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Abstract: The paper presents a fractional order model of a heating process and a comparison of
fractional and standard PI controllers in its closed loop system. Preliminarily, an enhanced fractional
order model for the heating process on non-continuous materials has been identified through a fitting
algorithm on experimental data. Experimentation has been carried out on a finite length beam
filled with three non-continuous materials (air, styrofoam, metal buckshots) in order to identify
a model in the frequency domain and to obtain a relationship between the fractional order of the
heating process and the different materials’ properties. A comparison between the experimental
model and the theoretical one has been performed, proving a significant enhancement of the fitting
performances. Moreover the obtained modelling results confirm the fractional nature of the heating
processes when diffusion occurs in non-continuous composite materials, and they show how the
model’s fractional order can be used as a characteristic parameter for non-continuous materials with
different composition and structure. Finally, three different kinds of controllers have been applied
and compared in order to keep constant the beam temperature constant at a fixed length.

Keywords: Fractional order systems; modeling; control; optimization; heat transfer; non-continuous
materials

1. Introduction

The association between non-continuous materials and Fractional Order Systems [1–4] is an actual
research issue involving investigation at the micro- and macroscopic scale [5,6]. This research follows
the recent decades’ stream, according to which an increasing interest has arisen for non-continuous,
heterogeneous, and composite materials. They are in fact becoming more common in a wide range of
functional devices—particularly those involving energy transport and conversion [7]. Their physical
properties can be designed as a function of their composition in terms of materials and structure.
Modeling and controlling such properties therefore becomes crucial for the optimal materials design.

In particular, the heat transfer model optimization in the frequency domain represents a topic
of great interest, considering the common situations of periodic heat flux in engineering problems
such as cyclic heating of the cylinder surface of internal combustion engines, diurnal heating and
nocturnal cooling of building structures, and periodic (pulse) laser heating of solid surfaces in materials
processing [8].

The fractional order calculus was especially useful for modelling thermal processes, as shown
in [9–13]. The physics phenomena of such a distributed system model have been approached in
literature through different methods: finite difference method by using Grunwald–Letnikov (see [1]),
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definition for the fractional time derivative [14], and other numerical methods [15,16], such as
Podlubny’s matrix approach for discretization of integrals and derivatives of non-integer order [17]
and implicit difference approximation to solve the time fractional diffusion equation have been used
in [18]. Furthermore, non-Markovian stochastic process—related to a phenomenon of slow anomalous
diffusion—have been studied with discrete models of random walk [19].

The aim of this paper is twofold. The first goal is to investigate the fractional order nature of
such phenomena in non-continuous, heterogeneous, porous, or composite materials. In particular,
the order variation of the heat transfer model has been investigated on non-homogeneous beam heating
process by exploiting optimization methods for model identification and validation in the frequency
and time domains. The second goal consists of the comparison of classical Proportional Integrative
(PI) controllers with the Fractional Order one (FO-PI), keeping constant the beam temperature
at a fixed point.

2. Fractional Theoretical Model

Non-continuous material beam heating is associated with the effect of anomalous diffusion,
due to the discontinuous interfaces within the material and to part of the heat flux dispersed into the
neighbouring environment [8]. Theoretical and experimental models are here presented and compared.
The diffusion heat equation applied to a semi-infinite bar is described in Equation (1) in the time domain.
Considering the initial condition in Equation (2), the boundary conditions in Equations (3) and (4),
and applying the Laplace transform, it is possible to obtain the transfer function G(x, s) in Equation (5),
as in [8]. H is the heat flux, T is the temperature, and λ is a normalized distance from the heat source.

∂T(x, t)
∂t

= a2 ∂T2(x, t)
∂x2 (1)

T(x, t = 0) = 0 (2)

temperature along the tube at t = 0

H(x = 0, t) = −K
∂T
∂x

(x = 0) (3)

heat flux at x = 0
T(x → ∞, t = 0) = 0 (4)

temperature at x → ∞

G(x, s) =
T(x, s)
H(x, s)

=
T1

(T3s)0.5 + 1
e−λ(T2)

0.5
(5)

