Tools
in Symplectic and Poisson Geometry to Souriau’s Theories of Statistical Mechanics and Thermodynamics” [7],
de Saxcé’s paper on “Link between Lie Group Statistical Mechanics and Thermodynamics of Continua” [8] and
this publication by Barbaresco. This paper also proposes new developments, compared to paper [9]
where relations between Souriau and Koszul models have been initiated.

This paper, similar to the goal of the papers of Marle and de Saxcé in this Special Issue, is intended
to honor the memory of the French Physicist Jean-Marie Souriau and to popularize his works, currently
little known, on statistical physics and thermodynamics. Souriau is well known for his seminal and
major contributions in geometric mechanics, the discipline he created in the 1960s, from previous
Lagrange’s works that he conceptualized in the framework of symplectic geometry, but very few people
know or have exploited Souriau’s works contained in Chapter IV of his book “Structure des systèmes
dynamiques” published in 1970 [10] and only translated into English in 1995 in the book “Structure of
Dynamical Systems: A Symplectic View of Physics” [11], in which he applied the formalism of geometric
mechanics to statistical physics. The personal author’s contribution is to place the work of Souriau
in the broader context of the emerging “Geometric Science of Information” [12] (addressed in GSI’15
conference), for which the author will show that the Souriau model of statistical physics is particularly
well adapted to generalize “information geometry”, that the author illustrates for exponential densities
family and multivariate gaussian densities. The author will observe that the Riemannian metric
introduced by Souriau is a generalization of Fisher metric, used in “information geometry”, as being
identified to the hessian of the logarithm of the generalized partition function (Massieu characteristic
function), for the case of densities on homogeneous manifolds where a non-abelian group acts
transively. For a group of time translation, we recover the classical thermodynamics and for the
Euclidean space, we recover the classical Fisher metric used in Statistics. The author elaborates a
new Euler-Poincaré equation for Souriau’s thermodynamics, action on “geometric heat” variable
Q (element of dual Lie algebra), and parameterized by “geometric temperature” (element of Lie
algebra). The author will integrate Souriau thermodynamics in a variational model by defining an
extended Cartan-Poincaré integral invariant defined by Souriau “geometric characteristic function”
(the logarithm of the generalized Souriau partition function parameterized by geometric temperature).
These results are illustrated for multivariate Gaussian densities, where the associated group is
identified to compute a Souriau moment map and reduce the Euler-Poincaré equation of geodesics.
In addition, the symplectic cocycle and Souriau-Fisher metric are deduced from a Lie group
thermodynamics model.

The main contributions of the author in this paper are the following:

• The Souriau model of Lie group thermodynamics is presented with standard notations of Lie
group theory, in place of Souriau equations using less classical conventions (that have limited
understanding of his work by his contemporaries).

• We prove that Souriau Riemannian metric introduced with symplectic cocycle is a generalization
of Fisher metric (called Souriau-Fisher metric in the following) that preserves the property
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to be defined as a hessian of partition function logarithm gβ = − ∂2Φ
∂β2 =

∂2logψΩ
∂β2 as in classical

information geometry. We then establish the equality of two terms, the first one given by Souriau’s
definition from Lie group cocycle Θ and parameterized by “geometric heat” Q (element of dual
Lie algebra) and “geometric temperature” β (element of Lie algebra) and the second one, the
hessian of the characteristic function Φ(β) = −logψΩ(β) with respect to the variable β:

gβ ([β, Z1] , [β, Z2]) = 〈Θ (Z1) , [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 =
∂2logψΩ

∂β2 (1)

A dual Souriau-Fisher metric, the inverse of this last one, could be also elaborated with the hessian
of “geometric entropy” s(Q) with respect to the variable Q: ∂2s(Q)

∂Q2 For the maximum entropy

density (Gibbs density), the following three terms coincide: ∂2logψΩ
∂β2 that describes the convexity of

the log-likelihood function, I(β) = −E
[

∂2logpβ(ξ)

∂β2

]
the Fisher metric that describes the covariance

of the log-likelihood gradient, whereas I(β) = E
[
(ξ −Q) (ξ −Q)T

]
= Var(ξ) that describes the

covariance of the observables.
• This Souriau-Fisher metric is also identified to be proportional to the first derivative of the heat

gβ = − ∂Q
∂β , and then comparable by analogy to geometric “specific heat” or “calorific capacity”.

• We observe that the Souriau metric is invariant with respect to the action of the group
I
(

Adg(β)
)
= I(β), due to the fact that the characteristic function Φ(β) after the action of the

group is linearly dependent to β. As the Fisher metric is proportional to the hessian of the
characteristic function, we have the following invariance:

I
(

Adg(β)
)
= −

∂2 (Φ− 〈θ (g−1) , β
〉)

∂β2 = −∂2Φ
∂β2 = I(β) (2)

• We have proposed, based on Souriau’s Lie group model and on analogy with mechanical variables,
a variational principle of thermodynamics deduced from Poincaré-Cartan integral invariant.
The variational principle holds on g the Lie algebra, for variations δβ =

.
η + [β, η], where η(t) is

an arbitrary path that vanishes at the endpoints, η(a) = η(b) = 0:

δ

t1w

t0

Φ (β(t)) · dt = 0 (3)

where the Poincaré-Cartan integral invariant
r

Ca

Φ(β) · dt =
r

Cb

Φ(β) · dt is defined with Φ(β),

the Massieu characteristic function, with the 1-form ω = Φ(β) ·dt = (〈Q,β〉− s) ·dt = 〈Q,(β ·dt)〉− s ·dt
• We have deduced Euler-Poincaré equations for the Souriau model:

dQ
dt = ad∗βQ and

 s(Q) = 〈β,Q〉−Φ(β)

β = ∂s(Q)
∂Q ∈ g , Q = ∂Φ(β)

∂β ∈ g
∗

and d
dt

(
Ad∗gQ

)
= 0

with

{
g∗ : dual Lie algebra

ad∗XY : Coadjoint operator

(4)

where Q is the Souriau geometric heat (element of dual Lie algebra) and β is the Souriau geometric
temperature (element of the Lie algebra). The second equation is linked to the result of Souriau
based on the moment map that a symplectic manifold is always a coadjoint orbit, affine of its
group of Hamiltonian transformations (a symplectic manifold homogeneous under the action of a
Lie group, is isomorphic, up to a covering, to a coadjoint orbit; symplectic leaves are the orbits of
the affine action that makes the moment map equivariant).
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• We have established that the affine representation of Lie group and Lie algebra by Jean-Marie
Souriau is equivalent to Jean-Louis Koszul’s affine representation developed in the framework of
hessian geometry of convex sharp cones. Both Souriau and Koszul have elaborated equations
requested for Lie group and Lie algebra to ensure the existence of an affine representation. We have
compared both approaches of Souriau and Koszul in a table.

• We have applied the Souriau model for exponential families and especially for multivariate
Gaussian densities.

• We have applied the Souriau-Koszul model Gibbs density to compute the maximum entropy
density for symmetric positive definite matrices, using the inner product 〈η,ξ〉= Tr

(
ηTξ
)
, ∀η,ξ ∈

Sym(n) given by Cartan-Killing form. The Gibbs density (generalization of Gaussian law for theses
matrices and defined as maximum entropy density):

pξ̂(ξ) = e−〈Θ
−1(ξ̂),ξ〉+Φ(Θ−1(ξ̂)) = ψΩ (Id) ·

[
det

(
αξ̂−1

)]
· e−Tr(αξ̂−1ξ)

with α =
n + 1

2
(5)

• For the case of multivariate Gaussian densities, we have considered GA(n) a sub-group of affine
group, that we defined by a (n + 1) × (n + 1) embedding in matrix Lie group Ga f f , and that acts
for multivariate Gaussian laws by:

[
Y
1

]
=

[
R1/2 m

0 1

] [
X
1

]
=

[
R1/2X + m

1

]
,


(m, R) ∈ Rn × Sym+(n)

M =

[
R1/2 m

0 1

]
∈ Ga f f

X ≈ ℵ(0, I)→ Y ≈ ℵ(m, R)

(6)

• For multivariate Gaussian densities, as we have identified the acting sub-group of affine group
M, we have also developed the computation of the associated Lie algebras ηL and ηR, adjoint and
coadjoint operators, and especially the Souriau “moment map” ΠR:

〈
nL, M−1nR M

〉
= 〈ΠR, nR〉

with M =

[
R1/2 m

0 1

]
, nL =

 R−1/2
.
R

1/2
R−1/2 .

m

0 0

 and ηR =

 R−1/2
.
R

1/2 .
m− R−1/2

.
R

1/2 .
m

0 0


⇒ ΠR =

 R−1/2
.
R

1/2
+ R−1 .

mmT R−1 .
m

0 0


(7)

Using Souriau Theorem (geometrization of Noether theorem), we use the property that this
moment map ΠR is constant (its components are equal to Noether invariants):

dΠR
dt

= 0⇒

 R−1
.
R + R−1 .

mmT = B = cste

R−1 .
m = b = cste

(8)

to reduce the Euler-Lagrange equation of geodesics between two multivariate Gaussian densities:
..
R +

.
m

.
mT −

.
RR−1

.
R = 0

..
m−

.
RR−1 .

m = 0
(9)

to this reduced equation of geodesics:
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
.

m = Rb
.
R = R

(
B− bmT) (10)

that we solve by “geodesic shooting” technic based on Eriksen equation of exponential map.
• For the families of multivariate Gaussian densities, that we have identified as homogeneous

manifold with the associated sub-group of the affine group

[
R1/2 m

0 1

]
, we have considered

the elements of exponential families, that play the role of geometric heat Q in Souriau Lie group
thermodynamics, and β the geometric (Planck) temperature:

Q = ξ̂ =

[
E [z]

E
[
zzT]

]
=

[
m

R + mmT

]
, β =

 −R−1m

1
2

R−1

 (11)

We have considered that these elements are homeomorph to the (n + 1) × (n + 1) matrix elements:

Q = ξ̂ =

[
R + mmT m

0 0

]
∈ g∗ , β =

 1
2

R−1 −R−1m

0 0

 ∈ g (12)

to compute the Souriau symplectic cocycle of the Lie group:

θ(M) = ξ̂ (AdM(β))− Ad∗M ξ̂ (13)

where the adjoint operator is equal to:

AdMβ =

 1
2

Ω−1 −Ω−1n

0 0

 with Ω = R′1/2RR′−1/2 and n =

(
1
2

m′ + R′1/2m

)
(14)

with

ξ̂ (AdM(β)) =

[
Ω + nnT n

0 0

]
(15)

and the co-adjoint operator:

Ad∗M ξ̂ =

[
R + mmT −mm′T R′1/2m

0 0

]
(16)

• Finally, we have computed the Souriau-Fisher metric gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) for
multivariate Gaussian densities, given by:

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) = Θ̃ (Z1, [β, Z2]) +
〈
ξ̂, [Z1, [β, Z2]]

〉
= 〈Θ (Z1) , [β, Z2]〉+

〈
ξ̂, [Z1, [β, Z2]]

〉 (17)

with element of Lie algebra given by Z =

 1
2

Ω−1 −Ω−1n

0 0

.

The plan of the paper is as follows. After this introduction in Section 1, we develop in Section 2
the position of Souriau symplectic model of statistical physics in the historical developments of
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thermodynamic concepts. In Section 3, we develop and revisit the Lie group thermodynamics
model of Jean-Marie Souriau in modern notations. In Section 4, we make the link between
Souriau Riemannian metric and Fisher metric defined as a geometric heat capacity of Lie group
thermodynamics. In Section 5, we elaborate Euler-Lagrange equations of Lie group thermodynamics
and a variational model based on Poincaré-Cartan integral invariant. In Section 6, we explore Souriau
affine representation of Lie group and Lie algebra (including the notions of: affine representations
and cocycles, Souriau moment map and cocycles, equivariance of Souriau moment map, action of Lie
group on a symplectic manifold and dual spaces of finite-dimensional Lie algebras) and we analyze the
link and parallelisms with Koszul affine representation, developed in another context (comparison is
synthetized in a table). In Section 7, we illustrate Koszul and Souriau Lie group models of information
geometry for multivariate Gaussian densities. In Section 8, after identifying the affine group acting
for these densities, we compute the Souriau moment map to obtain the Euler-Poincaré equation,
solved by geodesic shooting method. In Section 9, Souriau Riemannian metric defined by cocycle
for multivariate Gaussian densities is computed. We give a conclusion in Section 10 with research
prospects in the framework of affine Poisson geometry [13], Bismut stochastic mechanics [14] and
second order extension of the Gibbs state [15,16]. We have three appendices: Appendix A develops the
Clairaut(-Legendre) equation of Maurice Fréchet associated to “distinguished functions” as a seminal
equation of information geometry; Appendix B is about a Balian Gauge model of thermodynamics and
its compliance with the Souriau model; Appendix C is devoted to the link of Casalis-Letac’s works on
affine group invariance for natural exponential families with Souriau’s works.

2. Position of Souriau Symplectic Model of Statistical Physics in Historical Developments of
Thermodynamic Concepts

In this Section, we will explain the emergence of thermodynamic concepts that give rise to the
generalization of the Souriau model of statistical physics. To understand Souriau’s theoretical model
of heat, we have to consider first his work in geometric mechanics where he introduced the concept of
“moment map” and “symplectic cohomology”. We will then introduce the concept of “characteristic
function” developed by François Massieu, and generalized by Souriau on homogeneous symplectic
manifolds. In his statistical physics model, Souriau has also generalized the notion of “heat capacity”
that was initially extended by Pierre Duhem as a key structure to jointly consider mechanics and
thermodynamics under the umbrella of the same theory. Pierre Duhem has also integrated, in the
corpus, the Massieu’s characteristic function as a thermodynamic potential. Souriau’s idea to develop
a covariant model of Gibbs density on homogeneous manifold was also influenced by the seminal
work of Constantin Carathéodory that axiomatized thermodynamics in 1909 based on Carnot’s works.
Souriau has adapted his geometric mechanical model for the theory of heat, where Henri Poincaré did
not succeed in his paper on attempts of mechanical explanation for the principles of thermodynamics.

Lagrange’s works on “mécanique analytique (analytic mechanics)” has been interpreted by
Jean-Marie Souriau in the framework of differential geometry and has initiated a new discipline called
after Souriau, “mécanique géométrique (geometric mechanics)” [17–19]. Souriau has observed that the
collection of motions of a dynamical system is a manifold with an antisymmetric flat tensor that is a
symplectic form where the structure contains all the pertinent information of the state of the system
(positions, velocities, forces, etc.). Souriau said: “Ce que Lagrange a vu, que n’a pas vu Laplace, c’était
la structure symplectique (What Lagrange saw, that Laplace didn’t see, was the symplectic structure” [20].
Using the symmetries of a symplectic manifold, Souriau introduced a mapping which he called
the “moment map” [21–23], which takes its values in a space attached to the group of symmetries
(in the dual space of its Lie algebra). He [10] called dynamical groups every dimensional group of
symplectomorphisms (an isomorphism between symplectic manifolds, a transformation of phase
space that is volume-preserving), and introduced Galileo group for classical mechanics and Poincaré
group for relativistic mechanics (both are sub-groups of affine group [24,25]). For instance, a Galileo
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group could be represented in a matrix form by (with A rotation, b the boost, c space translation and e
time translation): x′

t
1

 =

 A b c
0 1 e
0 0 1


GALILEO GROUP

 x
t
1

 with


A ∈ SO(3)
b, c ∈ R3

e ∈ R
, Lie Algebra

 ω η γ

0 0 ε

0 0 0

 with


ω ∈ so(3)
η, γ ∈ R3

ε ∈ R+

(18)

Souriau associated to this moment map, the notion of symplectic cohomology, linked to the
fact that such a moment is defined up to an additive constant that brings into play an algebraic
mechanism (called cohomology). Souriau proved that the moment map is a constant of the motion,
and provided geometric generalization of Emmy Noether invariant theorem (invariants of E. Noether
theorem are the components of the moment map). For instance, Souriau gave an ontological definition
of mass in classical mechanics as the measure of the symplectic cohomology of the action of the
Galileo group (the mass is no longer an arbitrary variable but a characteristic of the space). This is
no longer true for Poincaré group in relativistic mechanics, where the symplectic cohomology is null,
explaining the lack of conservation of mass in relativity. All the details of classical mechanics thus
appear as geometric necessities, as ontological elements. Souriau has also observed that the symplectic
structure has the property to be able to be reconstructed from its symmetries alone, through a 2-form
(called Kirillov–Kostant–Souriau form) defined on coadjoint orbits. Souriau said that the different
versions of mechanical science can be classified by the geometry that each implies for space and time;
geometry is determined by the covariance of group theory. Thus, Newtonian mechanics is covariant
by the group of Galileo, the relativity by the group of Poincaré; General relativity by the “smooth”
group (the group of diffeomorphisms of space-time). However, Souriau added “However, there are some
statements of mechanics whose covariance belongs to a fourth group rarely considered: the affine group, a group
shown in the following diagram for inclusion. How is it possible that a unitary point of view (which would be
necessarily a true thermodynamics), has not yet come to crown the picture? Mystery...” [26]. See Figure 1.
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Figure 1. Souriau Scheme about mysterious “affine group” of a true thermodynamics between
Galileo group of classical mechanics, Poincaré group of relativistic mechanics and Smooth group
of general relativity.

As early as 1966, Souriau applied his theory to statistical mechanics, developed it in the
Chapter IV of his book “Structure of Dynamical Systems” [11], and elaborated what he called
a “Lie group thermodynamics” [10,11,27–37]. Using Lagrange’s viewpoint, in Souriau statistical
mechanics, a statistical state is a probability measure on the manifold of motions (and no longer
in phase space [38]). Souriau observed that Gibbs equilibrium [39] is not covariant with respect to
dynamic groups of Physics. To solve this braking of symmetry, Souriau introduced a new “geometric
theory of heat” where the equilibrium states are indexed by a parameter β with values in the Lie algebra
of the group, generalizing the Gibbs equilibrium states, where β plays the role of a geometric (Planck)
temperature. The invariance with respect to the group, and the fact that the entropy s is a convex
function of this geometric temperature β, imposes very strict, universal conditions (e.g., there exists
necessarily a critical temperature beyond which no equilibrium can exist). Souriau observed that
the group of time translations of the classical thermodynamics [40,41] is not a normal subgroup of
the Galilei group, proving that if a dynamical system is conservative in an inertial reference frame,
it need not be conservative in another. Based on this fact, Souriau generalized the formulation of the
Gibbs principle to become compatible with Galileo relativity in classical mechanics and with Poincaré
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relativity in relativistic mechanics. The maximum entropy principle [42–51] is preserved, and the
Gibbs density is given by the density of maximum entropy (among the equilibrium states for which
the average value of the energy takes a prescribed value, the Gibbs measures are those which have the
largest entropy), but with a new principle “If a dynamical system is invariant under a Lie subgroup G’ of
the Galileo group, then the natural equilibria of the system forms the Gibbs ensemble of the dynamical group
G’” [10]. The classical notion of Gibbs canonical ensemble is extended for a homogneous symplectic
manifold on which a Lie group (dynamic group) has a symplectic action. When the group is not
abelian (non-commutative group), the symmetry is broken, and new “cohomological” relations should
be verified in Lie algebra of the group [52–55]. A natural equilibrium state will thus be characterized by
an element of the Lie algebra of the Lie group, determining the equilibrium temperature β. The entropy
s(Q), parametrized by Q the geometric heat (mean of energy U, element of the dual Lie algebra) is
defined by the Legendre transform [56–59] of the Massieu potential Φ(β) parametrized by β (Φ(β) is
the minus logarithm of the partition function ψΩ(β)):

s (Q) = 〈β, Q〉 −Φ(β) with


Q =

∂Φ
∂β
∈ g∗

β =
∂s
∂Q
∈ g

(19)

pGibbs(ξ) = eΦ(β)−〈β,U(ξ)〉 =
e−〈β,U(ξ)〉

r

M
e−〈β,U(ξ)〉dω

,

Q =
∂Φ(β)

∂β
=

r

M
U(ξ)e−〈β,U(ξ)〉dω

r

M
e−〈β,U(ξ)〉dω

=
r

M
U(ξ)p(ξ)dω with Φ(β) = −log

r

M
e−〈β,U(ξ)〉dω

(20)

Souriau completed his “geometric heat theory” by introducing a 2-form in the Lie algebra, that is
a Riemannian metric tensor in the values of adjoint orbit of β, [β, Z] with Z an element of the Lie
algebra. This metric is given for (β, Q):

gβ ([β, Z1] , [β, Z2]) = 〈Θ (Z1) , [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 (21)

where Θ is a cocycle of the Lie algebra, defined by Θ = Teθ with θ a cocycle of the Lie group defined
by θ(M) = Q (AdM(β))− Ad∗MQ. We have observed that this metric gβ is also given by the hessian

of the Massieu potential gβ = −∂2Φ
∂β2 =

∂logψΩ

∂β2 as Fisher metric in classical information geometry

theory [60], and so this is a generalization of the Fisher metric for homogeneous manifold. We call this

new metric the Souriau-Fisher metric. As gβ = −∂Q
∂β

, Souriau compared it by analogy with classical

thermodynamics to a “geometric specific heat” (geometric calorific capacity).
The potential theory of thermodynamics and the introduction of “characteristic function”

(previous function Φ(β) = −logψΩ(β) in Souriau theory) was initiated by François Jacques Dominique
Massieu [61–64]. Massieu was the son of Pierre François Marie Massieu and Thérèse Claire Castel.
He married in 1862 with Mlle Morand and had 2 children. He graduated from Ecole Polytechnique
in 1851 and Ecole des Mines de Paris in 1956, he has integrated “Corps des Mines”. He defended
his Ph.D. in 1861 on “Sur les intégrales algébriques des problèmes de mécanique” and on “Sur le mode de
propagation des ondes planes et la surface de l’onde élémentaire dans les cristaux biréfringents à deux axes” [65]
with the jury composed of Lamé, Delaunay et Puiseux. In 1870, François Massieu presented his
paper to the French Academy of Sciences on “characteristic functions of the various fluids and the theory
of vapors” [61]. The design of the characteristic function is the finest scientific title of Mr. Massieu.
A prominent judge, Joseph Bertrand, do not hesitate to declare, in a statement read to the French
Academy of Sciences 25 July 1870, that “the introduction of this function in formulas that summarize all the
possible consequences of the two fundamental theorems seems, for the theory, a similar service almost equivalent
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to that Clausius has made by linking the Carnot’s theorem to entropy” [66]. The final manuscript was
published by Massieu in 1873, “Exposé des principes fondamentaux de la théorie mécanique de la chaleur
(Note destinée à servir d’introduction au Mémoire de l’auteur sur les fonctions caractéristiques des divers fluides
et la théorie des vapeurs)” [63].

