
entropy

Article

On Thermodynamics Problems in the
Single-Phase-Lagging Heat Conduction Model

Shu-Nan Li and Bing-Yang Cao *

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
lishunan16@mails.tsinghua.edu.cn
* Correspondence: caoby@tsinghua.edu.cn; Tel.: +86-10-6279-4531

Academic Editor: Brian Agnew
Received: 10 October 2016; Accepted: 2 November 2016; Published: 9 November 2016

Abstract: Thermodynamics problems for the single-phase-lagging (SPL) model have not been much
studied. In this paper, the violation of the second law of thermodynamics by the SPL model
is studied from two perspectives, which are the negative entropy production rate and breaking
equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production
rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation
time. Modifying the entropy production rate positive or zero is not enough to avoid the violation
of the second law of thermodynamics for the SPL model, because the SPL model could cause
breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that
Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical
energy integral.
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1. Introduction

Fourier’s law of heat conduction, which shows the connection between temperature gradient and
heat flux, is often used to describe normal heat conduction problems:

q + λ∇T = 0, (1)

where q is the heat flux, λ is the thermal conductivity and T is the temperature. In recent years,
limitations of Fourier’s law have been revealed [1–6] such as the fact that Fourier’s law predicts an
unphysically infinite speed of heat perturbation propagation, and it fails to characterize supertransient
and high heat flux processes well. Several modified heat conduction models have been proposed to
overcome these limitations. The Cattaneo-Vernotte (CV) model [7,8] is the most typical one:

q + τ
∂q
∂t

+ λ∇T = 0 (2)

where τ is the thermal relaxation time. The heat conduction equations of the CV model is:

∂T
∂t

+ τ
∂2T
∂t2 =

λ

ρcV
∇2T (3)

where ρ is the mass density and cV is the specific heat. Equation (3) is a hyperbolic heat conduction
equation, which predicts wave-like transport in heat conduction processes, called thermal wave.
In thermodynamics, researchers have discussed the violation of the second law of thermodynamics by
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the CV model [9–14]. It is found that the CV model could lead to a negative entropy production rate in
the framework of classical irreversible thermodynamics. This problem can be overcome by extended
irreversible thermodynamics [15], where the definitions of thermodynamics could be extended and
appropriate constitutive assumptions are proposed. There are many non-Fourier heat conduction
models which have close connection with the CV one, and the single-phase-lagging (SPL) model [16]
is a very classical example of them:

q (x, y, z, t + τ) + λ∇T (x, y, z, t) = 0 (4)

The heat conduction equation of the SPL model is

∂T (x, y, z, t + τ)

∂t
=

λ

ρcV
∇2T (x, y, z, t− τ) (5)

The SPL model can reduce to the CV model if a first-order Taylor series approximation is taken
for q(x,y,z,t+τ), which is expressed as:

q (x, y, z, t + τ) ≈ q (x, y, z, t) + τ
∂q (x, y, z, t)

∂t
(6)

When the approximation in Equation (6) is applied to Equation (4), the SPL model will reduce to
the CV model. Because of this approximation relationship between them, the SPL model is sometimes
considered as an extension or explanation of the CV one [17–21]. In addition, this approximation
also has some defects [22]. However, although there are many thermodynamics discussions about
the CV model, thermodynamics problems for the SPL model have not been studied much. There are
also other non-Fourier heat conduction models. The Jeffrey model [2] is an extension of the CV
model, which can be considered as a linear superposition of Fourier’s law and the CV model.
The two-temperature model [23] is used for metals by regarding the interactions of electrons and
phonons. The Guyer-Krumhansl (GK) model [24] is a very classical model for pure phonon heat
conduction. The dual-phase-lagging model [25] adds the influence of temperature lagging on the basis
of the single-phase-lagging model. Thermomass theory [26–29] under extreme conditions applies
relativity and mass-energy equations to non-Fourier heat conduction.