3. Fractional Experimental Model Identification

3.1. Experimental Setup

The thermal system approximating a semi-infinite beam consists of a steel beam (length L = 40 cm,
outer section diameter S = 4 cm, inner section diameter s = 3 cm, thickness t = 5 mm) filled with
different non-continuous materials. The entire experimental setup, schematic and devices, are shown
in Figure 1a,b. One end of the metal beam is connected to a Peltier cell (representing the heat
source), which is integrated in the heat pump assembly THP51B. Such assembly contains a heat
sink and the fan: they are used to control the temperature of the cell cold side and to maintain it
approximately constant at the ambient temperature. The heat flux out of the Peltier module is controlled
by the input current signal coming from a signal generator, and is amplified by a power amplifier
OPA549. Three temperature sensors LM35DH are positioned at a fixed distance from the heat source
(sensor1 at dλ1 , sensor2 at dλ2 , and sensor3 at dλ3 ), as detailed in the picture in Figure 1c. Three different
experimental setups have been created by varying the beam filling material. The idea was to create
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composite materials through the composition of granular-shaped materials with air. Such a choice
would provide an easy solution for inserting and removing the heterogeneous material from the
tube without changing the base of the experimental setup. The maintenance of the basic apparatus,
consisting of the metal tube and the Peltier module, ensures the repeatability of the experiments
when using different materials. In particular: air, Styrofoam (spheres of 2 mm diameter) and lead
buckshot (spheres of 1 mm diameter) have been used in order to investigate how the fractional
order of the thermal phenomena varies for the different materials with different thermal conductivity.
The lead buckshots filling the tube represent a composite material made of a metal, with good thermal
conductivity (35 W/(m·K)), and air, having thermal conductivity of 0.025 W/(m·K). The Styrofoam
spheres, which represent a thermal insulator with thermal conductivity of 0.04 W/(m·K) with air,
represent the second composite materials; while the air filling is used for the control experiment.

(a) (b)

(c)

Figure 1. Experimental setup. (a) Schematic, where SM (V/K) is the Seebeck coefficient , RM (Ohm) is
the Electrical Resistance, and KM the Thermal Conductance (W/K) of the Peltier cell. Such parameters
where calculated using the Ferrotec method (http://www.ferrotec.com) through measurements of
the module input current I, the hot side temperature th and the cold side temperature tc. NI DAQ:
National Instrument c© Data Acquisition Board; (b) Entire acquisition setup; (c) Beam photo with
details on the sensors position.

3.2. Experimental Model

In this paper, an enhanced experimental model for thermal diffusion has been introduced.
The theoretical ideal model in Equation (5) has been thus modified, leading to Equation (6) in order to
better fit the experimental data. In particular, the fractional order of the system (α) has been left as
a parameter to be identified.
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The α1 parameter has been included in order to discriminate within the mathematical model
the component of the energy transport related to the metal tube. This is important in the parameter
identification procedure, in order to decouple the fractional component related to the composite sample
from the one related to the experimental setup artifact.

Moreover, the spatial variable λ contribution has been considered in the pole position.
Such parameters to be identified are at the basis for the investigation of a possible relationship
between the thermal diffusion fractional order and the non-continuous material of the beam.

T(s, λ) =
T1

(T3λ0.5s)α + 1
e−λ(T2s)αα1 H(s, 0) (6)

3.3. Experimental Campaign

Sinusoidal signals at different frequencies have been used for the model identification in the
frequency domain. In particular, input current sinusoids with frequencies 0.1 mHz, 0.3 mHz, 0.5 mHz,
0.8 mHz, 1 mHz, 2 mHz, 3 mHz, 4 mHz, 5 mHz, 6 mHz, 7 mHz, 8 mHz, 9 mHz, 10 mHz, and 20 mHz
were used, causing a heat flux peak-to-peak amplitude of about 45 W. For each frequency, the sinusoidal
signal has been applied as a current input, and the temperature measurement was collected on three
sinusoids when the steady state condition was reached for the output temperature sinusoid off-set.
At the end of each sinusoid measurement, the system temperature was allowed to return to the
environmental temperature.

Three sets of experimental data acquisition have been conducted by varying the beam filling
material: air, Styrofoam, and lead buckshot.

3.4. Identification and Validation Method

Given the spatial dependence of the model, the identification process has been performed in two
steps. First, a multi-objective Nelder–Mead simplex optimization algorithm has been used in order
to identify the model parameters (T1, T2, T3, α, and α1) by fitting the model response (module and
phase) to the experimental data for sensor1 at the normalized distance λ1. The objective function Jerr

combines the error functions on the module and phase. Then, in order to validate the identified model
at different distances from the heat source, the same algorithm was used in order to validate the λ2

and λ3 parameters by comparing—in the frequency domain—the model output T to the experimental
temperature measured, respectively, at distances dλ2 and dλ3 . The quality of the identified model on
the spatial domain has been measured by comparing estimated distances dλ2 and dλ3 (corresponding
to the identified λ2 and λ3) with the real ones.