Massieu introduced the following potential Φ(β), called “characteristic function”, as illustrated
in Figure 2, that is the potential used by Souriau to generalize the theory: s (Q) = 〈β, Q〉 −Φ(β) ⇒

β= 1
T

Φ = Q
T − S. However, in his third paper, Massieu was influenced by M. Bertrand, as illustrated in

Figure 3, to replace the variable β = 1
T (that he used in his two first papers) by T. We have then to

wait 50 years more for the paper of Planck, who introduced again the good variable β = 1
T , and then

generalized by Souriau, giving to Planck temperature β an ontological and geometric status as element
of the Lie algebra of the dynamic group.
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“good advice” of Bertrand to replace variable 1/T, used in his initial paper of 1869, by the variable T.

This Lie group thermodynamics of Souriau is able to explain astronomical phenomenon (rotation
of celestial bodies: the Earth and the stars rotating about themselves). The geometric temperature β

can be also interpreted as a space-time vector (generalization of the temperature vector of Planck),
where the temperature vector and entropy flux are in duality unifying heat conduction and viscosity
(equations of Fourier and Navier). In case of centrifuge system (e.g., used for enrichment of uranium),
the Gibbs Equilibrium state [60,67] are given by Souriau equations as the variation in concentration of
the components of an inhomogeneous gas. Classical statistical mechanics corresponds to the dynamical
group of time translations, for which we recover from Souriau equations the concepts and principles
of classical thermodynamics (temperature, energy, heat, work, entropy, thermodynamic potentials)
and of the kinetic theory of gases (pressure, specific heats, Maxwell’s velocity distribution, etc.).

Souriau also studied continuous medium thermodynamics, where the “temperature vector” is no
longer constrained to be in Lie algebra, but only contrained by phenomenologic equations (e.g., Navier
equations, etc.). For thermodynamic equilibrium, the “temperature vector” is then a Killing vector
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of Space-Time. For each point X, there is a “temperature vector” β(X), such it is an infinitesimal
conformal transform of the metric of the universe gij. Conservation equations can then be deduced
for components of impulsion-energy tensor Tij and entropy flux Sj with ∂̂iTij = 0 and ∂iSj = 0.
Temperature and metric are related by the following equations: ∂̂iβ j + ∂̂jβi = λgij

∂iβ j + ∂jβi − 2Γk
ijβk = λgij

with

{
∂̂i. : covariant derivative

β j : component of Temperature vector

λ = 0⇒ Killing Equation

(22)

Leon Brillouin made the link between Boltzmann entropy and Negentropie of information
theory [68–71], but before Jean-Marie Souriau, only Constantin Carathéodory and Pierre
Duhem [72–75] initiated first theoretical works to generalize thermodynamics.

After three years as lecturer at Lille university, Duhem published a paper in the official revue
of the Ecole Normale Supérieure, in 1891, “On general equations of thermodynamics” [72] (Sur les
équations générales de la Thermodynamique) in Annales Scientifiques de l’Ecole Normale Supérieure.
Duhem generalized the concept of “virtual work” under the action of “external actions” by taking into
account both mechanical and thermal actions. In 1894, the design of a generalized mechanics based
on thermodynamics was further developed: ordinary mechanics had already become “a particular
case of a more general science”. Duhem writes “We made dynamics a special case of thermodynamics, a
science that embraces common principles in all changes of state bodies, changes of places as well as changes in
physical qualities” (Nous avons fait de la dynamique un cas particulier de la thermodynamique, une Science qui
embrasse dans des principes communs tous les changements d’état des corps, aussi bien les changements de lieu
que les changements de qualités physiques). In the equations of his generalized mechanics-thermodynamics,
some new terms had to be introduced, in order to account for the intrinsic viscosity and friction of the
system. As observed by Stefano Bordoni, Duhem aimed at widening the scope of physics: the new physics
could not confine itself to “local motion” but had to describe what Duhem qualified “motions of modification”.
If Boltzmann had tried to proceed from “local motion” to attain the explanation of more complex
transformations, Duhem was trying to proceed from general laws concerning general transformation
in order to reach “local motion” as a simplified specific case. Four scientists were credited by Duhem
with having carried out “the most important researches on that subject”: Massieu had managed
to derive thermodynamics from a “characteristic function and its partial derivatives”; Gibbs had
shown that Massieu’s functions “could play the role of potentials in the determination of the states of
equilibrium” in a given system; von Helmholtz had put forward “similar ideas”; von Oettingen had
given “an exposition of thermodynamics of remarkable generality” based on general duality concept
in “Die thermodynamischen Beziehungen antithetisch entwickelt” published at St. Petersburg in 1885.
Duhem took into account a system whose elements had the same temperature and where the state of
the system could be completely specified by giving its temperature and n other independent quantities.
He then introduced some “external forces”, and held the system in equilibrium. A virtual work
corresponded to such forces, and a set of n + 1 equations corresponded to the condition of equilibrium
of the physical system. From the thermodynamic point of view, every infinitesimal transformation
involving the generalized displacements had to obey to the first law, which could be expressed in
terms of the (n + 1) generalized Lagrangian parameters. The amount of heat could be written as a sum
of (n + 1) terms. The new alliance between mechanics and thermodynamics led to a sort of symmetry
between thermal and mechanical quantities. The n + 1 functions played the role of generalized thermal
capacities, and the last term was nothing other than the ordinary thermal capacity. The knowledge of the
“equilibrium equations of a system” allowed Duhem to compute the partial derivatives of the thermal
capacity with regard to all the parameters which described the state of the system, apart from its
derivative with regard to temperature. The thermal capacities were therefore known “except for an
unspecified function of temperature”.

The axiomatic approach of thermodynamics was published in 1909 in Mathematische Annalen [76]
under the title “Examination of the Foundations of Thermodynamics” (Untersuchungen überdie Grundlagen
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der Thermodynamik) by Constantin Carathéodory based on Carnot’s works [77]. Carathéodory
introduced entropy through a mathematical approach based on the geometric behavior of a certain
class of partial differential equations called Pfaffians. Carathéodory’s investigations start by revisiting
the first law and reformulating the second law of thermodynamics in the form of two axioms.
The first axiom applies to a multiphase system change under adiabatic conditions (axiom of classical
thermodynamics due to Clausius [78,79]). The second axiom assumes that in the neighborhood
of any equilibrium state of a system (of any number of thermodynamic coordinates), there exist
states that are inaccessible by reversible adiabatic processes. In the book of Misha Gromov
“Metric Structures for Riemannian and Non-Riemannian Spaces”, written and edited by Pierre Pansu
and Jacques Lafontaine, a new metric is introduced called “Carnot-Carathéodory metric”. In one of
his papers, Misha Gromov [80,81] gives historical remarks “This result (which seems obvious by the
modern standards) appears (in a more general form) in the 1909-paper by Carathéorody on formalization
of the classical thermodynamics where horizontal curves roughly correspond to adiabatic processes. In fact,
the above proof may be performed in the language of Carnot (cycles) and for this reason the metris distH were
christened ‘Carnot-Carathéodory’ in Gromov-Lafontaine-Pansu book” [82]. When I ask this question to Pierre
Pansu, he gave me the answer that “The section 4 of [76], entitled Hilfsatz aus der Theorie des Pfaffschen
Gleichungen (Lemma from the theory of Pfaffian equations) opens with a statement relating to the differential
1-forms. Carathéodory says, If a Pfaffian equation dx0 + X1 dx1 + X2 dx2 + . . . + Xn dxn = 0 is given, in which
the Xi are finite, continuous, differentiable functions of the xi, and one knows that in any neighborhood of an
arbitrary point P of the space of xi there is a point that one cannot reach along a curve that satisfies this equation
then the expression must necessarily possess a multiplier that makes it into a complete differential”. This is
confirmed in the introduction of his paper [76], where Carathéodory said “Finally, in order to be able to
treat systems with arbitrarily many degrees of freedom from the outset, instead of the Carnot cycle that is almost
always used, but is intuitive and easy to control only for systems with two degrees of freedom, one must employ a
theorem from the theory of Pfaffian differential equations, for which a simple proof is given in the fourth section”.

We have also to make reference to Henri Poincaré [83] that published the paper “On attempts of
mechanical explanation for the principles of thermodynamics (Sur les tentatives d’explication mécanique des
principes de la thermodynamique)” at the Comptes rendus de l’Académie des sciences in 1889 [84],
in which he tried to consolidate links between mechanics and thermomechanics principles.
These elements were also developed in Poincaré’s lecture of 1892 [85] on “thermodynamique” in Chapter
XVII “Reduction of thermodynamics principles to the general principles of mechanics (Réduction des principes
de la Thermodynamique aux principes généraux de la mécanique)”. Poincaré writes in his book [85] “It is
otherwise with the second law of thermodynamics. Clausius was the first to attempt to bring it to the principles
of mechanics, but not succeed satisfactorily. Helmholtz in his memoir on the principle of least actions developed a
theory much more perfect than that of Clausius. However, it cannot account for irreversible phenomena. (Il en est
autrement du second principe de la thermodynamique. Clausius, a le premier, tenté de le ramener aux principes
de la Mécanique, mais sans y réussir d’une manière satisfaisante. Helmoltz dans son mémoire sur le principe de
la moindre action, a développé une théorie beaucoup plus parfaite que celle de Clausius; cependant elle ne peut
rendre compte des phénomènes irréversibles.)”. About Helmoltz work, Poincaré observes [85] “It follows
from these examples that the Helmholtz hypothesis is true in the case of body turning around an axis; So it
seems applicable to vortex motions of molecules (Il résulte de ces exemples que l’hypothèse d’Helmoltz est exacte
dans le cas de corps tournant autour d’un axe; elle parait donc applicable aux mouvements tourbillonnaires des
molecules.)”, but he adds in the following that the Helmoltz model is also true in the case of vibrating
motions as molecular motions. However, he finally observes that the Helmoltz model cannot explain
the increasing of entropy and concludes [85] “All attempts of this nature must be abandoned; the only ones
that have any chance of success are those based on the intervention of statistical laws, for example, the kinetic
theory of gases. This view, which I cannot develop here, can be summed up in a somewhat vulgar way as follows:
Suppose we want to place a grain of oats in the middle of a heap of wheat; it will be easy; then suppose we wanted
to find it and remove it; we cannot achieve it. All irreversible phenomena, according to some physicists, would
be built on this model (Toutes les tentatives de cette nature doivent donc être abandonnées; les seules qui aient
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quelque chance de succès sont celles qui sont fondées sur l’intervention des lois statistiques comme, par exemple,
la théorie cinétique des gaz. Ce point de vue, que je ne puis développer ici, peut se résumer d’une façon un
peu vulgaire comme il suit: Supposons que nous voulions placer un grain d’avoine au milieu d’un tas de blé;
cela sera facile; supposons que nous voulions ensuite l’y retrouver et l’en retirer; nous ne pourrons y parvenir.
Tous les phénomènes irréversibles, d’après certains physiciens, seraient construits sur ce modèle)”. In Poincaré’s
lecture, Massieu has greatly influenced Poincaré to introduce Massieu characteristic function in probability [86].
As we have observed, Poincaré has introduced characteristic function in probability lecture after his lecture on
thermodynamics where he discovered in its second edition [85], the Massieu’s characteristic function. We can read
that “Since from the functions of Mr. Massieu one can deduce other functions of variables, all equations
of thermodynamics can be written so as to only contain these functions and their derivatives; it will
thus result in some cases, a great simplification (Puisque des fonctions de M. Massieu on peut déduire
les autres fonctions des variables, toutes les équations de la Thermodynamique pourront s’écrire de
manière à ne plus renfermer que ces fonctions et leurs dérivées; il en résultera donc, dans certains cas,
une grande simplification).” [85]. He [85] added “MM. Gibbs von Helmholtz, Duhem have used this
function H = U − TS assuming that T and V are constant. Mr. von Helmotz has called it ‘free energy’
and also proposes to give him the name of “kinetic potential”; Duhem called it ‘the thermodynamic
potential at constant volume’; this is the most justified naming (MM. Gibbs, von Helmoltz, Duhem ont
fait usage de cette function H = TS − U en y supposant T et V constants. M. von Helmotz l’a appellée
énergie libre et a propose également de lui donner le nom de potential kinetique; M. Duhem la nomme
potentiel thermodynamique à volume constant; c’est la dénomination la plus justifiée)”. In 1906,
Henri Poincaré also published a note [87] “Reflection on The kinetic theory of gases” (Réflexions sur la
théorie cinétique des gaz), where he said that: “The kinetic theory of gases leaves awkward points for
those who are accustomed to mathematical rigor . . . One of the points which embarrassed me most
was the following one: it is a question of demonstrating that the entropy keeps decreasing, but the
reasoning of Gibbs seems to suppose that having made vary the outside conditions we wait that the
regime is established before making them vary again. Is this supposition essential, or in other words,
we could arrive at opposite results to the principle of Carnot by making vary the outside conditions
too fast so that the permanent regime has time to become established?”.

Jean-Marie Souriau has elaborated a disruptive and innovative “théorie géométrique de la
chaleur (geometric theory of heat)” [88] after the works of his predecessors as illustrated in Figure 4:
“théorie analytique de la chaleur (analytic theory of heat)” by Jean Baptiste Joseph Fourier [88],
“théorie mécanique de la chaleur (mechanic theory of heat)” by François Clausius [89] and François Massieu
and “théorie mathématique de la chaleur (mathematic theory of heat)” by Siméon-Denis Poisson [90,91],
as illustrated in this figure:
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3. Revisited Souriau Symplectic Model of Statistical Physics

In this Section, we will revisit the Souriau model of thermodynamics but with modern notations,
replacing personal Souriau conventions used in his book of 1970 by more classical ones.

In 1970, Souriau introduced the concept of co-adjoint action of a group on its momentum space
(or “moment map”: mapping induced by symplectic manifold symmetries), based on the orbit method
works, that allows to define physical observables like energy, heat and momentum or moment as
pure geometrical objects (the moment map takes its values in a space determined by the group of
symmetries: the dual space of its Lie algebra). The moment(um) map is a constant of the motion and is
associated to symplectic cohomology (assignment of algebraic invariants to a topological space that
arises from the algebraic dualization of the homology construction). Souriau introduced the moment
map in 1965 in a lecture notes at Marseille University and published it in 1966. Souriau gave the formal
definition and its name based on its physical interpretation in 1967. Souriau then studied its properties
of equivariance, and formulated the coadjoint orbit theorem in his book in 1970. However, in his book,
Souriau also observed in Chapter IV that Gibbs equilibrium states are not covariant by dynamical
groups (Galileo or Poincaré groups) and then he developed a covariant model that he called “Lie group
thermodynamics”, where equilibriums are indexed by a “geometric (Planck) temperature”, given by a
vector β that lies in the Lie algebra of the dynamical group. For Souriau, all the details of classical
mechanics appear as geometric necessities (e.g., mass is the measure of the symplectic cohomology of
the action of a Galileo group). Based on this new covariant model of thermodynamic Gibbs equilibrium,
Souriau has formulated statistical mechanics and thermodynamics in the framework of symplectic
geometry by use of symplectic moments and distribution-tensor concepts, giving a geometric status
for temperature, heat and entropy.

There is a controversy about the name “momentum map” or “moment map”. Smale [92]
referred to this map as the “angular momentum”, while Souriau used the French word “moment”.
Cushman and Duistermaat [93] have suggested that the proper English translation of Souriau’s French
word was “momentum” which fit better with standard usage in mechanics. On the other hand,
Guillemin and Sternberg [94] have validated the name given by Souriau and have used “moment” in
English. In this paper, we will see that name “moment” given by Souriau was the most appropriate
word. In his Chapter IV of his book [10], studying statistical mechanics, Souriau [10] has ingeniously
observed that moments of inertia in mechanics are equivalent to moments in probability in his new
geometric model of statistical physics. We will see that in Souriau Lie group thermodynamic model,
these statistical moments will be given by the energy and the heat defined geometrically by Souriau,
and will be associated with “moment map” in dual Lie algebra.

This work has been extended by Claude Vallée [5,6] and Gery de Saxcé [4,8,95,96]. More recently,
Kapranov has also given a thermodynamical interpretation of the moment map for toric varieties [97]
and Pavlov, thermodynamics from the differential geometry standpoint [98].

The conservation of the moment of a Hamiltonian action was called by Souriau the “symplectic
or geometric Noether theorem”. Considering phases space as symplectic manifold, cotangent fiber of
configuration space with canonical symplectic form, if Hamiltonian has Lie algebra, then the moment
map is constant along the system integral curves. Noether theorem is obtained by considering
independently each component of the moment map.

In a first step to establish new foundations of thermodynamics, Souriau [10] has defined a
Gibbs canonical ensemble on a symplectic manifold M for a Lie group action on M. In classical
statistical mechanics, a state is given by the solution of Liouville equation on the phase space,
the partition function. As symplectic manifolds have a completely continuous measure, invariant by
diffeomorphisms, the Liouville measure λ, all statistical states will be the product of the Liouville
measure by the scalar function given by the generalized partition function eΦ(β)−〈β,U(ξ)〉 defined by
the energy U (defined in the dual of the Lie algebra of this dynamical group) and the geometric
temperature β, where Φ is a normalizing constant such the mass of probability is equal to 1,
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Φ(β) = −log
r

M
e−〈β,U(ξ)〉dλ [99]. Jean-Marie Souriau then generalizes the Gibbs equilibrium state

to all symplectic manifolds that have a dynamical group. To ensure that all integrals that will be
defined could converge, the canonical Gibbs ensemble is the largest open proper subset (in Lie algebra) where
these integrals are convergent. This canonical Gibbs ensemble is convex. The derivative of Φ, Q = ∂Φ

∂β

(thermodynamic heat) is equal to the mean value of the energy U. The minus derivative of this
generalized heat Q, K = − ∂Q

∂β is symmetric and positive (this is a geometric heat capacity). Entropy s
is then defined by Legendre transform of Φ, s = 〈β, Q〉 −Φ. If this approach is applied for the group
of time translation, this is the classical thermodynamics theory. However, Souriau [10] has observed that
if we apply this theory for non-commutative group (Galileo or Poincaré groups), the symmetry has been broken.
Classical Gibbs equilibrium states are no longer invariant by this group. This symmetry breaking provides
new equations, discovered by Souriau [10].

We can read in his paper this prophetical sentence “This Lie group thermodynamics could be
also of first interest for mathematics (Peut-être cette Thermodynamique des groups de Lie a-t-elle un intérêt
mathématique)” [30]. He explains that for the dynamic Galileo group with only one axe of rotation,
this thermodynamic theory is the theory of centrifuge where the temperature vector dimension is
equal to 2 (sub-group of invariance of size 2), used to make “uranium 235” and “ribonucleic acid” [30].
The physical meaning of these two dimensions for vector-valued temperature is “thermic conduction”
and “viscosity”. Souriau said that the model unifies “heat conduction” and “viscosity” (Fourier and
Navier equations) in the same theory of irreversible process. Souriau has applied this theory in detail
for relativistic ideal gas with the Poincaré group for the dynamical group.

Before introducing the Souriau Model of Lie group thermodynamics, we will first remind readers
of the classical notation of Lie group theory in their application to Lie group thermodynamics:

• The coadjoint representation of G is the contragredient of the adjoint representation. It associates
to each g ∈ G the linear isomorphism Ad∗g ∈ GL(g∗), which satisfies, for each ξ ∈ g∗ and X ∈ g:〈

Ad∗g−1(ξ), X
〉
=
〈

ξ, Adg−1(X)
〉

(23)

• The adjoint representation of the Lie algebra g is the linear representation of g into itself which
associates, to each X ∈ g, the linear map adX ∈ gl(g). ad Tangent application of Ad at neutral
element e of G:

ad = Te Ad : TeG → End(TeG)

X, Y ∈ TeG 7→ adX(Y) = [X, Y]
(24)

• The coadjoint representation of the Lie algebra g is the contragredient of the adjoint representation.
It associates, to each X ∈ g, the linear map ad∗X ∈ gl(g∗) which satisfies, for each ξ ∈ g∗ and X ∈ g:〈

ad∗−X(ξ), Y
〉
= 〈ξ, Ad−X(Y)〉 (25)

We can illustrate for group of matrices for G = GLn(K) with K = R or C.