In this paper, the violation of the second law of thermodynamics by the SPL model is studied from
two perspectives, which are the negative entropy production rate and the spontaneous breaking
of equilibrium. Compared with the CV model, the methods for the SPL model to avoid the
negative entropy production rate are proposed from two perspectives, which are extended irreversible
thermodynamics and the thermal relaxation time. Modifying the entropy production rate to a positive
or zero value is not enough to avoid the violation of the second law of thermodynamics for the
SPL model, because the SPL model could cause spontaneous equilibrium breaking in some special
circumstances. As comparison, it is shown why Fourier’s law and the CV model cannot break
equilibrium spontaneously by analyzing the mathematical energy integral.

2. Entropy Production Rate

In classical irreversible thermodynamics (CIT) [15], the entropy production rate
.
S for heat

conduction is calculated as:
.
S = − q · ∇T

T2 (7)

For Fourier’s law, we have:
.
SF = − q · ∇T

T2 =
q2

λT2 ≥ 0 (8)
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which satisfies the second law of thermodynamics. The negative entropy production rate problem
caused by the CV model has been discussed [9–12], and we will discuss this problem for the SPL
model. From Equation (4), we can obtain:

.
SSPL =

q (x, y, z, t) · q (x, y, z, t + τ)

λT2 (9)

which is not necessarily positive or zero. Next, we will provide a simple example for the negative
entropy production rate problem caused by the SPL model. Consider a one-dimensional problem in
0 ≤ x ≤ l, where the initial condition is taken as T |t=0 = T0

(
2 + sin πx

l
)
, the boundary conditions are

taken as T |x=0,l = T0 and the physical properties satisfy λτπ
cV l2 = 1

2 . For this problem, if we use the
single-phase-lagging model, we can get the classical solution:

T1 (x, t) = T0

(
2 + cos

πt
2τ

sin
πx
l

)
(10)

From the temperature field, we can get the heat flux field:

q1 (x, t) = −λT0
π

l
sin

πt
2τ

cos
πx
l

(11)

Then we can obtain the entropy production rate
.
S1:

.
S1 = − q1∇T1

T2
1

=
λπ2T2

0
l2T2

1
cos2 πx

l
sin

πt
2τ

cos
πt
2τ

=
λπ2T2

0
2l2T2

1
cos2 πx

l
sin

πt
τ

(12)

It is not difficult to find that the above entropy production rate could be negative. For example,

when t = τ and x = l
4 ,

.
S1 =

λπ2T2
0

4l2T2
1

< 0. Therefore, in the framework of classical irreversible

thermodynamics, the SPL model also causes a negative entropy production rate. In the framework
of extended irreversible thermodynamics [15], where the definitions of thermodynamics could be
extended, the negative entropy production rate problem caused by the CV model can be avoided.
That is because appropriate constitutive assumption for entropy could influence the evaluation of
the entropy production rate and make it always positive or zero. For example, for the CV model,
the constitutive assumption for entropy could be taken as [15]:

S = S (u, q) = Seq (u)−
τ

2ρλT2 q · q (13)

where u is the internal energy and Seq(u) is the entropy in equilibrium. Then the entropy production

rate
.
S is calculated as:

.
S = q ·

[
−∇T

T2 −
τ

λT2
∂q
∂t

]
(14)

Substituting the CV model into Equation (14) leads to:

.
S =

q · q
λT2 (15)

which is positive or zero. Similarly, for the SPL model, we can also make the entropy production
rate always positive or zero by extending the definitions. For example, we can extend entropy flux
as q(t+τ)

T and from this extension, we have an extended calculation of entropy S = cV
∫ 1

T
∂T(t+τ)

∂t dt.
This extension of entropy flux means that for relaxation heat conduction, entropy flux at t is not
determined by heat flux at t but determined by heat flux at (t + τ). Then the calculation of the entropy
production rate

.
S turns to:
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.
S = − q (t + τ) · ∇T

T2 (16)

Substituting the SPL model into Equation (16), we can obtain:

.
S =

q (t + τ) · q (t + τ)

λT2 (17)

which is positive or zero.