In order to determine the model parameters, the following Jerr index error—consisting of the sum
of two terms—has been considered. The first term, Jmodule, is related to the normalized error between
the module of the experimental ratio G = T/H and the simulated one of Equation (6), while the Jphase
represents the corresponding error for the phase.

Jerr = Jmodule + Jphase (7)

with

Jmodule =

√
∑(||Gexp| − |Gsim||2)√

∑(|Gexp|2)
(8)

Jphase =

√
∑(| 6 Gexp)− 6 Gsim|2)√

∑(| 6 Gexp|2)
(9)

The minimization of the cost function has been performed sequentially using the Nelder–Mead
simplex method [20] implemented via the Matlab function fminsearch [21], see also Figure 2.
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(a) (b)

Figure 2. Nelder–Mead multi-objective optimization algorithm for heat transfer model identification.
(a) Identification of model parameters in the frequency domain; (b) Validation of the identified model
in the spatial domain.

4. Modelling Results

4.1. Model Identification at sensor1

Three couples of identified models, theoretical and experimental, have been obtained by applying
the identification and the validation algorithm on the experimental data acquired at the sensor1
location on the metal tube filled with the three different materials. The identified parameters are
presented in Tables 1 and 2, respectively, for the theoretical model (T1, T2, T3) and for the experimental
model (T1, T2, T3, α, and α1). Comparison between the theoretical model, the experimental model,
and the experimental data at the sensor1 location is performed in the frequency domain through the
Bode diagrams—both module and phase—as presented in Figures 3–5.

Table 1. Theoretical model identified parameters at sensor1.

Material T1 T2 T3 α α1

Air 13.8610 289.7543 1222344.6 N/D N/D
Styrofoam 13.7534 293.0218 1248787.9 N/D N/D

Metal Buckshots 8.1853 282.1817 481148.7 N/D N/D

Table 2. Experimental model identified parameters at sensor1.

Material T1 T2 T3 α α1

Air 2.0589 117.6201 9260.2 0.7408 0.7077
Styrofoam 2.1589 109.8189 11252.4 0.7382 0.7649

Metal Buckshots 2.5013 456.3768 13193.5 0.5771 0.6869

The experimental model’s enhanced performances in fitting experimental data at the sensor1
location are visible by inspection of the Bode diagrams (see Figures 3–5). More evidence of such
enhancement is given by the mean square error (Jerr) calculated between the identified models module
and the experimental data at sensor1, as shown in Table 3. Moreover, as it is shown in Table 2,
the fractional order of the system for the metal buckshots is close to the theoretical value of α = 0.5.
The module of the Bode diagram in Figure 5 confirms such evidence, since the theoretical model fits
the experimental data with a smaller Jerr with respect to the other pipe filling material.
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Figure 3. Metal beam filled with air. Theoretical and experimental model comparison in the frequency
domain. (a) Module diagram; (b) Phase diagram.
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Figure 4. Cont.
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Figure 4. Metal beam filled with Styrofoam. Theoretical and experimental model comparison in the
frequency domain. (a) Module diagram; (b) Phase diagram.
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Figure 5. Metal beam filled with metal buckshots. Theoretical and experimental model comparison in
the frequency domain. (a) Module diagram; (b) Phase diagram.
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4.2. Time Domain Model Validation at sensor1

The experimental model has been validated in the time domain: the step response analysis has
been performed, the steady state value of the heat flux has been measured providing the value of
40 W over a ∆T = 100 K of the input step amplitude (see Figure 6). This leads to a static gain of 2.5 K/W
for all the materials, which is comparable to the T1 parameter found through experimental model
identification, ranging from 2 and 2.5 K/W. Such analysis suggests that the theoretical model in this
case fails in fitting the experimental data having a static gainranging from 8 to 13 K/W. It is also worth
noticing that the position of the pole for the theoretical model is at a very low frequency, and this
affects such a mismatch between the static gains of the two considered models.
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Figure 6. Step response analysis at sensor1 (a) Heat flux input; (b) Measured output temperature.

4.3. Model Validation at sensor2 and sensor3

The model validation results in the spatial domain has been presented for the three materials by
comparing the estimated distances dλ2 , dλ3 with the real sensor distances dλ2 = 4.2 cm, dλ3 = 5.2 cm.
Also in the validation step, the experimental model performs better than the theoretical model.