TeG = Mn(K), X ∈ Mn(K), g ∈ G Adg(X) = gXg−1 (26)

X, Y ∈ Mn(K) adX(Y) = (Te Ad)X(Y) = XY−YX = [X, Y] (27)

Then, the curve from e = Id = c(0) tangent to X = c(1) is given by c(t) = exp(tX) and transform
by Ad: γ(t) = Adexp(tX)

adX(Y) = (Te Ad)X(Y) =
d
dt

γ(t)Y
∣∣∣∣
t=0

=
d
dt

exp(tX)Yexp(tX)−1
∣∣∣∣
t=0

= XY−YX (28)
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For each temperature β, element of the Lie algebra g, Souriau has introduced a tensor Θ̃β, equal to
the sum of the cocycle Θ̃ and the heat coboundary (with [.,.] Lie bracket):

Θ̃β (Z1, Z2) = Θ̃ (Z1, Z2) +
〈

Q, adZ1(Z2)
〉

with adZ1(Z2) = [Z1, Z2] (29)

This tensor Θ̃β has the following properties:

• Θ̃(X, Y) = 〈Θ(X), Y〉 where the map Θ is the one-cocycle of the Lie algebra gwith values in g∗,
with Θ(X) = Teθ (X(e)) where θ the one-cocycle of the Lie group G. Θ̃ (X, Y) is constant on M
and the map Θ̃ (X, Y) : g× g→ < is a skew-symmetric bilinear form, and is called the symplectic
cocycle of Lie algebra g associated to the moment map J, with the following properties:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with {., .} Poisson Bracket and J the Moment Map (30)

Θ̃([X, Y] , Z) + Θ̃([Y, Z] , X) + Θ̃([Z, X] , Y) = 0 (31)

where JX linear application from g to differential function on M:
g→ C∞(M, R)
X → JX

and the

associated differentiable application J, called moment(um) map:

J : M→ g∗ such that JX(x) = 〈J(x), X〉 , X ∈ g

x 7→ J(x)
(32)

If instead of J we take the following moment map: J′(x) = J(x) + Q , x ∈ M

where Q ∈ g∗ is constant, the symplectic cocycle θ is replaced by θ′(g) = θ(g) + Q− Ad∗gQ

where θ′ − θ = Q− Ad∗gQ is one-coboundary of G with values in g∗. We also have properties
θ(g1g2) = Ad∗g1

θ(g2) + θ(g1) and θ(e) = 0.

• The geometric temperature, element of the algebra g, is in the thekernel of the tensor Θ̃β:

β ∈ Ker Θ̃β, such that Θ̃β (β, β) = 0 , ∀β ∈ g (33)

• The following symmetric tensor gβ, defined on all values of adβ(.) = [β, .] is positive definite:

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) (34)

gβ ([β, Z1] , Z2) = Θ̃β (Z1, Z2) , ∀Z1 ∈ g, ∀Z2 ∈ Im
(
adβ (.)

)
(35)

gβ (Z1, Z2) ≥ 0 , ∀Z1, Z2 ∈ Im
(
adβ (.)

)
(36)

where the linear map adX ∈ gl(g) is the adjoint representation of the Lie algebra g defined
by X, Y ∈ g(= TeG) 7→ adX(Y) = [X, Y] , and the co-adjoint representation of the Lie algebra
g the linear map ad∗X ∈ gl(g∗) which satisfies, for each ξ ∈ g∗ and X, Y ∈ g:〈ad∗X(ξ), Y〉 =

〈ξ,−adX(Y)〉These equations are universal, because they are not dependent on the symplectic
manifold but only on the dynamical group G, the symplectic cocycle Θ, the temperature β and
the heat Q. Souriau called this model “Lie groups thermodynamics”.

We will give the main theorem of Souriau for this “Lie group thermodynamics”:

Theorem 1 (Souriau Theorem of Lie Group Thermodynamics). Let Ω be the largest open proper subset
of g, Lie algebra of G, such that

r

M
e−〈β,U(ξ)〉dλ and

r

M
ξ · e−〈β,U(ξ)〉dλ are convergent integrals, this set Ω is

convex and is invariant under every transformation Adg(.), where g 7→ Adg(.) is the adjoint representation of
G, such that Adg = Teig with ig : h 7→ ghg−1 . Let a : G× g∗ → g∗ a unique affine action a such that linear
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part is a coadjoint representation of G, that is the contragradient of the adjoint representation. It associates to
each g ∈ G the linear isomorphism Ad∗g ∈ GL(g∗), satisfying, for each:

ξ ∈ g∗ and X ∈ g :
〈

Ad∗g(ξ), X
〉
=
〈

ξ, Adg−1(X)
〉

.

Then, the fundamental equations of Lie group thermodynamics are given by the action of the group:

• Action of Lie group on Lie algebra:

β→ Adg(β) (37)

• Transformation of characteristic function after action of Lie group:

Φ→ Φ−
〈

θ
(

g−1
)

, β
〉

(38)

• Invariance of entropy with respect to action of Lie group:

s→ s (39)

• Action of Lie group on geometric heat, element of dual Lie algebra:

Q→ a(g, Q) = Ad∗g(Q) + θ (g) (40)

Souriau equations of Lie group thermodynamics are summarized in the following Figures 5 and 6:
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For Hamiltonian, actions of a Lie group on a connected symplectic manifold, the equivariance of
the moment map with respect to an affine action of the group on the dual of its Lie algebra has been
studied by Marle and Libermann [100] and Lichnerowics [101,102]:

Theorem 2 (Marle Theorem on Cocycles). Let G be a connected and simply connected Lie group,
R : G → GL(E) be a linear representation of G in a finite-dimensional vector space E, and r : g→ gl(E) be
the associated linear representation of its Lie algebra g. For any one-cocycle Θ : g→ E of the Lie algebra g
for the linear representation r, there exists a unique one-cocycle θ : G → E of the Lie group G for the linear
representation R such that Θ(X) = Teθ (X(e)), which has Θ as associated Lie algebra one-cocycle. The Lie
group one-cocycle θ is a Lie group one-coboundary if and only if the Lie algebra one-cocycle Θ is a Lie algebra
one-coboundary.

Let G be a Lie group whose Lie algebra is g. The skew-symmetric bilinear form Θ̃ on g = TeG can
be extended into a closed differential two-form on G, since the identity on Θ̃ means that its exterior
differential dΘ̃ vanishes. In other words, Θ̃ is a 2-cocycle for the restriction of the de Rham cohomology
of G to left invariant differential forms. In the framework of Lie group action on a symplectic manifold,
equivariance of moment could be studied to prove that there is a unique action a(.,.) of the Lie group
G on the dual g∗ of its Lie algebra for which the moment map J is equivariant, that means for each
x ∈ M:

J
(
Φg(x)

)
= a(g, J(x)) = Ad∗g (J(x)) + θ(g) (41)

where Φ : G×M→ M is an action of Lie group G on differentiable manifold M, the fundamental
field associated to an element X of Lie algebra g of group G is the vectors field XM on M:

XM(x) =
d
dt

Φexp(−tX) (x)
∣∣∣∣
t=0

(42)

with Φg1

(
Φg2(x)

)
= Φg1g2(x) and Φe(x) = x. Φ is Hamiltonian on a symplectic manifold M, if Φ is

symplectic and if for all X ∈ g, the fundamental field XM is globally Hamiltonian. The cohomology
class of the symplectic cocycle θ only depends on the Hamiltonian action Φ, and not on J.

In Appendix B, we observe that Souriau Lie group thermodynamics is compatible with Balian
gauge theory of thermodynamics [103], that is obtained by symplectization in dimension 2n + 2 of
contact manifold in dimension 2n + 1. All elements of the Souriau geometric temperature vector are
multiplied by the same gauge parameter.

We conclude this section by this Bourbakiste citation of Jean-Marie Souriau [34]:
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It is obvious that one can only define average values on objects belonging to a vector (or affine)
space; Therefore—so this assertion may seem Bourbakist—that we will observe and measure average
values only as quantity belonging to a set having physically an affine structure. It is clear that
this structure is necessarily unique—if not the average values would not be well defined. (Il est
évident que l’on ne peut définir de valeurs moyennes que sur des objets appartenant à un espace
vectoriel (ou affine); donc—si bourbakiste que puisse sembler cette affirmation—que l’on n’observera
et ne mesurera de valeurs moyennes que sur des grandeurs appartenant à un ensemble possédant
physiquement une structure affine. Il est clair que cette structure est nécessairement unique—sinon
les valeurs moyennes ne seraient pas bien définies.).

4. The Souriau-Fisher Metric as Geometric Heat Capacity of Lie Group Thermodynamics

We observe that Souriau Riemannian metric, introduced with symplectic cocycle, is a
generalization of the Fisher metric, that we call the Souriau-Fisher metric, that preserves the property

to be defined as a hessian of the partition function logarithm gβ = −∂2Φ
∂β2 =

∂2logψΩ

∂β2 as in classical

information geometry. We will establish the equality of two terms, between Souriau definition
based on Lie group cocycle Θ and parameterized by “geometric heat” Q (element of dual Lie
algebra) and “geometric temperature” β (element of Lie algebra) and hessian of characteristic function
Φ(β) = −logψΩ(β) with respect to the variable β:

gβ ([β, Z1] , [β, Z2]) = 〈Θ (Z1) , [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 =
∂2logψΩ

∂β2 (43)

If we differentiate this relation of Souriau theorem Q
(

Adg(β)
)

= Ad∗g(Q) + θ (g), this
relation occurs:

∂Q
∂β

(− [Z1, β] , .) = Θ̃ (Z1, [β, .]) +
〈

Q, Ad.Z1([β, .])
〉
= Θ̃β (Z1, [β, .]) (44)

− ∂Q
∂β

([Z1, β] , Z2.) = Θ̃ (Z1, [β, Z2]) +
〈

Q, Ad.Z1([β, Z2])
〉
= Θ̃β (Z1, [β, Z2]) (45)

⇒ −∂Q
∂β

= gβ ([β, Z1] , [β, Z2]) (46)

As the entropy is defined by the Legendre transform of the characteristic function,
this Souriau-Fisher metric is also equal to the inverse of the hessian of “geometric entropy” s(Q)

with respect to the variable Q:
∂2s(Q)

∂Q2

For the maximum entropy density (Gibbs density), the following three terms coincide:
∂2logψΩ

∂β2

that describes the convexity of the log-likelihood function, I(β) = −E
[

∂2logpβ(ξ)

∂β2

]
the Fisher metric that

describes the covariance of the log-likelihood gradient, whereas I(β) = E
[
(ξ −Q) (ξ −Q)T

]
= Var(ξ)

that describes the covariance of the observables.
We can also observe that the Fisher metric I(β) = −∂Q

∂β
is exactly the Souriau metric defined

through symplectic cocycle:

I(β) = Θ̃β (Z1, [β, Z2]) = gβ ([β, Z1] , [β, Z2]) (47)

The Fisher metric I(β) = −∂2Φ(β)

∂β2 = −∂Q
∂β

has been considered by Souriau as a generalization of

“heat capacity”. Souriau called it K the “geometric capacity”.
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kT
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∂T
∂t

=
κ

C · D ∆T with
∂Q
∂T

= C · D ⇒ ∂β−1

∂t
= κ

[(
β2/k

)
· IFisher(β)

]−1
∆β−1 (48)

We can also observe that Q is related to the mean, and K to the variance of U:

K = I(β) = −∂Q
∂β

= var(U) =
w

M

U(ξ)2 · pβ(ξ)dω−
(

w

M

U(ξ) · pβ(ξ)dω

)2

(49)

We observe that the entropy s is unchanged, and Φ is changed but with linear dependence to β,
with the consequence that Fisher Souriau metric is invariant:

s
[
Q
(

Adg(β)
)]

= s(Q(β)) and I
(

Adg(β)
)
= −

∂2 (Φ− 〈θ (g−1) , β
〉)

∂β2 = −∂2Φ
∂β2 = I(β) (50)

We have observed that the concept of “heat capacity” is important in the Souriau model because
it gives a geometric meaning to its definition. The notion of “heat capacity” has been generalized by
Pierre Duhem in his general equations of thermodynamics.

Souriau [34] proposed to define a thermometer (θε$µóσ) device principle that could measure this
geometric temperature using “relative ideal gas thermometer” based on a theory of dynamical group
thermometry and has also recovered the (geometric) Laplace barometric law

5. Euler-Poincaré Equations and Variational Principle of Souriau Lie Group Thermodynamics

When a Lie algebra acts locally transitively on the configuration space of a Lagrangian mechanical
system, Henri Poincaré proved that the Euler-Lagrange equations are equivalent to a new system of
differential equations defined on the product of the configuration space with the Lie algebra. Marle has
written about the Euler-Poincaré equations [104], under an intrinsic form, without any reference to a
particular system of local coordinates, proving that they can be conveniently expressed in terms of
the Legendre and moment maps of the lift to the cotangent bundle of the Lie algebra action on the
configuration space. The Lagrangian is a smooth real valued function L defined on the tangent bundle
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TM. To each parameterized continuous, piecewise smooth curve γ : [t0, t1]→ M , defined on a closed
interval [t0, t1], with values in M, one associates the value at γ of the action integral:

I(γ) =
t1w

t0

L
(

dγ(t)
dt

)
dt (51)

The partial differential of the function L : M× g→ < with respect to its second variable d2L,
which plays an important part in the Euler-Poincaré equation, can be expressed in terms of the
moment and Legendre maps: d2L = pg∗ ◦ ϕt ◦L ◦ ϕ with J = pg∗ ◦ ϕt(⇒ d2L = J ◦ L ◦ ϕ) the moment
map, pg∗ : M× g∗ → g∗ the canonical projection on the second factor, L : TM→ T∗M the Legendre
transform, with:

ϕ : M× g→ TM/ϕ(x, X) = XM(x) and ϕt : T∗M→ M× g∗/ϕt(ξ) = (πM(ξ), J(ξ)) (52)

The Euler-Poincaré equation can therefore be written under the form:(
d
dt
− ad∗V(t)

)
(J ◦ L ◦ ϕ (γ(t), V(t))) = J ◦ d1L (γ(t), V(t)) with

dγ(t)
dt

= ϕ (γ(t), V(t)) (53)

with

H(ξ) =
〈

ξ, L−1(ξ)
〉
− L

(
L−1(ξ)

)
, ξ ∈ T∗M , L : TM→ T∗M , H : T∗M→ R . (54)

Following the remark made by Poincaré at the end of his note [105], the most interesting case
is when the map L : M× g→ R only depends on its second variable X ∈ g. The Euler-Poincaré
equation becomes: (

d
dt
− ad∗V(t)

) (
dL (V(t))

)
= 0 (55)

We can use analogy of structure when the convex Gibbs ensemble is homogeneous [106]. We can
then apply Euler-Poincaré equation for Lie group thermodynamics. Considering Clairaut’s equation:

s (Q) = 〈β, Q〉 −Φ(β) =
〈

Θ−1(Q), Q
〉
−Φ

(
Θ−1(Q)

)
(56)

with Q = Θ(β) =
∂Φ
∂β
∈ g∗, β = Θ−1(Q) ∈ g, a Souriau-Euler-Poincaré equation can be elaborated for

Souriau Lie group thermodynamics:

dQ
dt

= ad∗βQ (57)

or

d
dt

(
Ad∗gQ

)
= 0. (58)

The first equation, the Euler-Poincaré equation is a reduction of Euler-Lagrange equations using
symmetries and especially the fact that a group is acting homogeneously on the symplectic manifold:

dQ
dt

= ad∗βQ and

 s(Q) = 〈β, Q〉 −Φ(β)

β = ∂s(Q)
∂Q ∈ g , Q = ∂Φ(β)

∂β ∈ g∗
(59)
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Back to Koszul model of information geometry, we can then deduce an equivalent of the
Euler-Poincaré equation for statistical models

dx∗

dt
= ad∗xx∗ and

 Φ∗(x∗) = 〈x, x∗〉 −Φ(x)

x = ∂Φ∗(x∗)
∂x ∈ Ω , x∗ = ∂Φ(x)

∂x ∈ Ω∗
(60)

We can use this Euler-Poincaré equation to deduce an associated equation on entropy:
ds
dt

=

〈
dβ

dt
, Q
〉
+
〈

β, ad∗βQ
〉
− dΦ

dt
that reduces to

ds
dt

=

〈
dβ

dt
, Q
〉
− dΦ

dt
(61)

due to 〈ξ, adV X〉 = −
〈

ad∗Vξ, X
〉
⇒
〈

β, ad∗βQ
〉
=
〈

Q, adββ
〉
= 0 .

With these new equation of thermodynamics
dQ
dt

= ad∗βQ and
d
dt
(Ad∗gQ) = 0, we can observe that

the new important notion is related to co-adjoint orbits, that are associated to a symplectic manifold by
Souriau with KKS 2-form.

We will then define the Poincaré-Cartan integral invariant for Lie group thermodynamics.
Classically in mechanics, the Pfaffian form ω = p · dq− H · dt is related to Poincaré-Cartan integral
invariant [107]. Dedecker has observed, based on the relation [108]:

ω = ∂ .
qL · dq−

(
∂ .

qL · .
q− L

)
· dt = L · dt + ∂ .

qLv with v = dq− .
q · dt (62)

that the property that among all forms χ ≡ L · dtmodv the form ω = p · dq− H · dt is the only one
satisfying dχ ≡ 0modv, is a particular case of more general Lepage congruence.

Analogies between geometric mechanics and geometric Lie group thermodynamics, provides the
following similarities of structures:

{ .
q↔ β

p↔ Q
,


L(

.
q)↔ Φ(β)

H(p)↔ s(Q)

H = p · .
q− L↔ s = 〈Q, β〉 −Φ

and


.
q =

dq
dt

=
∂H
∂p
↔ β =

∂s
∂Q

p =
∂L
∂

.
q
↔ Q =

∂Φ
∂β

(63)

We can then consider a similar Poincaré-Cartan-Souriau Pfaffian form:

ω = p · dq− H · dt↔ ω = 〈Q, (β · dt)〉 − s · dt = (〈Q, β〉 − s) · dt = Φ(β) · dt (64)

This analogy provides an associated Poincaré-Cartan-Souriau integral invariant. Poincaré-Cartan
integral invariant

r

Ca

p · dq− H.dt =
r

Cb

p · dq− H · dt is given for Souriau thermodynamics by:

w

Ca

Φ(β) · dt =
w

Cb

Φ(β) · dt (65)

We can then deduce an Euler-Poincaré-Souriau variational principle for thermodynamics: The
variational principle holds on g, for variations δβ =

.
η + [β, η], where η(t) is an arbitrary path that

vanishes at the endpoints, η(a) = η(b) = 0:
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δ

t1w

t0

Φ (β(t)) · dt = 0 (66)

6. Souriau Affine Representation of Lie Group and Lie Algebra and Comparison with the Koszul
Affine Representation

This affine representation of Lie group/algebra used by Souriau has been intensively studied
by Marle [7,100,109,110]. Souriau called the mechanics deduced from this model, “affine mechanics”.
We will explain affine representations and associated notions as cocycles, Souriau moment map and
cocycles, equivariance of Souriau moment map, action of Lie group on a symplectic manifold and dual
spaces of finite-dimensional Lie algebras. We have observed that these tools have been developed in
parallel by Jean-Louis Koszul. We will establish close links and synthetize the comparisons in a table
of both approaches.

6.1. Affine Representations and Cocycles

Souriau model of Lie group thermodynamics is linked with affine representation of Lie group
and Lie algebra. We will give in the following main elements of this affine representation.

Let G be a Lie group and E a finite-dimensional vector space. A map A : G → A f f (E) can always
be written as:

A(g)(x) = R(g)(x) + θ(g) with g ∈ G, x ∈ E (67)

where the maps R : G → GL(E) and θ : G → E are determined by A. The map A is an affine
representation of G in E.

The map θ : G → E is a one-cocycle of G with values in E, for the linear representation R; it means
that θ is a smooth map which satisfies, for all g, h ∈ G:

θ(gh) = R(g)(θ(h)) + θ(g) (68)

The linear representation R is called the linear part of the affine representation A, and θ is called the
one-cocycle of G associated to the affine representation A. A one-coboundary of G with values in E,
for the linear representation R, is a map θ : G → E which can be expressed as:

θ(g) = R(g)(c)− c , g ∈ G (69)

where c is a fixed element in E and then there exist an element c ∈ E such that, for all g ∈ G and x ∈ E:

A(g)(x) = R(g)(x + c)− c (70)

Let g be a Lie algebra and E a finite-dimensional vector space. A linear map a : g→ a f f (E)
always can be written as:

a(X)(x) = r(X)(x) + Θ(X) with X ∈ g, x ∈ E (71)

where the linear maps r : g→ gl(E) and Θ : g→ E are determined by a. The map a is an affine
representation of G in E. The linear map Θ : g→ E is a one-cocycle of G with values in E, for the linear
representation r; it means that Θ satisfies, for all X, Y ∈ g:

Θ ([X, Y]) = r(X) (Θ(Y))− r(Y) (Θ(X)) (72)

Θ is called the one-cocycle of g associated to the affine representation a. A one-coboundary of gwith
values in E, for the linear representation r, is a linear map Θ : g→ E which can be expressed as:
Θ(X) = r(X)(c) , X ∈ g where c is a fixed element in E., and then there exist an element c ∈ E such
that, for all X ∈ g and x ∈ E:

a(X)(x) = r(X)(x + c)
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Let A : G → A f f (E) be an affine representation of a Lie group g in a finite-dimensional vector
space E, and g be the Lie algebra of G. Let R : G → GL(E) and θ : G → E be, respectively, the
linear part and the associated cocycle of the affine representation A. Let a : g→ a f f (E) be the affine
representation of the Lie algebra g associated to the affine representation A : G → A f f (E) of the
Lie group G. The linear part of a is the linear representation r : g→ gl(E) associated to the linear
representation R : G → GL(E) , and the associated cocycle Θ : g→ E is related to the one-cocycle
θ : G → E by:

Θ(X) = Teθ (X(e)) , X ∈ g (73)

This is deduced from:

dA (exp(tX)) (x)
dt

∣∣∣∣
t=0

=
d (R(exp(tX))(x) + θ(exp(tX))

dt

∣∣∣∣
t=0
⇒ a(X)(x) = r(X)(x) + Teθ(X) (74)

Let G be a connected and simply connected Lie group, R : G → GL(E) be a linear representation
of G in a finite-dimensional vector space E, and r : g→ gl(E) be the associated linear representation
of its Lie algebra g. For any one-cocycle Θ : g→ E of the Lie algebra g for the linear representation r,
there exists a unique one-cocycle θ : G → E of the Lie group G for the linear representation R such that:

Θ(X) = Teθ (X(e)) (75)

in other words, which has Θ as associated Lie algebra one-cocycle. The Lie group one-cocycle θ is a Lie
group one-coboundary if and only if the Lie algebra one-cocycle Θ is a Lie algebra one-coboundary.

dθ (gexp(tX))

dt

∣∣∣∣
t=0

=
d (θ(g) + R(g) (θ(exp(tX)))

dt

∣∣∣∣
t=0
⇒ Tgθ

(
TLg(X)

)
= R(g) (Θ(x)) (76)

which proves that if it exists, the Lie group one-cocycle θ such that Teθ = Θ is unique.