3. Thermal Relaxation Time

There is another perspective about avoiding the negative entropy production rate for the SPL
model. The term q must be continuous in time because there is a time differential ∂

∂t in the heat
conduction equation. Based on the continuity of q, we can obtain that there is a τS > 0, and when
τ < τS, q(x,y,z,t)q(x,y,z,t+τ) ≥ 0. Therefore, the entropy production rate will be positive or zero
as long as the relaxation time is small enough, which means that reducing the thermal relaxation
time (larger than zero) could be another way for avoiding the negative entropy production rate.
As an example, we consider again the heat conduction problem in Section 2, where the initial condition
is taken as T |t=0 = T0

(
2 + sin πx

l
)

, the boundary conditions are taken T |x=0,l = T0 and the physical
properties satisfy λτπ

cV l2 = 1
2 . If we reduce the thermal relaxation time τ to τ′, where τ′ = τ

π
√

e , and keep
the other physical properties, the initial and boundary conditions unchanged, the classical solution for
this new heat conduction problem is:

T2 (x, t) = T0

(
2 + e−

t
2τ′ sin

πx
l

)
(18)

Then we can obtain the entropy production rate
.
S2:

.
S2 = − q2∇T2

T2
2

=
λ
√

ee−
t

τ′ π2T2
0

l2T2
2

cos2 πx
l
≥ 0 (19)

From Equation (19) we can find that when τ is reduced to τ′, the entropy production rate
changes from

.
S1, which could be negative, to

.
S2, which is always positive or zero. In this problem,

reducing relaxation time changes the form of the solution and then, the form of the entropy
production rate is changed too, which avoids the negative entropy production rate. Therefore, for this
problem, a small enough relaxation time (larger than zero) can be another way to avoid the negative
entropy production rate. However, reducing the relaxation time may not be effective in some cases,
because τ < τ′ could be impossible no matter how small the relaxation time is. In fact, τS is determined
by the initial and boundary conditions, which can be expressed as τS = τS(T|Γ,T|t=0). Then if the
initial or boundary conditions are influenced by the relaxation time (such as T|Γ = T|Γ(t,τ), T|t=0 =
T|t=0(x,y,z,τ)), τS will also be influenced by the relaxation time, which means τS = τS(τ). Therefore, as a
function of τ, it is not necessary that τS(τ) satisfies τ < τS(τ). Next, we will provide a simple example for
this problem, where T|Γ = T|Γ(t,τ). Consider a one-dimensional problem in 0≤ x≤ l, where the initial
condition is taken as T|t=0 = 2T0, and the boundary conditions are taken as T |x=0 = T0

(
2 + sin 3πt

2τ

)
and T |t=l = T0

(
2 + sin 3πt

2τ e−l
√

3πρcV
2τλ

)
. The classical solution for this problem is:

T3 (x, t) = T0

(
2 + sin

3πt
2τ

e−x
√

3πρcV
2τλ

)
(20)
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Different from the problem in Section 2, there are no conditions for the physical properties.
Therefore, the form of the solution will not be changed by reducing the relaxation time and so will the
entropy production rate. From Equation (20), we can obtain the entropy production rate

.
S3:

.
S3 = − q3∇T3

T2
3

=
3πρcVe−2x

√
3πρcV

2τλ T2
0

4τT2
3

sin
3πt

τ
(21)