It is clear how the estimated distances dλ2 and dλ3 in Table 3 for the experimental model are closer
to the sensor2 and sensor3 actual distances with respect to the theoretical model estimated distances.
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Table 3. Experimental and theoretical model validation in the spatial domain.

Material Model Jerr λ1 dλ1 λ2 dλ2 λ3 dλ3

Air Theo. 10.5569 1 3.2 1.1542 3.69 1.3496 4.32
Exp. 3.5595 1 3.2 1.2031 3.85 1.50 4.8

Styrofoam Theo. 9.073 1 3.2 1.1622 3.72 1.3607 4.35
Exp. 3.087 1 3.2 1.2104 3.87 1.51 4.83

Metal Buckshots Theo. 6.9831 1 3.2 1.2001 3.84 1.4096 4.51
Exp. 2.3032 1 3.2 1.2929 4.14 1.6062 5.14

4.4. Fractional Order and Non-Continuous Materials

The identified values of the fractional order of the experimental model (see Table 4) for the different
non-continuous materials suggests that there is a relationship between the material composing the
beam and the fractional behavior. This might be due to the multiple interfaces within the material
leading to anomalous diffusion. The morphological composition and the relative thermal properties of
the non-continuous composite materials can therefore be considered the basis for designing complex
materials with desired thermal properties.

Table 4. Relationship between thermal conductivity of the non-continuous beam material and the
experimental fractional order model α.

Material Thermal Conductivity α

Air 0.025 0.7408
Styrofoam 0.04 0.7382

Metal Buckshots 35 0.5771

4.5. Controllers Implementation and Comparison

In this section, the comparison of three different approaches for the control of the temperature of
the beam at the distance dλ1 = 3.2 cm is reported. The control systems have been implemented by using
the HIL system DSpace ACE-kit DS1103. Its main features are the PowerPC 604e@400MHz, 2 MByte
local SRAM, 128 MByte global DRAM, 20 ADC channels (16/12 bit), and 8 DAC channels (14 bit).

All the considered controllers have been designed in Matlab/Simulink and then downloaded and
tested in real time using the ControlDesk tool as part of the HIL system.

The compared controllers are a conventional PI, an anti-windup PI, and a fractional order (FO) PI
controller. The PI has been designed according to the Ziegler–Nichols tuning rules, and the following
parameters have been used during the simulation: Kp = 81.08, Ki = 0.19; for the anti-windup
controller, see [22]. A feedback gain equal to 0.02 has been added, while the FO-PI has been designed
according to the tuning table given in [23], with Kp = 57.62, Ki = 0.27, and the fractional order α = 0.7.
In particular, the fractional order controller has been implemented using the Grunwald–Letnikov
discrete approximation, as in [1].

As it can be seen in Figure 7, the best performances have been obtained with the fractional
controller. This result can be supported by the evidence that a fractional order system can be better
controlled with a fractional controller instead of a classical one. The optimization of all the controllers
is foreseen as a next step, as well as the implementation and comparison of the control laws on
a low-cost microcontroller.
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Figure 7. Step response for the three different controllers: PI, anti-windup PI and FO-PI.

5. Conclusions

In this paper, as a first step, the fractional order of the heat transfer phenomenon on a finite beam
made of non-continuous composite materials has been investigated.

An optimized heat transfer model has been obtained by identifying the fractional order by
means of a Nelder–Mead optimization algorithm. The model has been identified for three different
non-continuous materials: air, Styrofoam, and metal buckshot.

The proposed model is a first step towards a complete enhanced experimental model.
The convection analysis is to be included in future models, considering that convective flow can
occur in the air and Styrofoam samples. Such an additive effect could affect the fractional order of the
model, especially in the case of air and Styrofoam filling.

With this in view, the experimental set-up could be improved taking into account the orientation
of the tube to evaluate the effect of the convection and the effect of the tube insulation on the energy
transport between the composite sample and the tube itself.

The model optimization paves the way for future work in the design of heating process control for
engineering applications. Such results allow us to investigate a simplified thermal model of complex
composite materials with a view towards defining the relationship between fabrication parameters,
the thermal capacitance and possible mixtures, and the fractional exponent value. This concept opens
the way for investigation of the technological control of material thermal properties by composite
material structure, concentration, and mixtures, making such design more simple and flexible.

The second step shows the comparison among fractional order and standard PI controllers,
outlining a better performance of the fractional one. With respect to the control strategies, future steps
consist of the optimization of all the controllers, as well as the implementation and comparison of the
control laws on microcontrollers.
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