6.2. Souriau Moment Map and Cocycles

Souriau first introduced the moment map in his book. We will give the link with previous cocycles
of affine representation.

There exist JX linear application from g to differential function on M:

g→ C∞(M, R)

X → JX
(77)

We can then associate a differentiable application J, called moment(um) map for the Hamiltonian
Lie group action Φ:

J : M→ g∗

x 7→ J(x) such that JX(x) = 〈J(x), X〉 , X ∈ g
(78)

Let J moment map, for each (X, Y) ∈ g× g, we associate a smooth function Θ̃ (X, Y) : M→ <
defined by:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with {., .} : Poisson Bracket (79)

It is a Casimir of the Poisson algebra C∞(M,<), that satisfies:

Θ̃([X, Y] , Z) + Θ̃([Y, Z] , X) + Θ̃([Z, X] , Y) = 0 (80)

When the Poisson manifold is a connected symplectic manifold, the function Θ̃ (X, Y) is constant
on M and the map:
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Θ̃ (X, Y) : g× g→ < (81)

is a skew-symmetric bilinear form, and is called the symplectic Cocycle of Lie algebra g associated to
the moment map J.

Let Θ : g→ g∗ be the map such that for all:

X, Y ∈ g : 〈Θ(X), Y〉 = Θ̃(X, Y) (82)

The map Θ is therefore the one-cocycle of the Lie algebra g with values in g∗ for the coadjoint
representation X 7→ ad∗X of g associated to the affine action of g on its dual:

aΘ(X)(ξ) = ad∗−X(ξ) + Θ(X) , X ∈ g , ξ ∈ g∗ (83)

Let G be a Lie group whose Lie algebra is g. The skew-symmetric bilinear form Θ̃ on g = TeG can
be extended into a closed differential two-form on G, since the identity on Θ̃ means that its exterior
differential dΘ̃ vanishes. In other words, Θ̃ is a 2-cocycle for the restriction of the de Rham cohomology
of G to left (or right) invariant differential forms.

6.3. Equivariance of Souriau Moment Map

There exists a unique affine action a such that the linear part is a coadjoint representation:

a : G× g∗ → g∗

a(g, ξ) = Ad∗g−1 ξ + θ(g)
(84)

with
〈

Ad∗g−1 ξ, X
〉
=
〈
ξ, Adg−1X

〉
and that induce equivariance of moment J.

6.4. Action of Lie Group on a Symplectic Manifold

Let Φ : G×M→ M be an action of Lie group G on differentiable manifold M, the fundamental
field associated to an element X of Lie algebra g of group G is the vectors field XM on M:

XM(x) =
d
dt

Φexp(−tX) (x)
∣∣∣∣
t=0

With Φg1

(
Φg2(x)

)
= Φg1g2(x) and Φe(x) = x (85)

Φ is Hamiltonian on a symplectic manifold M, if Φ is symplectic and if for all X ∈ g, the fundamental
field XM is globally Hamiltonian.

There is a unique action a of the Lie group G on the dual g∗ of its Lie algebra for which the moment
map J is equivariant, that means satisfies for each x ∈ M

J
(
Φg(x)

)
= a(g, J(x)) = Ad∗g−1 (J(x)) + θ(g) (86)

θ : G → g∗ is called cocycle associated to the differential Teθ of 1-cocyle θ associated to J at neutral
element e:

〈Teθ(X), Y〉 = Θ̃(X, Y) = J[X,Y] − {JX , JY} (87)

If instead of J we take the moment map J′(x) = J(x) + µ , x ∈ M, where µ ∈ g∗ is constant, the
symplectic cocycle θ is replaced by:

θ′(g) = θ(g) + µ− Ad∗gµ (88)

where θ′ − θ = µ− Ad∗gµ is one-coboundary of G with values in g∗.
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Therefore, the cohomology class of the symplectic cocycle θ only depends on the Hamiltonian
action Φ, not on the choice of its moment map J. We have also:

Θ̃′(X, Y) = Θ̃(X, Y) + 〈µ, [X, Y]〉 (89)

This property is used by Jean-Marie Souriau [10] to offer a very nice cohomological interpretation
of the total mass of a classical (nonrelativistic) isolated mechanical system. He [10] proves that the
space of all possible motions of the system is a symplectic manifold on which the Galilean group acts
by a Hamiltonian action. The dimension of the symplectic cohomology space of the Galilean group
(the quotient of the space of symplectic one-cocycles by the space of symplectic one-coboundaries) is
equal to 1. The cohomology class of the symplectic cocycle associated to a moment map of the action of
the Galilean group on the space of motions of the system is interpreted as the total mass of the system.

For Hamiltonian actions of a Lie group on a connected symplectic manifold, the equivariance
of the moment map with respect to an affine action of the group on the dual of its Lie algebra has
been proved by Marle [110]. Marle [110] has also developed the notion of symplectic cocycle and
has proved that given a Lie algebra symplectic cocycle, there exists on the associated connected and
simply connected Lie group a unique corresponding Lie group symplectic cocycle. Marle [104] has
also proved that there exists a two-parameter family of deformations of these actions (the Hamiltonian
actions of a Lie group on its cotangent bundle obtained by lifting the actions of the group on itself by
translations) into a pair of mutually symplectically orthogonal Hamiltonian actions whose moment
maps are equivariant with respect to an affine action involving any given Lie group symplectic cocycle.
Marle [104] has also explained why a reduction occurs for Euler-Poncaré equation mainly when the
Hamiltonian can be expressed as the moment map composed with a smooth function defined on
the dual of the Lie algebra; the Euler-Poincaré equation is then equivalent to the Hamilton equation
written on the dual of the Lie algebra.

6.5. Dual Spaces of Finite-Dimensional Lie Algebras

Let g be a finite-dimensional Lie algebra, and g∗ its dual space. The Lie algebra g can be considered
as the dual of g∗, that means as the space of linear functions on g∗, and the bracket of the Lie algebra g
is a composition law on this space of linear functions. This composition law can be extended to the
space C∞(g∗,<) by setting:

{ f , g} (x) = 〈x, [d f (x), dg(x)]〉 , f and g ∈ C∞(g∗,<), x ∈ g∗ (90)

If we apply this formula for Souriau Lie group thermodynamics, and for entropy s(Q) depending
on geometric heat Q:

{s1, s2} (Q) = 〈Q, [ds1(Q), ds2(Q)]〉 , s1 and s2 ∈ C∞(g∗,<), Q ∈ g∗ (91)

This bracket on C∞(g∗,<) defines a Poisson structure on g∗, called its canonical Poisson structure.
It implicitly appears in the works of Sophus Lie, and was rediscovered by Alexander Kirillov [111],
Bertram Kostant and Jean-Marie Souriau.

The above defined canonical Poisson structure on g∗ can be modified by means of a symplectic
cocycle Θ̃ by defining the new bracket:

{ f , g}Θ̃ (x) = 〈x, [d f (x), dg(x)]〉 − Θ̃ (d f (x), dg(x)) (92)

with Θ̃ a symplectic cocycle of the Lie algebra g being a skew-symmetric bilinear map Θ̃ : g× g→ <
which satisfies:

Θ̃ ([X, Y] , Z) + Θ̃ ([Y, Z] , X) + Θ̃ ([Z, X] , Y) = 0 (93)
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This Poisson structure is called the modified canonical Poisson structure by means of the
symplectic cocycle Θ̃. The symplectic leaves of g∗ equipped with this Poisson structure are the
orbits of an affine action whose linear part is the coadjoint action, with an additional term determined
by Θ̃.

6.6. Koszul Affine Representation of Lie Group and Lie Algebra

Previously, we have developed Souriau’s works on the affine representation of a Lie group used to
elaborate the Lie group thermodynamics. We will study here another approach of affine representation
of Lie group and Lie algebra introduced by Jean-Louis Koszul. We consolidate the link of Jean-Louis
Koszul work with Souriau model. This model uses an affine representation of a Lie group and of a Lie
algebra in a finite-dimensional vector space, seen as special examples of actions.

Since the work of Henri Poincare and Elie Cartan, the theory of differential forms has become
an essential instrument of modern differential geometry [112–115] used by Jean-Marie Souriau
for identifying the space of motions as a symplectic manifold. However, as said by Paulette
Libermann [116], except Henri Poincaré who wrote shortly before his death a report on the work
of Elie Cartan during his application for the Sorbonne University, the French mathematicians did
not see the importance of Cartan’s breakthroughs. Souriau followed lectures of Elie Cartan in 1945.
The second student of Elie Cartan was Jean-Louis Koszul. Koszul introduced the concepts of affine
spaces, affine transformations and affine representations [117–124]. More especially, we are interested
by Koszul’s definition for affine representations of Lie groups and Lie algebras. Koszul studied
symmetric homogeneous spaces and defined relation between invariant flat affine connections to affine
representations of Lie algebras, and characterized invariant Hessian metrics by affine representations
of Lie algebras [117–124]. Koszul provided correspondence between symmetric homogeneous spaces
with invariant Hessian structures by using affine representations of Lie algebras, and proved that a
simply connected symmetric homogeneous space with invariant Hessian structure is a direct product
of a Euclidean space and a homogeneous self-dual regular convex cone [117–124]. Let G be a connected
Lie group and let G/K be a homogeneous space on which G acts effectively, Koszul gave a bijective
correspondence between the set of G-invariant flat connections on G/K and the set of a certain class
of affine representations of the Lie algebra of G [117–124]. The main theorem of Koszul is: let G/K
be a homogeneous space of a connected Lie group G and let g and k be the Lie algebras of G and K,
assuming that G/K is endowed with a G-invariant flat connection, then g admits an affine representation
(f,q) on the vector space E. Conversely, suppose that G is simply connected and that g is endowed with
an affine representation, then G/K admits a G-invariant flat connection.

Koszul has proved the following [117–124]. Let Ω be a convex domain in Rn containing no
complete straight lines, and an associated convex cone V(Ω) = {(λx, x) ∈ Rn × R/x ∈ Ω, λ ∈ R+}.
Then there exists an affine embedding:

` : x ∈ Ω 7→
[

x
1

]
∈ V(Ω) (94)

If we consider η the group of homomorphism of A(n, R) into GL(n + 1, R) given by:

s ∈ A(n, R) 7→
[

f(s) q(s)
0 1

]
∈ GL(n + 1, R) (95)

and associated affine representation of Lie algebra:[
f q
0 0

]
(96)
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with A(n, R) the group of all affine transformations of Rn. We have η (G(Ω)) ⊂ G (V(Ω)) and the
pair (η, `) of the homomorphism η : G(Ω)→ G (V(Ω)) and the map ` : Ω→ V(Ω) is equivariant.

A Hessian structure (D, g) on a homogeneous space G/K is said to be an invariant Hessian
structure if both D and g are G-invariant. A homogeneous space G/K with an invariant Hessian
structure (D, g) is called a homogeneous Hessian manifold and is denoted by (G/K, D, g). Another
result of Koszul is that a homogeneous self-dual regular convex cone is characterized as a simply
connected symmetric homogeneous space admitting an invariant Hessian structure that is defined
by the positive definite second Koszul form (we have identified in a previous paper that this second
Koszul form is related to the Fisher metric). In parallel, Vinberg [125,126] gave a realization of a
homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular
convex cones admit canonical Hessian structures, improving some results of Pyateckii-Shapiro that
studied realizations of homogeneous bounded domains by considering Siegel domains in connection
with automorphic forms. Koszul defined a characteristic function ψΩ of a regular convex cone Ω,
and showed that ψΩ = DdlogψΩ is a Hessian metric on Ω invariant under affine automorphisms of Ω.
If Ω is a homogeneous self dual cone, then the gradient mapping is a symmetry with respect to the
canonical Hessian metric, and is a symmetric homogeneous Riemannian manifold. More information
on Koszul Hessian geometry can be found in [127–136].

We will now focus our attention to Koszul affine representation of Lie group/algebra. Let G a
connex Lie group and E a real or complex vector space of finite dimension, Koszul has introduced an
affine representation of G in E such that [117–124]:

E→ E

a 7→ sa ∀s ∈ G
(97)

is an affine transformation. We set A(E) the set of all affine transformations of a vector space E, a Lie
group called affine transformation group of E. The set GL(E) of all regular linear transformations of E,
a subgroup of A(E).

We define a linear representation from G to GL(E):

f : G → GL(E)

s 7→ f(s)a = sa− so ∀a ∈ E
(98)

and an application from G to E:
q : G → E

s 7→ q(s) = so ∀s ∈ G
(99)

Then we have ∀s, t ∈ G:

f(s)q(t) + q(s) = q(st) (100)

deduced from f(s)q(t) + q(s) = sq(t)− so + so = sq(t) = sto = q(st).
On the contrary, if an application q from G to E and a linear representation f from G to GL(E)

verify previous equation, then we can define an affine representation of G in E, written (f, q):

A f f (s) : a 7→ sa = f(s)a + q(s) ∀s ∈ G, ∀a ∈ E (101)

The condition f(s)q(t) + q(s) = q(st) is equivalent to requiring the following mapping to be
an homomorphism:

A f f : s ∈ G 7→ A f f (s) ∈ A(E) (102)
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We write f the linear representation of Lie algebra g of G, defined by f and q the restriction to g of
the differential to q ( f and q the differential of f and q respectively), Koszul has proved that:

f (X)q(Y)− f (Y)q(X) = q ([X, Y]) ∀X, Y ∈ g

with f : g→ gl(E) and q : g 7→ E
(103)

where gl(E) the set of all linear endomorphisms of E, the Lie algebra of GL(E).
Using the computation,

q (AdsY) =
dq(s · etY · s−1)

dt

∣∣∣∣
t=0

= f(s) f (Y)q(s−1) + f(s)q(Y) (104)

We can obtain:

q ([X, Y]) =
dq(AdetX Y)

dt

∣∣∣∣
t=0

= f (X)q(Y)q(e) + f(e) f (Y) (−q(X)) + f (X)q(Y) (105)

where e is the unit element in G. Since f(e) is the identity mapping and q(e) = 0, we have the equality:
f (X)q(Y)− f (Y)q(X) = q ([X, Y]) .

A pair ( f , q) of a linear representation f of a Lie algebra g on E and a linear mapping q from g to E
is an affine representation of g on E, if it satisfies f (X)q(Y)− f (Y)q(X) = q ([X, Y]) .

Conversely, if we assume that g admits an affine representation ( f , q) on E, using an affine
coordinate system

{
x1, ..., xn} on E, we can express an affine mapping v 7→ f (X)v + q(Y) by an

(n + 1)× (n + 1) matrix representation:

a f f (X) =

[
f (X) q(X)

0 0

]
(106)

where f (X) is a n× n matrix and q(X) is a n row vector.
X 7→ a f f (X) is an injective Lie algebra homomorphism from g in the Lie algebra of all (n + 1)×

(n + 1) matrices, gl (n + 1, R): ∣∣∣∣∣ g→ gl(n + 1, R)
X 7→ a f f (X)

(107)

If we denote ga f f = a f f (g), we write Ga f f the linear Lie subgroup of GL(n + 1, R) generated by
ga f f . An element of s ∈ Ga f f is expressed by:

A f f (s) =

[
f(s) q(s)

0 1

]
(108)

Let Ma f f be the orbit of Ga f f through the origin o, then Ma f f = q(Ga f f ) = Ga f f /Ka f f where

Ka f f =
{

s ∈ Ga f f /q(s) = 0
}
= Ker (q).

Example. Let Ω be a convex domain in Rn containing no complete straight lines, we define a convex
cone V(Ω) in Rn+1 = Rn × R by V(Ω) = {(λx, x) ∈ Rn × R/x ∈ Ω, λ ∈ R+}. Then there exists an
affine embedding:

` : x ∈ Ω 7→
[

x
1

]
∈ V(Ω) (109)
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If we consider η the group of homomorphism of A(n, R) into GL(n + 1, R) given by:

s ∈ A(n, R) 7→
[

f(s) q(s)

0 1

]
∈ GL(n + 1, R) (110)

with A(n, R) the group of all affine transformations of Rn. We have η (G(Ω)) ⊂ G (V(Ω)) and the
pair (η, `) of the homomorphism η : G(Ω)→ G (V(Ω)) and the map ` : Ω→ V(Ω) is equivariant:

` ◦ s = η(s) ◦ ` and d` ◦ s = η(s) ◦ d` (111)

6.7. Comparison of Koszul and Souriau Affine Representation of Lie Group and Lie Algebra

We will compare, in the following Table 1, affine representation of Lie group and Lie algebra from
Souriau and Koszul approaches:

Table 1. Table comparing Souriau and Koszul affine representation of Lie group and Lie algebra.

Souriau Model of Affine Representation of Lie
Groups and Algebra

Koszul Model of Affine Representation of Lie
Groups and Algebra

A(g)(x) = R(g)(x) + θ(g) with g ∈ G, x ∈ E
R : G → GL(E) and θ : G → E

A f f (s) : a 7→ sa = f(s)a + q(s) ∀s ∈ G, ∀a ∈ E

f : G → GL(E)
s 7→ f(s)a = sa− so ∀a ∈ E
q : G → E

s 7→ q(s) = so ∀s ∈ G

θ(gh) = R(g)(θ(h)) + θ(g) with g, h ∈ G
θ : G → E is a one-cocycle of G with values in E, q(st) = f(s)q(t) + q(s)

a(X)(x) = r(X)(x) + Θ(X) with X ∈ g, x ∈ E
The linear map Θ : g→ E is a one-cocycle of G with

values in E: Θ(X) = Teθ (X(e)) , X ∈ g

v 7→ f (X)v + q(Y)
f and q the differential of f and q respectively

Θ ([X, Y]) = r(X) (Θ(Y))− r(Y) (Θ(X))
q ([X, Y]) = f (X)q(Y)− f (Y)q(X) ∀X, Y ∈ g
with f : g→ gl(E) and q : g 7→ E

none a f f (X) =

[
f (X) q(X)

0 0

]

none A f f (s) =

[
f(s) q(s)

0 1

]

6.8. Additional Elements on Koszul Affine Representation of Lie Group and Lie Algebra

Let
{

x1, x2, ..., xn} be a local coordinate system on M, the Christoffel’s symbols Γk
ij of the connection

D are defined by:

D ∂
∂xi

∂

∂xj =
n

∑
k=1

Γk
ij

∂

∂xk (112)

The torsion tensor T of D is given by:

T (X, Y) = DXY− DYX− [X, Y] (113)

T
(

∂

∂xi ,
∂

∂xj

)
=

n

∑
k=1

Tk
ij

∂

∂xk with Tk
ij = Γk

ij − Γk
ji (114)

The curvature tensor R of D is given by:

R (X, Y) Z = DXDYZ− DYDXZ− D[X,Y]Z (115)
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R
(

∂

∂xk ,
∂

∂xl

)
∂

∂xj = ∑
i

Ri
jkl

∂

∂xi with Ri
jkl =

∂Γi
l j

∂xk −
∂Γi

kj

∂xl + ∑
m

(
Γm

lj Γi
km − Γm

kjΓ
i
lm

)
(116)

The Ricci tensor Ric of D is given by:

Ric (Y, Z) = Tr {X → R (X, Y) Z} (117)

Rjk = Ric
(

∂

∂xj ,
∂

∂xk

)
= ∑

i
Ri

kij (118)

In the following, we will consider a homogeneous space G/K endowed with a G-invariant
flat connection D (homogeneous flat manifold) written (G/K, D). Koszul has proved a bijective
correspondence between the set of G-invariant flat connections on G/K and the set of affine
representations of the Lie algebra of G. Let (G, K) be the pair of connected Lie group G and its
closed subgroup K. Let g the Lie algebra of G and k be the Lie subalgebra of g corresponding to K.
X∗ is defined as the vector field on M = G/K induced by the 1-parameter group of transformation
e−tX . We denote AX∗ = LX∗ − DX∗ , with LX∗ the Lie derivative.