It is not difficult to find that Equation (14) could be negative. For example, when t = τ
2 and

x = 0,
.
S3 = − 3πρcV T2

0
4τT2

3
< 0. Because the form of the entropy production rate is always expressed

as Equation (21) no matter how small the relaxation time is, reducing the relaxation time cannot
avoid the negative entropy production rate. Compared with the problem in Section 2, where the
initial and boundary conditions are not influenced by τ, in this problem, reducing the relaxation
time cannot change the form of the solution, because the change of the relaxation time is offset by
the boundary conditions T|Γ = T|Γ(t,τ), which will also change as the relaxation time changing.
The thermal relaxation time is usually discussed in the CV model, and the Taylor series approximation
expressed by Equation (6) seems that the SPL model has the same relaxation time as the CV model.
However, the physical meanings of the thermal relaxation time in the two models are quite different.
For the SPL model, the heat flux only depends on the previous instantaneous temperature gradient τ,
but for the CV model, from Equation (2), it is not difficult to find that the temperature gradient at a
certain moment must influence the heat flux at the same moment. Therefore, although the Taylor series
approximation expressed by Equation (6) is often established between the two models, their thermal
relaxation times have different physical meanings. For the SPL model, the thermal relaxation means
that the speed of the heat flux response to temperature gradient is not infinite. For the CV model,
whose heat conduction equation is a hyperbolic equation and predicts wave-like transport, the thermal
relaxation means that the speed of temperature perturbation itself is not infinite.

4. Spontaneous Equilibrium

Besides the positive or zero entropy production rate, the second law of thermodynamics also
means that the system will tend to equilibrium spontaneously. This requires that without perturbation,
a system in equilibrium should remain in equilibrium. For heat conduction problems, it means that if
the boundary and initial conditions are all in equilibrium, the whole temperature field must maintain
temperature equilibrium. For Fourier’s law, this requirement by the second law of thermodynamics
can be mathematically understood as follows: if the boundary conditions T|Γ and the initial conditions
T|t=0 satisfy T|Γ = T|t=0 = C0, where C0 is a constant, the whole temperature T(x,y,z,t) must satisfy
T(x,y,z,t) = C0. For the CV model, the heat conduction equation contains a second-order time derivative
term. Therefore, we need two initial conditions T|t=0 and ∂T

∂t

∣∣∣
t=0

to determine the solution for the CV
model. Then the equilibrious boundary and initial conditions for the CV model are T|Γ = T|t=0 = C0

and ∂T
∂t

∣∣∣
t=0

. If these conditions are satisfied, the whole temperature field must be C0. From the view
point of physics, it is not difficult to understand these conclusions. Whether for diffusive transport
or for wave transport, if the system has been in equilibrium, equilibrium will not be broken without
perturbation. However, for the single-phase-lagging model, the conclusion is different. Even if
the boundary and initial conditions are all in equilibrium, equilibrium could be broken in some
special circumstances. Next, we will provide a simple example. Consider a one-dimensional problem
where the physical properties satisfy 2τn2π

ρcV l2 = 1 (n is an integer). The boundary conditions are taken
T|x=0,l = C0, and the initial condition is taken T|t=0 = C0. Then consider a solution:

TI (x, t) = C1sin
nπx

l
sin

πt
2τ

+ C0 (22)
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where C1 is an arbitrary constant. This solution satisfies Equation (5), boundary conditions
T|Γ = T|t=0,l = C0 and initial condition T|t=0 = C0. Obviously, C1sin nπx

l sin πt
2τ (C1 6= 0) breaks

equilibrium, and this means that for the SPL model, equilibrium could be broken spontaneously.
In this special circumstance, there is no temperature difference at the initial time, but the SPL model
could cause a temperature difference. Therefore, for the SPL model, although we can avoid the negative
entropy production rate by extending the definition of entropy and proposing appropriate constitutive
assumptions, the second law of thermodynamics could also be violated by breaking equilibrium
spontaneously. From this view point, for the SPL model, modifying the entropy production rate is not
enough to avoid the violation of the second law of thermodynamics. In addition, solution expressed by
Equation (22) also shows that the solution for the SPL model may not be unique. For an arbitrary heat
conduction problem, where the boundary conditions are taken T|x=0,l = f Γ and the initial conditions
are taken as T|t=0 = f 0, if this problem has a solution TΛ (x, t) , T′Λ (x, t) = TΛ (x, t) + C1sin nπx

l sin πt
2τ

will also satisfy Equation (5) and all conditions. Therefore, T′Λ (x, t) is also a solution for this problem,
which means that for the SPL model, one determined heat conduction problem could have infinitely
many solutions. It is necessary to emphasize that these above non-physical phenomena only occur
with special physical properties 2τn2π