Let V be the tangent space of G/K at o = {K} and let consider, the following values at o:

f (X) = AX∗ ,o (119)

q(X) = X∗o (120)

where AX∗Y∗ = −DY∗X∗ (where D is a locally flat linear connection: its torsion and curvature tensors
vanish identically), then:

f ([X, Y]) = [ f (X), f (Y)] (121)

f (X)q(Y)− f (Y)q(X) = q ([X, Y]) (122)

where ker (k) = q, and ( f , q) an affine representation of the Lie algebra g:

∀X ∈ g, Xa = ∑
i

(
∑

j
f (X)

j
i x

i + q(X)i

)
∂

∂xi (123)

The 1-parameter transformation group generated by Xa is an affine transformation group of V,
with linear parts given by e−t. f (X) and translation vector parts:

∞

∑
n=1

(−t)n

n!
f (X)n−1q(X) (124)

These relations are proved by using: AX∗Y∗ − AY∗X∗ = [X∗, Y∗]

[AX∗ , AY∗ ] = A[X∗ ,Y]∗
with AX∗Y∗ = −DY∗X∗ (125)

based on the property that the connection D is locally flat and there is local coordinate systems on M
such that D ∂

∂xi

∂
∂xj = 0 with a vanishing torsion and curvature:

T (X, Y) = 0⇒ DXY− DYX = [X, Y] (126)

R (X, Y) Z = 0⇒ DXDYZ− DYDXZ = D[X,Y]Z (127)

deduced from the fact the a locally flat linear connection (vanishing of torsion and curvature).
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Let ω be an invariant volume element on G/K in an affine local coordinate system
{

x1, x2, ..., xn}
in a neighborhood of o:

ω = Φ · dx1 ∧ ...∧ dxn (128)

We can write X∗ = ∑
i

χi ∂
∂xi and develop the Lie derivative of the volume element ω:

LX∗ω = (LX∗Φ) .dx1 ∧ ...∧ dxn + ∑
j

Φ.dx1 ∧ · · · ∧ LX∗dxj ∧ · · · ∧ dxn =

(
X∗Φ +

(
∑
j

∂χj

∂xj

)
Φ

)
dx1 ∧ ...∧ dxn (129)

Since the volume element ω is invariant by G:

LX∗ω = 0⇒ X∗Φ +

(
∑

j

∂χj

∂xj

)
Φ = 0⇒ X∗logΦ = −∑

j

∂χj

∂xj (130)

By using AX∗Y∗ = −DY∗X∗, we have:(
D ∂

∂xi
(AX∗)

)(
∂

∂xj

)
= D ∂

∂xi

(
AX∗

(
∂

∂xj

))
− AX∗

(
D ∂

∂xi

∂
∂xj

)
= −D ∂

∂xi
D ∂

∂xj

(
∑
k

χk ∂
∂xk

)
= −∑

k

∂2χk

∂xi∂xj
∂

∂xk (131)

But as D is locally flat and X∗ is an infinitesimal affine transformation with respect to D:

D ∂
∂xi

(AX∗) = 0⇒ ∂2χk

∂xi∂xj = 0 (132)

The Koszul form and canonical bilinear form are given by:

α = ∑
i

∂logΦ
∂xi dxi = DlogΦ (133)

Dα = ∑
i,j

∂2logΦ
∂xi∂xj dxidxj = DdlogΦ (134)

LX∗α = LX∗DlogΦ = DLX∗ logΦ = DX∗logΦ = −D

(
∑

j

∂χj

∂xj

)
= −∑

,j

∂2χj

∂xi∂xj dxi = 0 (135)

Then, LX∗α = 0 ∀X ∈ g.

By using X∗logΦ = −∑
j

∂χj

∂xj , we can obtain:

α(X∗) = (DlogΦ) (X∗) ⇒
LX∗α=0

DX∗ logΦ = −∑
j

∂χj

∂xj (136)

By using AX∗Y∗ = −DY∗X∗, we can develop:

AX∗

(
∂

∂xj

)
= −D ∂

∂xj
X∗ = −∑

i

∂χi

∂xj
∂

∂xi (137)

As f (X) = AX∗ ,o and q(X) = X∗o :

Tr ( f (X)) = Tr (AX∗ ,o) = −∑
i

∂χi

∂xi (o) = α (X∗0 ) = α0 (q(X)) (138)

If we use that LX∗α = 0 ∀X ∈ g, then we obtain:

(Dα) (X∗, Y∗) = (DY∗α) (X∗) = − (AY∗α) (X∗) = −AY∗ (α(X∗)) + α (AY∗X∗) = α (AY∗X∗) (139)
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Dα0 (q(X), q(Y)) = α0 ( f (Y)q(X)) (140)

To synthetize the result proved by Jean-Louis Koszul, if αo and Dαo are the values of α and Dα

at o, then:

αo (q(X)) = Tr ( f (X)) ∀X ∈ g (141)

Dαo (q(X), q(Y)) = 〈q(X), q(Y)〉o = α0 ( f (X)q(Y)) ∀X, Y ∈ g (142)

Jean-Louis Koszul has also proved that the inner product 〈., .〉 on V, given by the Riemannian
metric gij, satisfies the following conditions:

〈 f (X)q(Y), q(Z)〉+ 〈q(Y), f (X)q(Z)〉 = 〈 f (Y)q(X), q(Z)〉+ 〈q(X), f (Y)q(Z)〉 (143)

To make the link with Souriau model of thermodynamics, the first Koszul form
α = DlogΦ = Tr ( f (X)) will play the role of the geometric heat Q and the second koszul form
Dα = DdlogΦ = 〈q(X), q(Y)〉o will be the equivalent of Souriau-Fisher metric that is G-invariant.

Koszul theory is wider and integrates “information geometry” in its corpus. Koszul [117–124]
has proved general results, for example: on a complex homogeneous space, an invariant volume
defines with the complex structure, an invariant Hermitian form. If this space is a bounded domain,
then this hermitian form is positive definite and coincides with the classical Bergman metric of this
domain. During his stay at Institute for Advanced Study in Princeton, Koszul [117–124] has also
demonstrated the reciprocal for a class of complex homogeneous spaces, defined by open orbits of
complex affine transformation groups. Koszul and Vey [137,138] have also developed extended results
with the following theorem for connected hessian manifolds:

Theorem 3 (Koszul-Vey Theorem). Let M be a connected hessian manifold with hessian metric g. Suppose
that M admits a closed 1-form α such that Dα = g and there exists a group G of affine automorphisms of M
preserving α:

• If M/G is quasi-compact, then the universal covering manifold of M is affinely isomorphic to a
convex domain Ω of an affine space not containing any full straight line.

• If M/G is compact, then Ω is a sharp convex cone.

On this basis, Koszul has given a Lie group construction of a homogeneous cone that has been developed
and applied in information geometry by Shima and Boyom in the framework of Hessian geometry. The results of
Koszul are also fundamental in the framework of Souriau thermodynamics.

7. Souriau Lie Group Model and Koszul Hessian Geometry Applied in the Context of
Information Geometry for Multivariate Gaussian Densities

We will enlighten Souriau model with Koszul hessian geometry applied in information
geometry [117–124], recently studied in [3,9,139]. We have previously shown that information geometry
could be founded on the notion of Koszul-Vinberg characteristic function ψΩ(x) =

r

Ω∗
e−〈x,ξ〉dξ, ∀x ∈ Ω

where Ω is a convex cone and Ω∗ the dual cone with respect to Cartan-Killing inner product
〈x, y〉 = −B (x, θ(y)) invariant by automorphisms of Ω, with B (., .) the Killing form and θ(.) the
Cartan involution. We can develop the Koszul characteristic function:

ψΩ(x + λu) = ψΩ(x)− λ 〈x∗, u〉+ λ2

2
〈K(x)u, u〉+ ... (144)

with x∗ =
dΦ(x)

dx
, Φ(x) = −logψΩ(x) and K(x) =

d2Φ(x)
dx2 (145)
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This characteristic function is at the cornerstone of modern concept of information geometry,
defining Koszul density by solution of maximum Koszul-Shannon entropy [140]:

Max
p

[
−

w

Ω∗
pξ̂(ξ)logpξ̂(ξ) · dξ

]
such that

w

Ω∗
pξ̂(ξ)dξ = 1 and

w

Ω∗
ξ · pξ̂(ξ)dξ = ξ̂ (146)

pξ̂(ξ) =
e−〈Θ

−1(ξ̂),ξ〉
r

Ω∗
e−〈Θ−1(ξ̂),ξ〉.dξ

ξ̂ = Θ(β) = ∂Φ(β)
∂β where Φ(β) = −logψΩ(β)

ψΩ(β) =
r

Ω∗
e−〈β,ξ〉dξ , S(ξ̂) = −

r

Ω∗
pξ̂(ξ)logpξ̂(ξ) · dξ and β = Θ−1(ξ̂)

S(ξ̂) =
〈
ξ̂, β
〉
−Φ(β)

(147)

This last relation is a Legendre transform between the logarithm of characteristic function and
the entropy:

logpξ̂(ξ) = − 〈ξ, β〉+ Φ(β)

S(
−
ξ ) = −

r

Ω∗
pξ̂(ξ) · logpξ̂(ξ) · dξ = −E

[
logpξ̂(ξ)

]
S(
−
ξ ) = 〈E [ξ] , β〉 −Φ(β) =

〈
ξ̂, β
〉
−Φ(β)

(148)

The inversion Θ−1(ξ̂) is given by the Legendre transform based on the property that the
Koszul-Shannon entropy is given by the Legendre transform of minus the logarithm of the
characteristic function:

S(ξ̂) =
〈

β, ξ̂
〉
−Φ(β) with Φ(β) = −log

w

Ω∗
e−〈ξ,β〉dξ ∀β ∈ Ω and ∀ξ, ξ̂ ∈ Ω∗ (149)

We can observe the fundamental property that E [S(ξ)] = S (E [ξ]) , ξ ∈ Ω∗, and also as
observed by Maurice Fréchet that “distinguished functions” (densities with estimator reaching the
Fréchet-Darmois bound) are solutions of the Alexis Clairaut equation introduced by Clairaut in 1734 [141],
as illustrated in Figure 8:

S(ξ̂) =
〈

Θ−1(ξ̂), ξ̂
〉
−Φ

[
Θ−1(ξ̂)

]
∀ξ̂ ∈ {Θ(β)/β ∈ Ω} (150)
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Details of Fréchet elaboration for this Clairaut(-Legendre) equation for “distinguished function”
is given in Appendix A, and other elements are available on Fréchet’s papers [141–144].

In this structure, the Fisher metric I(x) makes appear naturally a Koszul hessian geometry [145,146],
if we observe that
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logpξ̂(ξ) = − 〈ξ, β〉+ Φ(β)

S(
−
ξ ) = −

r

Ω∗
pξ̂(ξ) · logpξ̂(ξ) · dξ = −E

[
logpξ̂(ξ)

]
S(
−
ξ ) = 〈E [ξ] , β〉 −Φ(β) =

〈
ξ̂, β
〉
−Φ(β)

(151)

Then we can recover the relation with Fisher metric:

I(β) = −E

[
∂2logpβ(ξ)

∂β2

]
= −E

[
∂2 (− 〈ξ, β〉+ Φ(β))

∂β2

]
= −∂2Φ(β)

∂β2

ξ̂ =
∂Φ(β)

∂β

I(β) = E

[
∂logpβ(ξ)

∂β

∂logpβ(ξ)

∂β

T]
= E

[(
ξ − ξ̂

) (
ξ − ξ̂

)T
]
= E

[
ξ2]− E [ξ]2 = Var(ξ)

(152)

with Crouzeix relation established in 1977 [147,148],
∂2Φ
∂β2 =

[
∂2S
∂ξ̂2

]−1

giving the dual metric, in

dual space, where entropy S and (minus) logarithm of characteristic function, Φ, are dual potential
functions.

The first metric of information geometry [149,150], the Fisher metric is given by the hessian of the
characteristic function logarithm:

I(β) = −E

[
∂2logpβ(ξ)

∂β2

]
= −∂2Φ(β)

∂β2 =
∂2logψΩ(β)

∂β2 (153)

ds2
g = dβT I(β)dβ = ∑

ij
gijdβidβ j with gij = [I(β)]ij (154)

The second metric of information geometry is given by hessian of the Shannon entropy:

∂2S(ξ̂)
∂ξ̂2

=

[
∂2Φ(β)

∂β2

]−1

with S(ξ̂) =
〈
ξ̂, β
〉
−Φ(β) (155)

ds2
h = dξ̂T

[
∂2S(ξ̂)

∂ξ̂2

]
dξ̂ = ∑

ij
hijdξ̂idξ̂ j with hij =

[
∂2S(ξ̂)

∂ξ̂2

]
ij

(156)

Both metrics will provide the same distance:

ds2
g = ds2

h (157)

From the Cartan inner product, we can generate logarithm of the Koszul characteristic function,
and its Legendre transform to define Koszul entropy, Koszul density and Koszul metric, as explained
in the following Figure 9:
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We will in the following illustrate information geometry for multivariate Gaussian  
density [169]: 
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We can apply this Koszul geometry framework for cones of symmetric positive definite matrices.
Let the inner product 〈η, ξ〉 = Tr

(
ηTξ

)
, ∀η, ξ ∈ Sym(n) given by Cartan-Killing form, Ω be the set of

symmetric positive definite matrices is an open convex cone and is self-dual Ω∗ = Ω.

〈η, ξ〉 = Tr
(
ηTξ

)
, ∀η, ξ ∈ Sym(n)

ψΩ(β) =
r

Ω∗
e−〈β,ξ〉dξ = det(β)−

n+1
2 ψΩ(Id)

ξ̂ =
∂Φ(β)

∂β
=

∂(−logψΩ(β))

∂β
=

n + 1
2

β−1

(158)

pξ̂(ξ) = e−〈Θ
−1(ξ̂),ξ〉+Φ(Θ−1(ξ̂)) = ψΩ (Id) ·

[
det

(
αξ̂−1

)]
· e−Tr(αξ̂−1ξ)

with α =
n + 1

2

(159)

We will in the following illustrate information geometry for multivariate Gaussian density [169]:

pξ̂(ξ) =
1

(2π)n/2 det(R)1/2 e−
1
2 (z−m)T R−1(z−m) (160)

If we develop:

1
2
(z−m)T R−1(z−m) =

1
2
[
zT R−1z−mT R−1z− zT R−1m + mT R−1m

]
=

1
2

zT R−1z−mT R−1z + 1
2 mT R−1m

(161)

We can write the density as a Gibbs density:

pξ̂(ξ) =
1

(2π)n/2 det(R)1/2e
1
2 mT R−1m

e−[−mT R−1z+ 1
2 zT R−1z] =

1
Z

e−〈ξ,β〉

ξ =

[
z

zzT

]
and β =

 −R−1m
1
2

R−1

 =

[
a
H

]

with 〈ξ, β〉 = aTz + zT Hz = Tr
[
zaT + HTzzT]

(162)
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We can then rewrite density with canonical variables:

pξ̂(ξ) =
1

r

Ω∗
e−〈ξ,β〉.dξ

e−〈ξ,β〉 =
1
Z

e−〈ξ,β〉 with log (Z) = nlog(2π) +
1
2

logdet(R) +
1
2

mT R−1m

ξ =

[
z

zzT

]
, ξ̂ =

[
E [z]

E
[
zzT]

]
=

[
m

R + mmT

]
, β =

[
a
H

]
=

 −R−1m
1
2

R−1


with 〈ξ, β〉 = Tr

[
zaT + HTzzT]

R = E
[
(z−m) (z−m)T

]
= E

[
zzT −mzT − zmT + mmT] = E

[
zzT]−mmT

(163)

The first potential function (free energy/logarithm of characteristic function) is given by:

ψΩ(β) =
r

Ω∗
e−〈ξ,β〉 · dξ

and Φ(β) = −logψΩ(β) =
1
2
[
−Tr

[
H−1aaT]+ log

[
(2)ndetH

]
− nlog (2π)

] (164)

We verify the relation between the first potential function and moment:

∂Φ(β)

∂β
=

∂ [−logψΩ(β)]

∂β
=

r

Ω∗
ξ

e−〈ξ,β〉
r

Ω∗
e−〈ξ,β〉 · dξ

· dξ =
r

Ω∗
ξ · pξ̂(ξ)·dξ = ξ̂

∂Φ(β)

∂β
=

 ∂Φ(β)

∂a
∂Φ(β)

∂H

 =

[
m

R + mmT

]
= ξ̂

(165)

The second potential function (Shannon entropy) is given as a Legendre transform of the first one:

S(ξ̂) =
〈
ξ̂, β
〉
−Φ(β) with ∂Φ(β)

∂β = ξ̂ and ∂S(ξ̂)
∂ξ̂

= β

S
(
ξ̂
)
= −

r

Ω∗

e−〈ξ,β〉
r

Ω∗
e−〈ξ,β〉 ·dξ

log e−〈ξ,β〉
r

Ω∗
e−〈ξ,β〉 ·dξ

· dξ = −
r

Ω∗
pξ̂(ξ)logpξ̂(ξ) · dξ

(166)

S(ξ̂) = −
r

Ω∗
pξ̂(ξ)logpξ̂(ξ) · dξ =

1
2
[
log(2)ndet

[
H−1]+ nlog (2π · e)

]
=

1
2
[logdet [R] + nlog (2π · e)] (167)

This remark was made by Jean-Souriau in his book [10] as soon as 1969. He has observed, as

illustrated in Figure 10 that if we take vector with tensor components ξ =

(
z

z⊗ z

)
, components of

ξ̂ will provide moments of the first and second order of the density of probability pξ̂(ξ). He used this

change of variable z′ = H1/2z + H−1/2a, to compute the logarithm of the characteristic function Φ(β):
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We can finally compute the metric from the matrix gij:

ds2 = ∑
ij

gijdθidθj = dmT R−1dm +
1
2

Tr
[(

R−1dR
)2
]

(168)

and from classical expression of the Euler-Lagrange equation:

n

∑
i=1

gik
..
θi +

n

∑
i,j=1

Γijk
.
θi

.
θ j = 0 , k = 1, ..., n with Γijk =

1
2

[
∂gjk

∂θi
+

∂gjk

∂θj
+

∂gij

∂θk

]
(169)

That is explicitely given by [170]:{ ..
R +

.
m

.
mT −

.
RR−1

.
R = 0

..
m−

.
RR−1 .

m = 0
(170)

We cannot integrate this Euler-Lagrange equation. We will see that Lie group theory will provide
new reduced equation, Euler-Poincaré equation, using Souriau theorem.

We make reference to the book of Deza that gives a survey about distance and metric space [171].
The case of Natural Exponential families that are invariant by an affine group has been studied by

Casalis (in 1999 paper and in her Ph.D. thesis) [172–178] and by Letac [179–181]. We give the details
of Casalis’ development in Appendix C. Barndorff-Nielsen has also studied transformation models
for exponential families [182–186]. In this section, we will only consider the case of multivariate
Gaussian densities.

8. Affine Group Action for Multivariate Gaussian Densities and Souriau’s Moment Map:
Computation of Geodesics by Geodesic Shooting

To more deeply understand Koszul and Souriau Lie group models of information geometry,
we will illustrate their tools for multivariate Gaussian densities.

Consider the general linear group GL(n) consisting of the invertible n × n matrices, that is a
topological group acting linearly on Rn by:
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GL(n)× Rn → Rn

(A, x) 7→ Ax
(171)

The group GL(n) is a Lie group, is a subgroup of the general affine group GA(n), composed of
all pairs (A, υ) where A ∈ GL(n) and υ ∈ Rn, the group operation given by:

(A1, υ1) (A2, υ2) = (A1 A2, A1υ2 + υ1) (172)

GL(n) is an open subset of Rn2
, and may be considered as n2-dimensional differential manifold with the

same differentiable structure than Rn2
. Multiplication and inversion are infinitely often differentiable

mappings. Consider the vector space gl(n) of real n × n matrices and the commutator product:

gl(n)× gl(n)→ gl(n)
(A, B) 7→ AB− BA = [A, B]

(173)

This is a Lie product making gl(n) into a Lie algebra. The exponential map is then the mapping
defined by:

exp:gl(n)→ GL(n)

A 7→ exp(A) =
∞
∑

n=0

An

n!

(174)

Restricting A to have positive determinant, one obtains the positive general affine group GA+(n)
that acts transitively on Rn by:

((A, υ) , x) 7→ Ax + υ (175)

In case of symmetric positive definite matrices Sym+(n), we can use the Cholesky decomposition:

R = LLT (176)

where L is a lower triangular matrix with real and positive diagonal entries, and LT denotes the
transpose of L, to define the square root of R.

Given a positive semidefinite matrix R, according to the spectral theorem, the continuous
functional calculus can be applied to obtain a matrix R1/2 such that R1/2 is itself positive and
R1/2R1/2 = R. The operator R1/2 is the unique non-negative square root of R.

Nn = {ℵ(µ, Σ)/µ ∈ Rn, Σ ∈ Sym+
n} the class of regular multivariate normal distributions,

where µ is the mean vector and Σ is the (symmetric positive definite) covariance matrix, is invariant
under the transitive action of GA(n). The induced action of GA(n) on Rn × Sym+

n is then given by:

GA(n)× (Rn × Sym+n)→ Rn × Sym+n

((A, υ) , (µ, Σ)) 7→
(

Aµ + υ, AΣAT) (177)

and

GA(n)× Rn → Rn

((A, υ) , x) 7→ Ax + υ
(178)

As the isotropy group of (0, In) is equal to O(n), we can observe that:

Nn = GA(n)/O(n) (179)

Nn is an open subset of the vector space Tn = {(η, Ω) /η ∈ Rn, Ω ∈ Symn} and is a differentiable
manifold, where the tangent space at any point may be identified with Tn.
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The Fisher information defines a metric given to Nn a Riemannian manifold structure. The inner
product of two tangent vectors (η1, Ω1) ∈ Tn, (η2, Ω2) ∈ Tn at the point (µ, Σ) ∈ Nn is given by:

g(µ,Σ)) ((η1, Ω1) , (η1, Ω1)) = ηT
1 Σ−1η2 +

1
2

Tr
(

Σ−1Ω1Σ−1Ω2

)
(180)

Niels Christian Bang Jesperson has proved that the transformation model on Rn with parameter
set Rn × Sym+

n are exactly those of the form pµ,Σ = fµ,Σλ where λ is the Lebesque measure,

where fµ,Σ(x) = h
(
(x− µ)T Σ−1 (x− µ)

)
/det (Σ)1/2 and h : [0,+∞[ → R+ is a continuous function

with
+∞r

0
h(s)s

n
2−1ds < +∞. Distributions with densities of this form are called elliptic distributions.