ρcV l2 = 1.
To avoid the above non-physical problems caused by the SPL model, we provide two assumptions

from the view point of engineering and physics. One assumption is that heat conduction process
begins at t = 0, and the system is in thermal equilibrium when t < 0. Another assumption is that
the whole temperature field is finite. From the first assumption, we have T(x,y,z,t) = C2 when t < 0.
Let ϕ = T − C2 and from Equation (5), ϕ satisfies:

∂ϕ

∂t
=

λ

ρcV
∇2 ϕ (t− τ) (23)

The boundary and initial conditions of ϕ are ϕ|Γ = T|Γ − C2 and ϕ|t=0 = T|t=0 − C2. From the
second assumption, we can obtain that ϕ is also finite, and the Laplace integral F =

∫ +∞
0 ϕe−ptdt is

convergent. Therefore, the Laplace transform F =
∫ +∞

0 ϕe−ptdt exists. Substituting it into Equation (23),
and according to the Time-Shift Theorem, we can obtain:

λ

ρcV
e−pτ∇2F = pF− ϕ|t=0 (24)

Equation (24) is an elliptic differential equation whose solution is unique, and therefore,
F =

∫ +∞
0 ϕe−ptdt is unique. What’s more, ϕ must be continuous in time because there is a time

differential ∂ϕ
∂t in Equation (23). Based on the continuity of ϕ, we can determine that ϕ is unique

from Lerch’s Theorem. Therefore, based on the two assumptions, the solution for the SPL model will
be unique. Then, considering the above problem where T|Γ = T|t=0 = C0, it is not difficult to find
that TII(x,t) = C0 is a solution for Equation (5) with these conditions, and because of the uniqueness,
there is no other solution besides C0. Then, we conclude that the two assumptions can avoid breaking
equilibrium spontaneously.

5. Mathematical Energy Integral

Mathematical solution in Section 4 shows that the SPL model could break equilibrium
spontaneously. We will prove that Fourier’s law and the CV model cannot break equilibrium
spontaneously by analyzing mathematical energy integral. Due to Fourier’s law and the equilibrious
boundary conditions T|Γ = C0, the definition of energy integral is:

EF (t) =
y 1

2
(T − C0)

2dV (25)
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which shows the deviation from equilibrium and the vibration amplitude from the equilibrium
temperature C0. The changing rate of the energy integral can be written as:

dEF (t)
dt

= −
y λ

ρcV
(∇T)2dV (26)

which is negative or zero. dEF(t)
dt ≤ 0 shows why Fourier heat conduction processes tend to equilibrium

spontaneously from the view point of mathematics. When T|t=0 = C0, we can obtain EF(0) = 0, and from
dEF(t)

dt ≤ 0, EF(t) ≤ EF(0) = 0. However, from Equation (25), obviously EF(t) ≥ 0, and then we have
0 ≤ EF(t) ≤ 0. Therefore, we can obtain EF(t) = 0 and T(x,y,z,t) = C0. This shows that Fourier heat
conduction will not break equilibrium when the boundary and initial conditions are all in equilibrium.
For the CV model, the definition of energy integral is:

ECV (t) =
y

[(
∂T
∂t

)2
+

λ

ρcVτ
(∇T)2

]
dV (27)

The rate of change of the energy integral is:

dECV (t)
dt

= − 2
τ

y (
∂T
∂t

)2
dV (28)

which is also negative or zero. When ∂T
∂t

∣∣∣
t=0

= 0 and T|t=0 = C0, we can obtain ∇T|t=0 = 0 and

then we have ECV(0) = 0. Equation (28) shows that dECV(t)
dt ≤ 0, and therefore, ECV(t) ≤ ECV(0) = 0.