To improve understanding of tools, we will consider GA(n) as a sub-group of affine group,
that could be defined by a matrix Lie group Ga f f , that acts for multivariate Gaussian laws, as illustrated
in Figure 11:

[
Y
1

]
=

[
R1/2 m

0 1

] [
X
1

]
=

[
R1/2X + m

1

]
,


(m, R) ∈ Rn × Sym+(n)

M =

[
R1/2 m

0 1

]
∈ Ga f f

X ≈ ℵ(0, I)→ Y ≈ ℵ(m, R)

(181)

We can verify that M is a Lie group with classical properties, that product of M preserves the
structure, the associativity, the non-commutativity, and the existence of neutral element:

M1 ·M2 =

[
R1/2

1 m1

0 1

] [
R1/2

2 m2

0 1

]
=

[
R1/2

1 R1/2
2 R1/2

1 m2 + m1

0 1

]

M2 ·M1 =

[
R1/2

2 m2

0 1

] [
R1/2

1 m1

0 1

]
=

[
R1/2

2 R1/2
1 R1/2

2 m1 + m2

0 1

]


⇒



M1 ·M2 ∈ Ga f f
M2 ·M1 ∈ Ga f f
M1 ·M2 6= M2 ·M1

M1 · (M2 ·M3) = (M1 ·M2) ·M3

M1 · I = M1

(182)

We can also observe that the inverse preserves the structure:

M =

[
R1/2 m

0 1

]
⇒ M−1

R = M−1
L = M−1 =

[
R−1/2 −R−1/2m

0 1

]
∈ Ga f f (183)

To this Lie group we can associate a Lie algebra whose underlying vector space is the tangent
space of the Lie group at the identity element and which completely captures the local structure of
the group. This Lie group acts smoothly on the manifold, and acts on the vector fields. Any tangent
vector at the identity of a Lie group can be extended to a left (respectively right) invariant vector field
by left (respectively right) translating the tangent vector to other points of the manifold. This identifies
the tangent space at the identity g = TI(G) with the space of left invariant vector fields, and therefore
makes the tangent space at the identity into a Lie algebra, called the Lie algebra of G.

LG :

{
Ga f f → Ga f f

M 7→ LM N = M · N and RG :

{
Ga f f → Ga f f

M 7→ RM N = N ·M (184)
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We can verify that M is a Lie group with classical properties, that product of M preserves the 
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We can also observe that the inverse preserves the structure: 

affLR G
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mR
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Considering the curve γ(t) and its derivative
.
γ(t):

γ(t) =

[
R1/2(t) m(t)

0 1

]
and

.
γ(t) =

[ .
R

1/2
(t)

.
m(t)

0 0

]
(185)

We can consider the curve with the point γ(0) moved at the identity element on the left or on the
right. Then, the tangent plan at identity element provides the Lie algebra:

ΓL(t) = LM−1 (γ(t)) =

[
R−1/2R1/2(t) R−1/2 (m(t)−m)

0 1

]
(186)

.
ΓL(t)

∣∣∣
t=0

=

[
R−1/2

.
R

1/2
(0) R−1/2 .

m(0)
0 1

]
= d

dt (LM−1(γ(t)))
∣∣∣
t=0

= dLM−1
.
γ(0) = dLM−1

.
M (187)

Lie algebra on the right and on the left is the defined by:

dLM−1 : TM(G)→ gL
.

M 7→ ΩL = dLM−1

.
M = M−1

.
M =

[
R−1/2

.
R

1/2
R−1/2 .

m
0 0

]
(188)

dRM−1 : TM(G)→ gR
.

M 7→ ΩR = dRM−1

.
M =

.
MM−1 =

[
R−1/2

.
R

1/2 .
m− R−1/2

.
R

1/2 .
m

0 0

]
(189)

We can then observe the velocities in two different ways, either by placing in a fixed outside
frame, either by putting in place of the element in the process of moving by placing in the reference
frame of the element.[

X(t)
1

]
= M

[
x
1

]
⇒
[ .

X(t)
0

]
= ΩR

[
X(t)

1

]
with x fixed (190)

[
x(t)

1

]
= M−1

[
X
1

]
⇒
[ .

x(t)
0

]
= −ΩL

[
X
1

]
with X fixed (191)

In the following, we will complete the global view by the operators which will allow to link
algebra (from the left or the right) between them and also connect to their dual. We will first consider
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the automorphisms, the action by conjugation of the Lie group on itself that allows this operator to
carry a member of the group.

AD : G× G → G

M, N 7→ ADM N = M.N.M−1
(192)


M1 =

[
R1/2

1 m1

0 1

]
, M2 =

[
R1/2

2 m2

0 1

]

ADM1 M2 =

[
R1/2

2 −R1/2
2 m1 + R1/2

1 m2 + m1

0 1

] (193)

If now we consider a curve N(t) curve on the manifold via the identity at t = 0. Its image by the
previous operator will be then curve γ = M · N(t) ·M−1 passing through identity element at t = 0.
As

.
N(0) is an element of the Lie algebra and its image by previous conjugation operator is called the

Adjoint operator:

Ad : G× g→ g

M, n 7→ AdMn = M.n.M−1 = d
dt

∣∣∣
t=0

(ADM N(t)) with

{
N(0) = I

.
N(0) = n ∈ g

(194)

We can then compute the Adjoint operator for the previous Lie group:



n2L =

 R−1/2
2

.
R

1/2
2 R−1/2

2
.

m2

0 0

 , n2R =

 R−1/2
2

.
R

1/2
2 −R−1/2

2

.
R

1/2
2 m2 +

.
m2

0 0


AdM1 n2L = n2R and AdM2n2R =

 R−1/2
2

.
R

1/2
2 −R−1/2

2

.
R

1/2
2 m2 +

.
R

1/2
2 m2 + R1/2

2
.

m2

0 0

 , AdM−1
1

n2R = n2L

(195)

We recall that the Lie algebra has been defined as the tangent space at the identity of a Lie group.
We will then introduce a Lie bracket [., .], the expression of the operator associated with the combined
action of the Lie algebra on itself, called an adjoint operator. The adjoint operator represents the action
by conjugation of the Lie algebra on itself and is defined by:

ad : g× g→ g

n, m 7→ admn = m · n− n ·m = d
dt

∣∣∣
t=0

(AdMn(t)) = [m, n] with

{ .
N(0) = n ∈ g
.

M(0) = m ∈ g

(196)

We can then compute this operator for our use case:

n1L =

 R−1/2
1

.
R

1/2
1 R−1/2

1
.

m1

0 0

 , n2L =

 R−1/2
2

.
R

1/2
2 R−1/2

2
.

m2

0 0

 (197)

adn1L n2L = [n1L, n2L] =

 0 R−1/2
1

(
.
R

1/2
1

.
m2 −

.
R

1/2
2

.
m1

)
R−1/2

2

0 0

 (198)

adn1R n2R = [n1R, n2R] =

 0 R−1/2
1

.
R

1/2
1

(
−R−1/2

2

.
R

1/2
2 m2 +

.
m2

)
− R−1/2

2

.
R

1/2
2

(
−R−1/2

1

.
R

1/2
1 m1 +

.
m1

)
0 0

 (199)
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To study the geodesic trajectories of the group, we consider the Lagrangian from the total kinetic
energy (a quadratic form on speeds). It may therefore in particular be written in the left algebra “left”,
with the scalar product associated with the metric.

EL =
1
2
〈nL, nL〉 =

1
2

Tr
[
nT

L nL

]
(200)

If we consider as scalar product:

〈., .〉 : g∗ × g→ R

k, n 7→ 〈k, n〉 = Tr
(
kTn

) (201)

and left algebra:

nL =

 R−1/2
.
R

1/2
R−1/2 .

m

0 0

 (202)

we obtain for the total kinetic energy

EL =
1
2

(
Tr
(

R−1
.
R
)
+

.
mT R−1 .

m
)

(203)

We will then introduce the coadjoint operator that will enable us to work on the elements
of the dual algebra of the Lie algebra defined above. Like algebra, which is physically the space
of instantaneous speeds, the dual algebra is the space of moments. For the dual of left algebra,
the moment is given by:

ΠL =
∂EL
∂nL

= nL (204)

Where EL is the kinetic energy of the system and is currently associated with ΠL is an element of
the left algebra. The moment space is the dual algebra, denoted g∗, associated with the Lie algebra g.
This value is deduced from the computation:〈

∂EL
∂nL

, δU
〉

= Lim
ε→0

EL(nL + ε · δU)− EL(nL)

ε

with EL(nL + ε · δU) =
1
2
〈nL + ε.δU, nL + ε · δU〉 = 1

2
(nL + ε · δU)T (nL + ε · δU)〈

∂EL
∂nL

, δU
〉

= 2 · 1
2

tr
(
ηT

L δU
)
= 〈nL, δU〉 ⇒ ∂EL

∂nL
= nL

(205)

Then the moment map is given by:

αM : g→ g∗
nL 7→ ΠL = ηL

(206)

We can observe that the application that turns left algebra into dual algebra is the identity
application but, physically, the first are moments and the seconds are instantaneous speeds.

We can also define the moment ΠR associated to the right algebra ηR by:

〈ΠL, nL〉 =
〈

ΠL, M−1nR M
〉
= 〈ΠR, nR〉 (207)
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But as ΠL = nL, we can deduce that:〈
nL, M−1nR M

〉
= 〈ΠR, nR〉

with M =

[
R1/2 m

0 1

]
, nL =

[
R−1/2

.
R

1/2
R−1/2 .

m
0 0

]
and ηR =

[
R−1/2

.
R

1/2 .
m− R−1/2

.
R

1/2 .
m

0 0

]

⇒ ΠR =

[
R−1/2

.
R

1/2
+ R−1 .

mmT R−1 .
m

0 0

] (208)

Then, the operator that transform the right algebra to its dual algebra is given by:

βM : g→ g∗

nR =

[
ηR1 ηR2

0 0

]
7→ ΠR =

[
ηR1

(
1 + mT R−1m

)
+ ηR2mT R−1 ηR1R−1m + R−1ηR2

0 0

]
(209)

There is an operator to change the view of algebra. Therefore, there is an operator that did the
same to the dual algebra. This is called the co-adjoint operator and it is the conjugate action of the Lie
group on its dual algebra:{

Ad∗ : G× g∗ → g

M, η 7→ Ad∗Mη
with 〈Ad∗Mη, n〉 = 〈η, AdMn〉 where n ∈ g (210)

We can then develop this expression for our use in the case of an affine sup-group. We find:


M =

[
A b
0 1

]
∈ G

η =

[
η1 η2

0 0

]
∈ g∗

n =

[
n1 n2

0 0

]
∈ g

⇒


〈

Ad∗Mη, n
〉
= 〈η, AdMn〉 =

〈
η, MnM−1〉

〈
Ad∗Mη, n

〉
=

〈[
η1 − η2bT Aη2

0 0

]
, n

〉
⇒ Ad∗Mη =

[
η1 − η2bT Aη2

0 0

]
(211)

and we can also observe that:

Ad∗M−1 η =

[
η1 + Aη2bT Aη2

0 0

]
(212)

Similarly there exists the following relation between the left and the right algebras:

Ad∗MΠR = ΠL and Ad∗M−1 ΠL = ΠR (213)

As we have defined a commutator on the Lie algebra, it is possible to define one on its dual
algebra. This commutator on the dual algebra can also be defined using the operator expressing the
combined action of the algebra of its dual algebra. This operator is called the co-adjoint operator:{

ad∗ : g× g∗ → g∗

n, η 7→ ad∗nη
with 〈ad∗nη, κ〉 = 〈η, adnκ〉 where κ ∈ g (214)

We can develop this co-adjoint operator on its dual algebra for our use-case:
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

κ =

[
κ1 κ2

0 0

]
∈ G

η =

[
η1 η2

0 0

]
∈ g∗

n =

[
n1 n2

0 0

]
∈ g

⇒


〈ad∗nη, κ〉 = 〈η, adnκ〉 = 〈η, nκ − κn〉

〈ad∗nη, κ〉 =
〈[
−η2nT

2 n1η2

0 0

]
, κ

〉
⇒


ad∗nη =

[
−η2nT

2 n1η2

0 0

]
ad∗nη = {n, η}

(215)

This co-adjoint operator will give the Euler-Poincaré equation. While the Euler-Lagrange
equations is defined on the tangent bundle (union of the tangent spaces at each point) of the manifold
and give the geodesics, the Euler-Poincaré equation gives a differential system on the dual Lie algebra
of the group associated with the manifold.

We can also complete these maps by using additional ones. First, p ∈ T∗MG the moment associated
with

.
M ∈ TMG in tangent space of G at M and also two other moments map the element of the dual

algebra in dual tangent space, respectively on the left and on the right:
〈ΠL, nL〉 =

〈
dL∗M−1 ΠL,

.
M
〉

〈
ΠL, dLM−1

.
M
〉
=
〈

ΠL, M−1
.

M
〉 ⇒ p =

(
M−1

)T
ΠL (216)

where

dL∗M−1 : g∗L → T∗MG

ΠL 7→ p =
(

M−1)T ΠL

and
dR∗M−1 : g∗R → T∗MG

ΠR 7→ p = ΠR
(

M−1)T
(217)

From these relations, we can also observe that:

ΠL = nL = M−1
.

M

⇒

 p =
(

M−1)T M−1
.

M

p = ΞM ·
.

M with ΞM =
(

M−1)T M−1

(218)

All these maps could be summarized in the following Figure 12:Entropy 2016, 18, 386 43 of 69 
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Heni Poincaré proved that when a Lie algebra acts locally and transitively on the configuration
space of a Lagrangian mechanical system, the Euler-Lagrange equations are equivalent to a new system
of differential equations defined on the product of the configuration space with the Lie algebra.

If we consider that the following function is stationary for a Lagragian l(.) invariant with respect
to the action of a group on the left:

S(ηL) =
bw

a
l(ηL)dt with δS(ηL) = 0 and l : g→ R (219)

The solution is given by the Euler-Poincaré equation:

d
dt

δl
δηL

= ad∗ηL

δl
δηL

δηL =
.
Γ + adηL Γ where Γ(t) ∈ g

(220)

If we take for the function l(.), the total kinetic energy EL, using ΠL = M−1
.

M = ∂EL
∂nL
∈ gL, then the

Euler-Poincaré equation is given by:

dΠL
dt

= ad∗nL
ΠL with

δl
δηL

=
∂EL
∂nL

= ΠL ∈ gL (221)

The following quantities are conserved:

dΠR
dt

= 0 (222)

With this second theorem, it is possible to write the geodesic not from its coordinate system but
from the quantity of motion, and in addition to determine explicitly what the conserved quantities
along the geodesic are (conservations are related to the symmetries of the variety and hence the
invariance of the Lagrangian under the action of the group).

For our use-case, the Euler-Poincaré equation is given by:

{ .
ηL1 = −ηL2ηT

L2
.
ηL2 = ηL2ηL1

with

 ηL1 = R−1/2
.
R

1/2

ηL2 = R−1/2 .
m

⇒


(

R−1/2
.
R

1/2
)•

= −R−1/2 .
m

.
mT R−1/2

(
R−1/2 .

m
)•

=
.
R
−1/2 .

R
1/2

R−1/2 .
m

(223)

If we remark that we have R−1/2
.
R

1/2
= R−1/2

(
R−1/2

.
R
)
= R−1

.
R, then the conserved Souriau

moment could be given by:

ΠR =

[
R−1/2

.
R

1/2
+ R−1 .

mmT R−1 .
m

0 0

]
=

[
R−1

.
R + R−1 .

mmT R−1 .
m

0 0

]
(224)

Components of the Souriau moment give the conserved quantities that are the classical elements
given by Emmy Noether Theorem (Souriau moment is a geometrization of Emmy Noether Theorem):

dΠR
dt

=

 d
(

R−1
.
R+R−1 .

mmT
)

dt
d(R−1 .

m)
dt

0 0

 = 0⇒

 R−1
.
R + R−1 .

mmT = B = cste

R−1 .
m = b = cste

(225)

From this constant, we can obtain a reduced equation of geodesic:
.

m = Rb
.
R = R

(
B− bmT) (226)
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This is the Euler-Poincaré equation of geodesic. We can observe that we have obtained a reduction

of the following Euler-Lagrange equation [27,156,187]:

{ ..
R +

.
m

.
mT −

.
RR−1

.
R = 0

..
m−

.
RR−1 .

m = 0
associated to the

information geometry metric ds2 = dmT R−1dm + 1
2 Tr

((
R−1dR

)2
)

.

The Fisher information defines a metric turning Nn = {(m, R) ∈ Rn × Sym+(n)} into a
Riemannian manifold. The inner product of two tangent vectors (m1, R1) ∈ Tn and (m2, R2) ∈ Tn at
the point (µ, Σ) ∈ Nn is given by:

g(µ,Σ) ((m1, R1) , (m2, R2)) = mT
1 Σ−1m2 +

1
2

tr
(

Σ−1R1Σ−1R2

)
(227)

and the geodesic is given by:

l (χ) =
t1w

t0

√
gχ(t)

( .
χ(t),

.
χ(t)

)
dt (228)

We can also observe that the manifold of multivariate Gaussian is homogeneous with respect to
positive affine group GA+(n):

ds2
Y = ds2

X for Y = Σ1/2X + µ with GA+(n) = {(µ, Σ) ∈ R× GL(R)/det(Σ) > 0} (229)

characterized by the action of the group (m, R) 7→ ρ.(m, R) =
(

Σ1/2m + µ, Σ1/2RΣ1/2T
)

, ρ ∈ GA+(n)

with

[
Y
1

]
=

[
Σ1/2 µ

0 1

] [
X
1

]
(230)

ds2
Y = d

(
Σ1/2m + µ

)T (
Σ1/2RΣ1/2T

)−1
d
(

Σ1/2m + µ
)
+

1
2

Tr

(((
Σ1/2RΣ1/2T

)−1
d
(

Σ1/2RΣ1/2T
))2

)

ds2
Y = dmT R−1dm +

1
2

Tr
((

R−1dR
)2
)
= ds2

X

(231)

Since the special orthogonal group SO(n) = {δ ∈ GL(R)/det(δ) = 1} is the stabilizer subgroup
of (0, In), we have the following isomorphism:

GA+(n)/SO(n)→ Nn = {(m, R) ∈ Rn × Sym+(n)}

ρ = (µ, Σ) 7→ ρ. (0, In) =
(

µ, Σ1/2Σ1/2T
)
= (µ, Σ)

(232)

We can then restrict the computation of the geodesic from (0, In) and then we can partially
integrate the system of equations: 

.
m = Rb
.
R = R

(
B− bmT) (233)

where
(

R−1(0)
.

m(0), R−1(0)
( .

R(0)+
.

m(0)m(0)T
))

= (b, B) ∈ Rn× Symn(R) are the integration constants.
From this Euler-Poincaré equation, we can compute geodesics by geodesic shooting [188–191]

using classical Eriksen equations [192–195], by the following change of parameters:

{
∆(t) = R−1(t)

δ(t) = R−1(t)m(t)
⇒


.
∆ = −B∆+ bmT

.
δ = −Bδ+

(
1+ δT∆−1δ

)
b

∆(0) = Ip, δ(0) = 0

with


.
∆(0) = −B
.
δ(0) = b

(234)
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The initial speed of the geodesic is given by
( .

δ(0),
.
∆(0)

)
. The geodesic shooting is given by the

exponential map:

Λ(t) = exp (tA) =
∞

∑
n=0

(tA)n

n!
=

 ∆ δ Φ
δT ε γT

ΦT γ Γ

 with A =

 −B b 0
bT 0 −bT

0 −b B

 (235)

This equation can be interpreted by group theory. A could be considered as an element
of Lie algebra so (n+ 1, n) of the special Lorentz group SOO(n + 1, n) and more specifically as the
element p of Cartan Decomposition l+ p where l is the Lie algebra of a maximal compact sub-group
K = S (O(n+ 1)×O(n)) of the group G = SOO(n+ 1, n). We know that its exponential map defines a
geodesic on Riemannian Symetric space G/K.

This equation can be established by the following developments:

.
Λ(t) = A.Λ(t)⇒


.
∆

.
δ

.
Φ

.
δ

T .
ε

.
γ

T

.
Φ

T .
γ

.
Γ

 =

 −B b 0
bT 0 −bT

0 −b B

 .

 ∆ δ Φ
δT ε γT

ΦT γ Γ

 (236)

We can then deduce that: 
.
∆ = −B∆+ bδT

.
δ = −Bδ+ εb

(237)

If ε = 1+ δT∆−1δ, then (∆, δ) is solution to the geodesic equation previously defined. Since ε(0) = 1,
it suffices to demonstrate that

.
ε =

.
τ where τ = δT∆−1δ.

From
.

Λ(t) = Λ(t).A, using that
.
δ

T
= bT∆− bTΦT, we can deduce:{ .

ε = bTδ− bTγ

.
τ = bTδ− bT ((τ− ε)∆−1δ+ΦT∆−1δ

) (238)

Then
.
ε =

.
τ, if γ = (τ− ε)∆−1δ + Φ∆−1δ, that could be verified using relation Λ.Λ−1 = I, by

observing that:

Λ−1 = exp(−tA) = Λ(−t) =

 Γ γ ΦT

γT ε δT

Φ δ ∆

 (239)

Λ.Λ−1 = I⇒
{

∆γ+ εδ+Φδ = 0

∆ΦT + δδT +Φ∆ = 0
⇒
{

γ = −ε∆−1δ−∆−1Φδ

ΦT∆−1 +∆−1δδT∆−1 +∆−1Φ = 0
⇒
{

γ = −ε∆−1δ−∆−1Φδ

ΦT∆−1δ+ τ∆−1δ+∆−1Φδ = 0
(240)

We can then compute γ from two last equations:

γ = (τ− ε)∆−1δ+ΦT∆−1δ (241)

As
.
τ = bTδ− bT ((τ− ε)∆−1δ+ΦT∆−1δ

)
then we can deduce that

.
τ = bTδ− bTγ and then

.
τ =

.
ε.

To interpret elements of Λ, (Γ(t), γ(t)) = (∆(−t), δ(−t)), opposite points to (∆(t), δ(t)), and ε =

1+ δT∆−1δ = 1+γTΓ−1γ.
Then the geodesic that goes through the origin (0, In) with initial tangent vector (b,−B) is the

curve given by (δ(t), ∆(t)). Then the distance computation is reduced to estimate the initial tangent
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vector space related by
(

R−1(0)
.

m(0), R−1(0)
( .

R(0)+
.

m(0)m(0)T
))

= (b, B) ∈ Rn× Symn(R)The distance
will be then given by the initial tangent vector:

d =

√
.

m(0)TR−1(0)
.

m(0)+
1
2

Tr
[(

R−1(0)
.
R(0)

)2
]

(242)

This initial tangent vector will be identified by “Geodesic Shooting”. Let V = logAB:
dVm

dt
=

1
2

(
dR
dt

)
R−1Vm +

1
2

VRR−1
(

dm
dt

)
dVR
dt

=
1
2

((
dR
dt

)
R−1Vm + VRR−1

(
dR
dt

))
− 1

2

((
dm
dt

)
VT

m + VT
m

(
dm
dt

)) (243)

Geodesic Shooting is corrected by using Jacobi Field J and parallel transport: J(t) = ∂χα(t)
∂α

∣∣∣
t=0

solution to d2 J(t)
dt2 + R

(
J(t),

.
χ(t)

) .
χ(t) = 0 with R the Riemann Curvarture tensor.

We consider a geodesic χ between θ0 and θ1 with an initial tangent vector V, and we suppose that
V is perturbated by W, to V + W. The variation of the final point θ1 can be determined thanks to the
Jacobi field with J(0) = 0 and

.
J(0) = W. In term of the exponential map, this could be written:

J(t) =
d

dα
expθ0

(t (V + αW))

∣∣∣∣
α=0

(244)

This could be illustrated in the Figure 13:
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This initial tangent vector will be identified by “Geodesic Shooting”. Let BV Alog= : 

























+






−














+






=







+






=

−−

−−

dt

dm
VV

dt

dm

dt

dR
RVVR

dt

dR

dt

dV

dt

dm
RVVR

dt

dR

dt

dV

T
m

T
mRm

R

Rm
m

2

1

2

1

2

1

2

1

11

11

 
(243) 

Geodesic Shooting is corrected by using Jacobi Field J and parallel transport: 
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tJd χχ   with R the Riemann Curvarture tensor. 

We consider a geodesic χ  between 
0θ  and 

1θ  with an initial tangent vector V , and we 
suppose that V  is perturbated by W , to WV + . The variation of the final point 

1θ  can be 
determined thanks to the Jacobi field with 0)0( =J  and WJ =)0( . In term of the exponential map, 
this could be written: 

( )( )
0

0
exp)(

=

+=
α

θ α
α

WVt
d

d
tJ  (244) 

This could be illustrated in the Figure 13: 
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We give some illustration, in Figure 14, of geodesic shooting to compute the distance between
multivariate Gaussian density for the case n = 2:
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These elements are homeomorphic to the matrix elements in matrix Lie algebra and dual Lie 
algebra: 
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We can also compute the adjoint operator: 
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We can rewrite βMAd  with the following identification: 
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9. Souriau Riemannian Metric for Multivariate Gaussian Densities

To illustrate the Souriau-Fisher metric, we will consider the family of multivariate Gaussian
densities and will develop some elements that we have previously developed purely theoretically.

For the families of multivariate Gaussian densities, that we have identified as homogeneous

manifold with the associated sub-group of the affine group

[
R1/2 m

0 1

]
, we have seen that if we

consider them as elements of exponential families, we can write ξ̂ (element of the dual Lie algebra)
that play the role of geometric heat Q in Souriau Lie group thermodynamics, and β the geometric
(Planck) temperature.

ξ̂ =

[
E [z]

E
[
zzT]

]
=

[
m

R + mmT

]
, β =

 −R−1m

1
2

R−1

 (245)

These elements are homeomorphic to the matrix elements in matrix Lie algebra and dual
Lie algebra:

ξ̂ =

[
R + mmT m

0 0

]
∈ g∗ , β =

 1
2

R−1 −R−1m

0 0

 ∈ g (246)

If we consider M =

[
R′1/2 m′

0 1

]
, then we can compute the co-adjoint operator:

Ad∗M ξ̂ =

[
R + mmT −mm′T R′1/2m

0 0

]
(247)

We can also compute the adjoint operator:

AdMβ = M · β ·M−1 =

[
R′1/2 m′

0 1

]  1
2

R−1 −R−1m

0 0

 [ R′−1/2 −R′−1/2m′

0 1

]

AdMβ =

 1
2

R′1/2R−1R′−1/2 −1
2

R′1/2R−1R′−1/2m′ − R′1/2R−1m

0 0


(248)



Entropy 2016, 18, 386 50 of 72

We can rewrite AdMβ with the following identification:

AdMβ =

 1
2

Ω−1 −Ω−1n

0 0


with Ω = R′1/2RR′−1/2 and n =

(
1
2

m′ + R′1/2m
) (249)

We have then to develop ξ̂ (AdM(β)), that is to say ξ̂(β) after action of the group on the Lie
algebra for β, given by AdM(β). By analogy of structure between ξ̂(β) and β, we can write:

β =

 1
2

R−1 −R−1m

0 0


ξ̂(β) =

[
R + mmT m

0 0

]

⇒


AdMβ =

 1
2

Ω−1 −Ω−1n

0 0


ξ̂ (AdM(β)) =

[
Ω + nnT n

0 0

] (250)

We have then to identify the cocycle θ(M) from ξ̂ (AdM(β)) = Ad∗M(ξ̂) + θ (M)

⇒ θ(M) = ξ̂ (AdM(β))− Ad∗M ξ̂ where:

Ad∗M ξ̂ =

[
R + mmT −mm′T R′1/2m

0 0

]
(251)

ξ̂ (AdM(β)) =

 R′1/2RR′−1/2 +
(

1
2 m′ + R′1/2m

) (
1
2 m′ + R′1/2m

)T (
1
2 m′ + R′1/2m

)
0 0

 (252)

The cocycle is then given by:

θ(M) =

 R′1/2RR′−1/2 +
(

1
2 m′ + R′1/2m

) (
1
2 m′ + R′1/2m

)T (
1
2 m′ + R′1/2m

)
0 0

− [ R + mmT −mm′T R′1/2m

0 0

]

θ(M) =


(

R′1/2RR′−1/2 − R
)
+
(

R′1/2mmT R′1/2T −mmT
)
+

(
1
2 m′mT R′1/2T +

1
2

R′1/2mm′T −mm′T
)

1
2 m′

0 0


(253)

From θ(M) = ξ̂ (AdM(β))− Ad∗M ξ̂, we can compute cocycle in Lie algebra

Θ = Teθ (254)

used to define the tensor:
Θ̃ (X, Y) : g× g→ <

X, Y 7→ 〈Θ(X), Y〉
(255)

In this second part, we will compute the Souriau-Fisher metric given by:

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) (256)

with
Θ̃β (Z1, Z2) = Θ̃ (Z1, Z2) +

〈
ξ̂, adZ1 Z2

〉
= 〈Θ(Z1), Z2〉+

〈
ξ̂, [Z1, Z2]

〉
(257)

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) = Θ̃ (Z1, [β, Z2]) +
〈
ξ̂, [Z1, [β, Z2]]

〉
= 〈Θ (Z1) , [β, Z2]〉+

〈
ξ̂, [Z1, [β, Z2]]

〉 (258)
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where

β =

 1
2

R−1 −R−1m

0 0

 and ξ̂ =

[
R + mmT m

0 0

]
(259)

If we set Z1 =

 1
2

Ω−1
1 −Ω−1

1 n1

0 0

 and Z2 =

 1
2

Ω−1
2 −Ω−1

2 n2

0 0

 (260)

With 〈..., ...〉 the inner product given by

〈ξ, β〉 = Tr
[
baT + HT L

]
with ξ =

[
L b
0 0

]
, β =

[
H a
0 0

]
(261)

[β, Z2] = βZ2 − Z2β =

 1
2

R−1 −R−1m

0 0

 1
2

Ω−1
2 −Ω−1

2 n2

0 0

−
 1

2
Ω−1

2 −Ω−1
2 n2

0 0

 1
2

R−1 −R−1m

0 0


[β, Z2] =

 1
4

(
R−1Ω−1

2 −Ω−1
2 R−1

)
−1

2

(
R−1Ω−1
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2 R−1m

)
0 0


(262)

[
Z1,

[
β, Z2

]]
=

 1
2

Ω−1
1 −Ω−1

1 n1

0 0

 1
4

(
R−1Ω−1
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2 R−1

)
−

1
2

(
R−1Ω−1

2 n2 −Ω−1
2 R−1m

)
0 0



−

 1
4

(
R−1Ω−1

2 −Ω−1
2 R−1

)
−

1
2

(
R−1Ω−1

2 n2 −Ω−1
2 R−1m

)
0 0


 1

2
Ω−1

1 −Ω−1
1 n1

0 0



=

 1
8

(
Ω−1

1

(
R−1Ω−1

2 −Ω−1
2 R−1

)
−
(

R−1Ω−1
2 −Ω−1

2 R−1
)

Ω−1
1

)
−1

4

(
Ω−1

1

(
R−1Ω−1

2 n2 −Ω−1
2 R−1m

)
−
(

R−1Ω−1
2 −Ω−1

2 R−1
)

Ω−1
1 n1

)
0 0



(263)

We can then compute:

〈
ξ̂, [Z1, [β, Z2]]

〉
= Tr

[
1
4

m
((

R−1Ω−1
2 −Ω−1

2 R−1
)

Ω−1
1 n1 −Ω−1

1

(
R−1Ω−1

2 n2 −Ω−1
2 R−1m

))T
]

+Tr
[(

1
8

(
Ω−1

1

(
R−1Ω−1

2 −Ω−1
2 R−1

)
−
(

R−1Ω−1
2 −Ω−1

2 R−1
)

Ω−1
1

)) (
R + mmT)] (264)

The Souriau-Fisher metric is defined in Lie algebra gβ ([β, Z1] , [β, Z2]) where:

[β, Z1] =

 1
4

(
R−1Ω−1

1 −Ω−1
1 R−1

)
−1

2

(
R−1Ω−1

1 n1 −Ω−1
1 R−1m

)
0 0

 =

 1
2

G−1
1 −G−1

1 g1

0 0


with G1 = 2 (Ω1R− RΩ1) and g1 = (I − RΩ1R−1Ω−1

1 )n1 + (Ω1RΩ−1
1 R−1 − I)m

[β, Z2] =

 1
4

(
R−1Ω−1

2 −Ω−1
2 R−1

)
−1

2

(
R−1Ω−1

2 n2 −Ω−1
2 R−1m

)
0 0

 =

 1
2

G−1
2 −G−1

2 g2

0 0


with G2 = 2 (Ω2R− RΩ2) and g2 = (I − RΩ2R−1Ω−1

2 )n2 + (Ω2RΩ−1
2 R−1 − I)m

(265)

and

β =

 1
2

R−1 −R−1m

0 0

 (266)

Another approach to develop the Souriau-Fisher metric gβ ([β, Z1] , [β, Z2]) is to compute the
tensor Θ̃(X, Y) from the moment map J:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with {., .} Poisson Bracket and J the Moment Map (267)

Θ̃ (X, Y) : g× g→ < (268)
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We can then write the Souriau-Fisher metric as:

Θ̃β (Z1, Z2) = J[Z1,Z2]
−
{

JZ1 , JZ2

}
+
〈
ξ̂, [Z1, Z2]

〉
(269)

Where the associated differentiable application J, called moment map is:

J : M→ g∗ such that JX(x) = 〈J(x), X〉 , X ∈ g
x 7→ J(x)

(270)

This moment map could be identified with the operator that transforms the right algebra to an
element of its dual algebra given by:

βM : g→ g∗

Z =

[
N η

0 0

]
7→ J =

[
N
(
1 + mT R−1m

)
+ ηmT R−1 NR−1m + R−1η

0 0

]
(271)

10. Conclusions

In this paper, we have developed a Souriau model of Lie group thermodynamics that recovers
the symmetry broken by lack of covariance of Gibbs density in classical statistical mechanics with
respect to dynamic groups action in physics (Galileo and Poincaré groups, sub-group of affine group).
The ontological model of Souriau gives geometric status to (Planck) temperature (element of Lie alebra),
heat (element of dual Lie algebra) and entropy. Souriau said in one of his papers [30] on this new
“Lie group thermodynamics” that “these formulas are universal, in that they do not involve the symplectic
manifold, but only group G, the symplectic cocycle. Perhaps this Lie group thermodynamics could be of interest
for mathematics”.

For this new covariant thermodynamics, the fundamental notion is the coadjoint orbit that is
linked to positive definite KKS (Kostant–Kirillov–Souriau) 2-form [196]:

ωw(X, Y) = 〈w, [U, V]〉 with X = adwU ∈ TwM and Y = adwV ∈ TwM (272)

that is the Kähler-form of a G-invariant kähler structure compatible with the canonical complex
structure of M, and determines a canonical symplectic structure on M. When the cocycle is equal to zero,
the KKS and Souriau-Fisher metric are equal. This 2-form introduced by Jean-Marie Souriau is linked
to the coadjoint action and the coadjoint orbits of the group on its moment space. Souriau provided
a classification of the homogeneous symplectic manifolds with this moment map. The coadjoint
representation of a Lie group G is the dual of the adjoint representation. If g denotes the Lie algebra
of G, the corresponding action of G on g∗, the dual space to g, is called the coadjoint action. Souriau
proved based on the moment map that a symplectic manifold is always a coadjoint orbit, affine of
its group of Hamiltonian transformations, deducing that coadjoint orbits are the universal models
of symplectic manifolds: a symplectic manifold homogeneous under the action of a Lie group, is
isomorphic, up to a covering, to a coadjoint orbit. So the link between Souriau-Fisher metric and KKS
2-form will provide a symplectic structure and foundation to information manifolds. For Souriau
thermodynamics, the Souriau-Fisher metric is the canonical structure linked to KKS 2-form, modified
by the cocycle (its symplectic leaves are the orbits of the affine action that makes equivariant the
moment map). This last property allows us to determine all homogeneous spaces of a Lie group
admitting an invariant symplectic structure by the action of this group: for example, there are the orbits
of the coadjoint representation of this group or of a central extension of this group (the central extension
allowing suppressing the cocycle). For affine coadjoint orbits, we make reference to Alice Tumpach
Ph.D. [197–199] who has developed previous works of Neeb [200], Biquard and Gauduchon [201–204].

Other promising domains of research are theory of generating maps [205–208] and the link
with Poisson geometry through affine Poisson group. As observed by Pierre Dazord [209] in his
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paper “Groupe de Poisson Affines”, the extension of a Poisson group to an affine Poisson group due
to Drinfel’d [210] includes the affine structures of Souriau on dual Lie algebra. For an affine Poisson
group, its universal covering could be identified to a vector space with an associated affine structure. If
this vector space is an abelian affine Poisson group, we can find the affine structure of Souriau. For the
abelian group (R3,+), affine Poisson groups are the affine structures of Souriau.

Souriau model of Lie group thermodynamics could be a promising way to achieve René Thom’s
dream to replace thermodynamics by geometry [211,212], and could be extended to the second order
extension of the Gibbs state [213,214].

We could explore the links between “stochastic mechanics” (mécanique alétoire) developed by
Jean-Michel Bismut based on Malliavin Calculus (stochastic calculus of variations) and Souriau
“Lie group thermodynamics”, especially to extend covariant Souriau Gibbs density on the stochastic
symplectic manifold (e.g., to model centrifuge with random vibrating axe and the Gibbs density).

We have seen that Souriau has replaced classical Maximum Entropy approach by replacing
Lagrange parameters by only one geometric “temperature vector” as element of Lie algebra. In parallel,
as refered in [15], Ingarden has introduced [213,214] second and higher order temperature of the
Gibbs state that could be extended to Souriau theory of thermodynamics. Ingarden higher order
temperatures could be defined in the case when no variational is considered, but when a probability
distribution depending on more than one parameter. It has been observed that Ingarden can fail if
the following assumptions are not fulfilled: the number of components of the sum goes to infinity
and the components of the sum are stochastically independent. Gibbs hypothesis can also fail if
stochastic interactions with the environment are not sufficiently weak. In all these cases, we never
observe absolute thermal equilibrium of Gibbs type but only flows or turbulence. Nonequilibrium
thermodynamics could be indirectly addressed by means of the concept of high order temperatures.
Momentum Q = ∂Φ(β)

∂β should be replaced by higher order moments given by the relation Qk =

∂Φ(β1, ..., βn)

∂βk
=

r

M
Uk(ξ) · e

−
n
∑

k=1
〈βk ,Uk(ξ)〉

dω

r

M
e
−

n
∑

k=1
〈βk ,Uk(ξ)〉

dω

defined by extended Massieu characteristic function

Φ(β1, ..., βn) = −log
r

M
e
−

n
∑

k=1
〈βk ,Uk(ξ)〉

dω. Entropy is defined by Legendre transform of this Massieu

characteristic function S (Q1, ..., Qn) =
n
∑

k=1
〈βk, Qk〉 −Φ(β1, ..., βn) where βk =

∂S(Q1, ..., Qn)

∂Qk
. We are

able also to define high order thermal capacities given by Kk = − ∂Qk
∂βk

. The Gibbs density could

be then extended with respect to high order temperatures by pGibbs(ξ) = e

n
∑

k=1
〈βk ,Uk(ξ)〉−Φ(β1,...,βn)

=

e
−

n
∑

k=1
〈βk ,Uk(ξ)〉

r

M
e
−

n
∑

k=1
〈βk ,Uk(ξ)〉

dω

.

We also have to make reference to the works of Streater [16], Nencka [215] and Burdet [216].
Nencka and Streater [215], for certain unitary representations of a Lie algebra g, define the statistical
manifoldM of states as the convex cone of X ∈ g for which the partition function Z = Tr [exp(−X)]

is finite. The Hessian of logZ defines a Riemannian metric g on dual Lie algebra g∗. They observe that
g∗ foliates into the union of coadjoint orbits, each of which can be given a complex Kostant structure
(that of Kostant).

To conclude, we will make reference to Alain Berthoz [217] at College de France who has studied
brain coding of movement. The most recent studies on this topic, by Alexandre Afgoustidis Ph.D. [218]
“Invariant Harmonic Analysis and Geometry in the Workings of the Brain” supervised by Daniel Bennequin,
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Afgoustidis [218] consolidate the idea that brain vestibular channels and otolithes code Lie algebra of
the homogeneous Galileo group as illustrated in the following Figure 15.Entropy 2016, 18, 386 52 of 69 

 

 
Figure 15. Coding of homogeneous Galileo algebra by vestibular system and otolithes. 

Souriau gave the same ideas in this direction regarding how the brain could code  
invariants [219]: 

Lorsque il y un tremblement de terre, nous assistons à la mort de l’Espace. … Nous vivons avec nos 
habitudes que nous pensons universelles. … La neuroscience s’occupe rarement de la géométrie … 
Pour les singes qui vivent dans les arbres, certaines propriétés du groupe d’Euclide sont mieux câblées 
dans leurs cerveaux (When there is an earthquake, we are witnessing the death of Space … We live with 
our habits that we think are universal.... Neuroscience rarely is interested in geometry … For the 
monkeys that live in trees, some properties of the Euclid group are better coded in their brains). 

Souriau added anecdotes from a discussion with a student of Bohr that [220]: 

L’élève demanda à Bohr qu’il ne comprenait pas le principe de correspondance. Bohr lui demanda de 
s’assoir et il tourna autour de lui. Bohr lui dit tu dois commencer à avoir mal au cœur, c’est que tu 
commences à comprendre ce qu’est le principe de correspondance (The student said to Bohr that he 
did not understand the principle of correspondence. Bohr asked him to sit and he turned around. 
Bohr said, you should start to be seasick, it is then that you begin to understand what the 
correspondence principle is.). 
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Souriau gave the same ideas in this direction regarding how the brain could code invariants [219]:

Lorsque il y un tremblement de terre, nous assistons à la mort de l’Espace. . . . Nous vivons avec
nos habitudes que nous pensons universelles. . . . La neuroscience s’occupe rarement de la géométrie
. . . Pour les singes qui vivent dans les arbres, certaines propriétés du groupe d’Euclide sont mieux
câblées dans leurs cerveaux (When there is an earthquake, we are witnessing the death of Space
. . . We live with our habits that we think are universal.... Neuroscience rarely is interested in
geometry . . . For the monkeys that live in trees, some properties of the Euclid group are better coded
in their brains).

Souriau added anecdotes from a discussion with a student of Bohr that [220]:

L’élève demanda à Bohr qu’il ne comprenait pas le principe de correspondance. Bohr lui demanda
de s’assoir et il tourna autour de lui. Bohr lui dit tu dois commencer à avoir mal au cœur, c’est
que tu commences à comprendre ce qu’est le principe de correspondance (The student said to Bohr
that he did not understand the principle of correspondence. Bohr asked him to sit and he turned
around. Bohr said, you should start to be seasick, it is then that you begin to understand what the
correspondence principle is.).
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contracter l’habitude de n’acquiescer qu’à l’évidence; nous répliquerons qu’à la rigueur on pourrait conclure de
cette différence même, que la critique donne, au contraire, plus d’exercice à l’esprit que la géométrie: parce que
l’évidence, qui est une et absolue, le fixe au premier aspect sans lui laisser ni la liberté de douter, ni le mérite de
choisir; au lieu que les probabilités étant susceptibles du plus et du moins, il faut, pour se mettre en état de
prendre un parti, les comparer ensemble, les discuter et les peser. Un genre d’étude qui rompt, pour ainsi dire,
l’esprit à cette opération, est certainement d’un usage plus étendu que celui où tout est soumis à l’évidence;
parce que les occasions de se déterminer sur des vraisemblances ou probabilités, sont plus fréquentes que celles
qui exigent qu’on procède par démonstrations: pourquoi ne dirions –nous pas que souvent elles tiennent aussi
à des objets beaucoup plus importants?

—Joseph de Maistre in L’Espit de Finesse [221]
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Le cadavre qui s’acoutre se méconnait et imaginant l’éternité s’en approrie l’illusion . . . C’est pourquoi
j’abandonnerai ces frusques et jetant le masque de mes jours, je fuirai le temps où, de concert avec les autres,
je m’éreinte à me trahir.