From Equation (27), obviously ECV(t) ≥ 0, and then we have 0 ≤ ECV(t) ≤ 0. Therefore, we can
obtain ECV(t) = 0, which shows that ∇T(x,y,z,t) = 0 and ∂T(x,y,z,t)

∂t = 0. Because ∂T(x,y,z,t)
∂t = 0 and

∇T(x,y,z,t) = 0, we can finally obtain T(x,y,z,t) = C0. Thus, it is shown that the CV model will not break
equilibrium when the boundary and initial conditions are all in equilibrium. For the CV model, the
energy integral Equation (27) doesn’t show the vibration amplitude from the equilibrium temperature
but the size of the first-order differentials. In Equation (26), we find that the decay rate of EF(t) is
determined by (∇T)2, which means the attenuation will not stop unless ∇T = 0. Then, we have q = 0
and T(x,y,z,t) = C0. Therefore, for Fourier’s law, the attenuation of the heat conduction process will
not stop until the equilibrium is achieved, when EF(t) = 0. As comparison, in Equation (28), the decay

rate of ECV(t) is determined by
(

∂T
∂t

)2
, which means the attenuation will not stop unless ∂T

∂t = 0.
Different from Fourier’s law, for the CV model, when the attenuation stops, it is possible that ∇T 6= 0,
q 6= 0, T(x,y,z,t) 6= C0 and ∂q

∂t 6= 0. As an example, for T(x,y,z,t) 6= C0, ∇T 6= 0 and q 6= 0, T(x,t) = kx + b
and q(x,t) = −λkx could satisfy the CV model and heat conduction equation Equation (3), where k and
b are constants. As an example for ∂q

∂t 6= 0, T(x,t) = C0 and q (x, t) = q0e−
t
τ could satisfy the CV

model and heat conduction equation Equation (3), where q0 is constant. Therefore, for the CV model,
the attenuation of the heat conduction process stops as long as the temperature achieves stability,
and it is possible that ∇T 6= 0, q 6= 0, T(x,y,z,t) 6= C0 and ∂q

∂t 6= 0. In summary, from the analysis of
mathematical energy integral Fourier’s law means that heat conduction must tend to equilibrium,
and the CV model only requires that heat conduction tends to steady temperature.

6. Conclusions

In this paper, thermodynamics problems for the SPL model are discussed mainly in terms of
the violation of the second law of thermodynamics. The major conclusions about these problems are
as follows:

1. In the framework of classical irreversible thermodynamics, the SPL model could cause a negative
entropy production rate problem. There are two perspectives for the SPL model to avoid
the negative entropy production rate. One is extending the definition of entropy in classical
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irreversible thermodynamics, which is based on extended irreversible thermodynamics. The other
is reducing the thermal relaxation time, which is based on the continuity of heat flux in time.

2. It is shown that modifying the entropy production rate to a positive or zero value is not enough
to avoid the violation of the second law of thermodynamics for the SPL model, because the
SPL model could cause spontaneous equilibrium breaking under some special circumstances.
What’s more, the SPL model could also lead to infinitely many solutions for determined heat
conduction problems, which is also non-physical. To avoid these problems, two assumptions are
proposed from the view point of engineering and physics. One assumption is that heat conduction
process begins at t = 0, and the system is in thermal equilibrium when t < 0. The other assumption
is that the whole temperature field is finite.

3. It is proved that Fourier’s law and the CV model cannot break equilibrium spontaneously by
analyzing the mathematical energy integral. The energy integral of Fourier’s law shows the
deviation from equilibrium and the vibration amplitude from the equilibrium temperature, and the
energy integral of the CV model shows the size of the first-order differentials. For Fourier’s law,
the attenuation of the heat conduction process will not stop until the equilibrium is achieved,
but for the CV model, the attenuation of the heat conduction process stops as long as the
temperature achieves stability.
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