—Emile Cioran in Précis de decomposition [222]

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Clairaut(-Legendre) Equation of Maurice Fréchet Associated to “Distinguished
Functions” as Fundamental Equation of Information Geometry

Before Rao [223,224], in 1943, Maurice Fréchet [141] wrote a seminal paper introducing what
was then called the Cramer-Rao bound. This paper contains in fact much more that this important
discovery. In particular, Maurice Fréchet introduces more general notions relative to “distinguished
functions”, densities with estimator reaching the bound, defined with a function, solution of Clairaut’s
equation. The solutions “envelope of the Clairaut’s equation” are equivalent to standard Legendre
transform without convexity constraints but only smoothness assumption. This Fréchet’s analysis
can be revisited on the basis of Jean-Louis Koszul’s works as a seminal foundation of “information
geometry”.

We will use Maurice Fréchet notations, to consider the estimator:

T = H (X1, ..., Xn) (A1)

and the random variable

A(X) =
∂logpθ(X)

∂θ
(A2)

that are associated to:

U = ∑
i

A (Xi) (A3)

The normalizing constraint
+∞r

−∞
pθ(x)dx = 1 implies that:

+∞r

−∞
...

+∞r

−∞
∏
i

pθ(xi)dxi = 1

If we consider the derivative if this last expression with respect to θ, then

+∞w

−∞

...
+∞w

−∞

[
∑

i
A(xi)

]
∏

i
pθ(xi)dxi = 0 gives : Eθ [U] = 0 (A4)

Similarly, if we assume that Eθ [T] = θ, then
+∞r

−∞
...

+∞r

−∞
H (x1, ..., xn)∏

i
pθ(xi)dxi = θ, and we obtain

by derivation with respect to θ:
E [(T − θ)U] = 1 (A5)

But as E [T] = θ and E [U] = 0, we immediately deduce that:

E [(T − E [T]) (U − E [U])] = 1 (A6)

From Schwarz inequality, we can develop the following relations:

[E (ZT)]2 ≤ E
[
Z2] E

[
T2]

1 ≤ E
[
(T − E [T])2

]
E
[
(U − E [U])2

]
= (σTσU)

2
(A7)

U being the summation of independent variables, Bienaymé equality could be applied:

(σU)
2 = ∑

i

[
σA(Xi)

]2
= n (σA)

2 (A8)
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From which, Fréchet deduced the bound, rediscovered by Cramer and Rao 2 years later:

(σT)
2 ≥ 1

n (σA)
2 (A9)

Fréchet [141] observed that it is a remarkable inequality where the second member is independent
of the choice of the function H defining the “empirical value” T, where the first member can be taken
to any empirical value T = H (X1, ..., Xn) subject to the unique condition Eθ [T] = θ regardless is θ.

The classic condition that the Schwarz inequality becomes an equality helps us to determine when
σT reaches its lower bound 1√

nσn
.

The previous inequality becomes an equality if there are two numbers α and β (not random and not
both zero ) such that α (H′ − θ) + βU = 0, with H′ being a particular function among eligible H such
that we have an equality. This equality is rewritten H′ = θ + λ′U with λ′ being a non-random number.

If we use the previous equation, then:

E [(T − E [T]) (U − E [U])] = 1⇒ E
[(

H′ − θ
)

U
]
= λ′Eθ

[
U2
]
= 1 (A10)

We obtain:
U = ∑

i
A (Xi)⇒ λ′nEθ

[
A2
]
= 1 (A11)

From which we obtain λ′ and the form of the associated estimator H′:

λ′ =
1

nE [A2]
⇒ H′ = θ +

1
nE [A2]∑i

∂logpθ(Xi)

∂θ
(A12)

It is therefore deduced that the estimator that reaches the terminal is of the form:

H′ = θ +

∑
i

∂logpθ(Xi)
∂θ

n
+∞r

−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

(A13)

with E [H′] = θ + λ′E [U] = θ.
H′ would be one of the eligible functions, if H′ would be independent of θ. Indeed, if we consider

Eθ0 [H
′] = θ0, E

[
(H′ − θ0)

2
]
≤ Eθ0

[
(H − θ0)

2
]
∀H such that Eθ0 [H] = θ0.

H = θ0 satisfies the equation and inequality shows that it is almost certainly equal to θ0.
So to look for θ0, we should know beforehand θ0.
At this stage, Fréchet [141] looked for “distinguished functions” (“densités distinguées” in French),

as any probability density pθ(x) such that the function:

h(x) = θ +
∂logpθ(x)

∂θ
+∞r

−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

(A14)

is independent of θ. The objective of Fréchet is then to determine the minimizing function T =

H′ (X1, ..., Xn) that reaches the bound. We can deduce from previous relations that:

λ(θ)
∂logpθ(x)

∂θ
= h(x)− θ (A15)

But as λ(θ) > 0, we can consider 1
λ(θ)

as the second derivative of a function Φ(θ) such that:

∂logpθ(x)
∂θ

=
∂2Φ(θ)

∂θ2 [h(x)− θ] (A16)
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From which we deduce that:

`(x) = logpθ(x)− ∂Φ(θ)

∂θ
[h(x)− θ]−Φ(θ) (A17)

Is an independent quantity of θ. A distinguished function will be then given by:

pθ(x) = e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+`(x) (A18)

With the normalizing constraint
+∞r

−∞
pθ(x)dx = 1.

These two conditions are sufficient. Indeed, reciprocally, let three functions Φ(θ), h(x) and `(x)
that we have, for any

θ :
+∞w

−∞

e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+`(x)dx = 1 (A19)

Then the function is distinguished:

θ +
∂logpθ(x)

∂θ
+∞r

−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

= θ + λ(x)
∂2Φ(θ)

∂θ2 [h(x)− θ] (A20)

If λ(x)
∂2Φ(θ)

∂θ2 = 1, when
1

λ(x)
=

+∞w

−∞

[
∂logpθ(x)

∂θ

]2

pθ(x)dx = (σA)
2 (A21)

The function is reduced to h(x) and then is not dependent of θ.
We have then the following relation:

1
λ(x)

=
+∞w

−∞

(
∂2Φ(θ)

∂θ2

)2

[h(x)− θ]2 e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+`(x)dx (A22)

The relation is valid for any θ, we can derive prefious equation with respect with θ:

+∞w

−∞

e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+`(x)
(

∂2Φ(θ)

∂θ2

)
[h(x)− θ] dx = 0 (A23)

We can divide by
∂2Φ(θ)

∂θ2 because it does not depend on x.
If we derive again with respect to θ, we will have:

+∞w

−∞

e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+`(x)
(

∂2Φ(θ)

∂θ2

)
[h(x)− θ]2 dx =

+∞w

−∞

e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+`(x)dx = 1 (A24)

Combining this relation with that of
1

λ(x)
, we can deduce that λ(x) ∂2Φ(θ)

∂θ2 = 1 and as λ(x) > 0

then
∂2Φ(θ)

∂θ2 > 0.
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Fréchet emphasizes at this step [141], another way to approach the problem. We can select
arbitrarily h(x) and l(x) and then Φ(θ) is determined by:

+∞w

−∞

e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+`(x)dx = 1 (A25)

That could be rewritten:

eθ. ∂Φ(θ)
∂θ −Φ(θ) =

+∞w

−∞

e
∂Φ(θ)

∂θ h(x)+`(x)dx (A26)

If we then fixed arbitrarily h(x) and l(x) and let s an arbitrary variable, the following function
will be an explicit positive function given by eΨ(s):

+∞w

−∞

es.h(x)+`(x)dx = eΨ(s) (A27)

Fréchet obtained finally the function Φ(θ) as solution of the equation [141]:

Φ(θ) = θ · ∂Φ(θ)

∂θ
−Ψ

(
∂Φ(θ)

∂θ

)
(A28)

Fréchet noted that this is the Alexis Clairaut equation [141].

The case
∂Φ(θ)

∂θ
= cste would reduce the density to a function that would be independent of θ,

and so Φ(θ) is given by a singular solution of this Clairaut equation, which is unique and could be
computed by eliminating the variable s between:

Φ = θ · s−Ψ (s) and θ =
∂Ψ (s)

∂s
(A29)

Or between:

eθ·s−Φ(θ) =
+∞w

−∞

es·h(x)+`(x)dx and
+∞w

−∞

es·h(x)+`(x) [h(x)− θ] dx = 0 (A30)

Φ(θ) = −log
+∞r

−∞
es·h(x)+`(x)dx + θ · s where s is given implicitly by

+∞r

−∞
es·h(x)+`(x) [h(x)− θ] dx = 0.

Then we know the distinguished function, H′ among functions H(X1, ..., Xn) verifying Eθ [H] = θ

and such that σH reaches for each value of θ, an absolute minimum, equal to
1√
nσA

.

For the previous equation:

h(x) = θ +
∂logpθ(x)

∂θ
+∞r

−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

(A31)

We can rewrite the estimator as:

H′(X1, ..., Xn) =
1
n
[h (X1) + ... + h (Xn)] (A32)
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and compute the associated empirical value:

t = H′(x1, ..., xn) =
1
n∑

i
h(xi) = θ + λ(θ)∑

i

∂logpθ(xi)

∂θ

If we take θ = t, we have as λ(θ) > 0:

∑
i

∂logpt(xi)

∂t
= 0 (A33)

When pθ(x) is a distinguished function, the empirical value t of θ corresponding to a sample
x1, ..., xn is a root of previous equation in t. This equation has a root and only one when X is a
distinguished variable. Indeed, as we have:

pθ(x) = e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+`(x) (A34)

∑
i

∂logpt(xi)

∂t
=

∂2Φ(t)
∂t2

∑
i

h(xi)

n
− t

 with
∂2Φ(t)

∂t2 > 0 (A35)

We can then recover the unique root: t =
∑
i

h(xi)

n .
This function T ≡ H′ (X1, ..., Xn) = 1

n ∑
i

h (Xi) can have an arbitrary form, that is a sum of

functions of each only one of the quantities and it is even the arithmetic average of N values of a same
auxiliary random variable Y = h(X). The dispersion is given by:

(σTn)
2 =

1

n (σA)
2 =

1

n
+∞r

−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

=
1

n
∂2Φ(θ)

∂θ2

(A36)

and Tn follows the probability density:

pθ(t) =
√

n
1

σA
√

2π
e
− n(t−θ)2

2·σ2
A with (σA)

2 =
∂2Φ(θ)

∂θ2 (A37)

Clairaut Equation and Legendre Transform

We have just observed that Fréchet shows that distinguished functions depend on a function
Φ(θ), solution of the Clairaut equation:

Φ(θ) = θ · ∂Φ(θ)

∂θ
−Ψ

(
∂Φ(θ)

∂θ

)
(A38)

Or given by the Legendre transform:

Φ = θ · s−Ψ (s) and θ =
∂Ψ (s)

∂s
(A39)

Fréchet also observed that this function Φ(θ) could be rewritten:

Φ(θ) = −log
+∞r

−∞
es·h(x)+`(x)dx + θ · s where s is given implicitly by

+∞r

−∞
es·h(x)+`(x) [h(x)− θ] dx = 0.

This equation is the fundamental equation of information geometry.
The “Legendre” transform was introduced by Adrien-Marie Legendre in 1787 [225] to solve a

minimal surface problem Gaspard Monge in 1784. Using a result of Jean Baptiste Meusnier, a student
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of Monge, it solves the problem by a change of variable corresponding to the transform which now
entitled with his name. Legendre wrote: “I have just arrived by a change of variables that can be useful
in other occasions.” About this transformation, Darboux [226] in his book gives an interpretation
of Chasles: “This comes after a comment by Mr. Chasles, to substitute its polar reciprocal on the surface
compared to a paraboloïd.” The equation of Clairaut was introduced 40 years earlier in 1734 by Alexis
Clairaut [225]. Solutions “envelope of the Clairaut equation” are equivalent to the Legendre transform
with unconditional convexity, but only under differentiability constraint. Indeed, for a non-convex
function, Legendre transformation is not defined where the Hessian of the function is canceled, so that
the equation of Clairaut only makes the hypothesis of differentiability. The portion of the strictly
convex function g in Clairaut equation y = px − g(p) to the function f giving the envelope solutions
by the formula y = f(x) is precisely the Legendre transformation. The approach of Fréchet may be
reconsidered in a more general context on the basis of the work of Jean-Louis Koszul.

Appendix B. Balian Gauge Model of Thermodynamics and its Compliance with Souriau Model

Supported by Industial group TOTAL (previously Elf-Aquitaine), Roger Balian has introduced a
Gauge theory of thermodynamics [103] and has also developed information geometry in statistical
physics and quantum physics [103,227–235]. Balian has observed that the entropy S (we use Balian
notation, contrary with previous section where we use −S as neg-entropy) can be regarded as
an extensive variable q0 = S

(
q1, ..., qn), with qi(i = 1, ..., n), n independent quantities, usually

extensive and conservative, characterizing the system. The n intensive variables γi are defined
as the partial derivatives:

γi =
∂S(q1, ..., qn)

∂qi (B1)

Balian has introduced a non-vanishing gauge variable p0, without physical relevance, which
multiplies all the intensive variables, defining a new set of variables:

pi = −p0.γi , i = 1, ..., n (B2)

The 2n + 1-dimensional space is thereby extended into a 2n + 2-dimensional thermodynamic
space T spanned by the variables pi , qi with i = 0, 1, ..., n, where the physical system is associated with
a n + 1-dimensional manifold M in T, parameterized for instance by the coordinates q1, ..., qn and p0.
A gauge transformation which changes the extra variable p0 while keeping the ratios pi/p0 = −γi
invariant is not observable, so that a state of the system is represented by any point of a one-dimensional
ray lying in M, along which the physical variables q0, ..., qn, γ1, ..., γn are fixed. Then, the relation
between contact and canonical transformations is a direct outcome of this gauge invariance: the contact

structure ω̃ = dq0 −
n
∑

i=1
γi · dqi in n + 1 dimension can be embedded into a symplectic structure in

2n + 2 dimension, with 1-form:

ω =
n

∑
i=0

pi · dqi (B3)

as symplectization, with geometric interpretation in the theory of fiber bundles.
The n + 1-dimensional thermodynamic manifolds M are characterized by the vanishing of this

form ω = 0. The 1-form induces then a symplectic structure on T:

dω =
n

∑
i=0

dpi ∧ dqi (B4)

Any thermodynamic manifold M belongs to the set of the so-called Lagrangian manifolds in T,
which are the integral submanifolds of dω with maximum dimension (n + 1). Moreover, M is gauge
invariant, which is implied by ω = 0. The extensivity of the entropy function S

(
q1, ..., qn) is expressed
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by the Gibbs-Duhem relation S =
n
∑

i=1
qi ∂S

∂qi , rewritten with previous relation
n
∑

i=0
piqi = 0, defining a 2n +

1-dimensional extensivity sheet in T, where the thermodynamic manifolds M should lie. Considering
an infinitesimal canonical transformation, generated by the Hamiltonian h(q0, q1, ..., qn, p0, p1, ..., pn),
.
qi =

∂h
∂pi

and
.
pi =

∂h
∂qi , the Hamilton’s equations are given by Poisson bracket:

.
g = {g, h} =

n

∑
i=0

∂g
∂qi

∂h
∂pi
− ∂h

∂qi

∂g
∂pi

(B5)

The concavity of the entropy S
(
q1, ..., qn), as function of the extensive variables, expresses the

stability of equilibrium states. This property produces constraints on the physical manifolds M in the
2n + 2-dimensional space. It entails the existence of a metric structure in the n-dimensional space qi
relying on the quadratic form:

ds2 = −d2S = −
n

∑
i,j=1

∂2S
∂qi∂qj dqidqj (B6)

which defines a distance between two neighboring thermodynamic states.

As dγi =
n

∑
j=1

∂2S
∂qi∂qj dqj, then: ds2 = −

n

∑
i=1

dγidqi =
1
p0

n

∑
i=0

dpidqi (B7)

The factor 1/p0 ensures gauge invariance. In a continuous transformation generated by h, the metric
evolves according to:

d
dτ

(ds2) =
1
p0

∂h
∂q0 ds2 +

1
p0

n

∑
i,j=0

(
∂2h

∂qi∂pj
dpidpj −

∂2h
∂qi∂qj dqidqj

)
(B8)

We can observe that this gauge theory of thermodynamics is compatible with Souriau Lie

groupTthermodynamics, where we have to consider the Souriau vector β =

 γ1
...

γn

, transformed

in a new vector:

pi = −p0.γi, p =

 −p0γ1
...

−p0γn

 = −p0 · β (B9)

Appendix C. Casalis-Letac Affine Group Invariance for Natural Exponential Families

The characterization of the natural exponential families of Rd which are preserved by a group
of affine transformations has been examined by Muriel Casalis in her Ph.D. [173] and her different
papers [172,174–178]. Her method has consisted of translating the invariance property of the family
into a property concerning the measures which generate it, and to characterize such measures.

Let E a vector space of finite size, E∗ its dual. 〈θ, x〉 duality bracket with (θ, x) ∈ E∗× E. µ positive
Radon measure on E, Laplace transform is:

Lµ : E∗ → [0, ∞] with θ 7→ Lµ(θ) =
w

E

e〈θ,x〉µ(dx) (C1)

Let transformation kµ(θ) defined on Θ(u) interior of Dµ =
{

θ ∈ E∗, Lµ < ∞
}

:

kµ(θ) = logLµ(θ) (C2)



Entropy 2016, 18, 386 62 of 72

natural exponential families are given by:

F(µ) =
{

P (θ, µ) (dx) = e〈θ,x〉−kµ(θ)µ(dx), θ ∈ Θ(µ)
}

(C3)

with injective function (domain of means):

k′µ(θ) =
w

E

xP (θ, µ) µ(dx) (C4)

the inverse function:

ψµ : MF → Θ(µ) with MF = Im
(

k′µ (Θ(µ))
)

(C5)

and the Covariance operator:

VF(m) = k′′µ
(
ψµ(m)

)
=
(

ψ′µ(m)
)−1

, m ∈ MF (C6)

Measure generetad by a family F is then given by:

F(µ) = F(µ′)⇔ ∃(a, b) ∈ E∗ × R, such that µ′(dx) = e〈a,x〉+bµ(dx) (C7)

Let F an exponential family of E generated by µ and ϕ : x 7→ gϕx + vϕ with gϕ ∈ GL(E)
automorphisms of E and vϕ ∈ E, then the family ϕ(F) = {ϕ (P(θ, µ)) , θ ∈ Θ(µ)} is an exponential
familly of E generated by ϕ(µ)

Definition C1. An exponential family F is invariant by a group G (affine group of E), if

∀ϕ ∈ G, ϕ(F) = F : ∀µ, F (ϕ(µ)) = F(µ) (C8)

(the contrary could be false)
Then Muriel Casalis has established the following theorem:

Theorem C1 (Casalis). Let F = F(µ) an exponential family of E and G affine group of E, then F is invariant
by G if and only:

∃a : G → E∗, ∃b : G → R, such that:

∀ (ϕ, ϕ′) ∈ G2,

 a (ϕϕ′) =t
g
−1
ϕ a (ϕ′) + a (ϕ)

b (ϕϕ′) = b (ϕ) + b (ϕ′)−
〈

a (ϕ′) , g−1
ϕ vϕ

〉
∀ϕ ∈ G, ϕ(µ)(dx) = e〈a(ϕ),x〉+b(ϕ)µ(dx)

(C9)

When G is a linear subgroup, b is a character of G and a could be obtained by the help of cohomology of
Lie groups.

If we define action of G on E∗ by:

g · x =t
g
−1x, g ∈ G, x ∈ E∗ (C10)

It can be verified that:
a (g1g2) = g1 · a(g2) + a(g1) (C11)

the action a is an inhomogeneous 1-cocycle:
∀n > 0, let the set of all functions from Gn to E∗, = (Gn, E∗) called inhomogenesous n-cochains, then we

can define the operators dn : = (Gn, E∗)→ =
(
Gn+1, E∗

)
by:
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dnF (g1, · · · , gn+1) = g1.F (g2, · · · , gn+1) +
n
∑

i=1
(−1)i F (g1, g2, · · · , gigi+1, · · · , gn)

+ (−1)n+1 F (g1, g2, · · · , gn)

(C12)

Let Zn (G, E∗) = Ker (dn) , B (G, E∗) = Im
(
dn−1), with Zn inhomogneous n-cocycles, the quotient:

Hn (G, E∗) = Zn (G, E∗) /Bn (G, E∗) (C13)

is the Cohomology group of G with value in E∗. We have:

d0 : E∗ → = (G, E∗)

x 7→ (g 7→ g · x− x)
(C14)

Z0 = {x ∈ E∗; g · x = x, ∀g ∈ G} (C15)

d1 : = (G, E∗)→ =
(
G2, E∗

)
F 7→ d1F , d1F (g1, g2) = g1 · F(g2)− F (g1g2) + F(g1)

(C16)

Z1 =
{

F ∈ = (G, E∗) ; F (g1g2) = g1 · F(g2) + F(g1), ∀ (g1, g2) ∈ G2
}

(C17)

B1 = {F ∈ = (G, E∗) ; ∃x ∈ E∗, F(g) = g · x− x} (C18)

When the Cohomology group H1 (G, E∗) = 0 then:

Z1 (G, E∗) = B1 (G, E∗) (C19)

Then if F = F(µ) is an exponential family invariant by G, µ verifies:

∀g ∈ G, g (µ) (dx) = e〈c,x〉−〈c,g−1x〉+b(g)µ(dx) (C20)

∀g ∈ G, g
(

e〈c,x〉µ(dx)
)
= eb(g)e〈c,x〉µ(dx) with µ0(dx) = e〈c,x〉µ(dx) (C21)

For all compact group, H1 (G, E∗) = 0 and we can express a:

A : G → GA(E)

g 7→ Ag , Ag(θ) = tg−1θ + a(g)
(C22)

∀ (g, g′) ∈ G2, Agg′ = Ag Ag′

A(G) compact sub− group of GA(E)
(C23)

∃fixed point⇒ ∀g ∈ G, Ag(c) = tg−1c + a(g) = c⇒ a(g) =
(

Id − tg−1
)

c (C24)
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