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Abstract: Multi-label feature selection is designed to select a subset of features according to
their importance to multiple labels. This task can be achieved by ranking the dependencies of
features and selecting the features with the highest rankings. In a multi-label feature selection
problem, the algorithm may be faced with a dataset containing a large number of labels. Because
the computational cost of multi-label feature selection increases according to the number of
labels, the algorithm may suffer from a degradation in performance when processing very large
datasets. In this study, we propose an efficient multi-label feature selection method based on an
information-theoretic label selection strategy. By identifying a subset of labels that significantly
influence the importance of features, the proposed method efficiently outputs a feature subset.
Experimental results demonstrate that the proposed method can identify a feature subset much faster
than conventional multi-label feature selection methods for large multi-label datasets.
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1. Introduction

Multi-label learning is the process of identifying useful relations between target labels and input
data. Examples include taxonomies of email corpuses from texts or the emotive qualities of music
from audio sources [1–4]. This technique is useful for learning a model when input patterns can be
associated with multiple labels concurrently [5–10]. For example, in practice, applications can employ
a series of labels to encode target concepts to be learned, especially when the target consists of multiple
sub-concepts, such as humor or admiration [11,12]. Let W ⊂ Rd denote a set of training patterns
constructed from a set of features F. Then, each pattern wi ∈ W where 1 ≤ i ≤ |W| is assigned to a
certain label subset λi ⊆ L, where L = {l1, . . . , l|L|} and is a finite set of labels. In order to represent
the label association of training pattern-label set pair (wi, λi), each label can be encoded using a binary
vector b = (b1, . . . , b|L|) = {0, 1}|L| representing the joint state of the label set where each element is
one if the label is relevant and zero otherwise [13]. Under the multi-label learning umbrella, the goal of
multi-label feature selection is to determine a subset of important features for multiple labels [14–16].
This problem can be solved by selecting a subset S composed of n features from F that jointly have
the largest dependency on the labels L. Thus, multi-label feature selection can be achieved through a
scoring process that assesses the importance of |F| features and selects the top-ranked n� |F| features
for inclusion in the feature subset S [17]. This technique is particularly useful for reducing the cost of
collecting features, understanding the underlying mechanism connecting input features and multiple
labels, possibly improving the predictive performance and shortening the learning time [15,18,19].
In particular, because it can reduce the computational cost of subsequent learning methods by reducing
the dimensionality of the input data, it is regarded as a promising technique for applications that
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involve strict time constraints [20–24]. In this study, we focus on accelerating the multi-label feature
selection process itself, as well as the later employed learning method, such as a multi-label classifier.

Several researchers have dedicated efforts to selecting important features for multi-label
learning [25–29]. Multi-label feature selection methods can be categorized into three types, according
to how they assess the importance of candidate feature subsets [17,19]. Namely, these are the wrapper,
embedded and filter approaches. Wrapper-based multi-label feature selection methods assess the
importance of feature subsets based on the accuracy of a multi-label learning algorithm [30,31].
Some multi-label learning algorithms have a feature selection process embedded in their learning
process [27,32]. In contrast, filter-based multi-label feature selection methods determine a feature
subset by focusing on the characteristics of candidate feature subsets and multiple labels [18,28,33,34].
In this study, we construct our proposed method based on the filter approach, on account of its efficient
process for identifying the final feature subset without requiring an interaction with an additional
learning method [14,35].

In applications with strict time constraints, the computational efficiency of a multi-label feature
selection method is clearly an important issue. However, a high efficiency may not be achieved
when the method faces a large label set, because the computational cost for scoring the importance
of features increases according to the number of labels [14,17,18]. Thus, when the task involves
a large number of labels, the scoring process against L should be economized, to achieve an
efficient multi-label feature selection. In this paper, we propose an efficient multi-label feature
selection method that can quickly output a feature subset based on a new entropy-based label
selection strategy. The proposed method reduces the computational cost of evaluating the feature
importance by separating the process into two parts: an exact calculation quantifying the dependency
(i.e., importance) between the feature and each label in the promising label set and an approximation
of the dependency between the feature and influential labels. Figure 1 presents a schematic of the
proposed method with our label selection strategy. For given a feature f1 and six labels {l1, . . . , l6} (left),
the proposed method first identifies a subset of promising labels {l1, l2, l3} that would significantly
influence the importance of the feature f1 (middle). Finally, as shown in the right figure, the proposed
method determines the importance of f1 by calculating the dependency between f1 and promising
labels precisely, while approximating the dependency between f1 and the remaining labels.

Promising Labels
Exact Calculation

Approximation

Feature and Labels
Selecting

Promising Labels

Calculating

Dependency

Figure 1. Illustration of the proposed method with our label selection strategy.

To the best of our knowledge, this is the first study to accelerate the multi-label feature selection
method through an explicit label subset selection strategy. Our theoretical analysis and empirical
experiments show that the computational cost can be reduced according to the size of the promising
label set, without incurring significant changes in the multi-label learning performance.
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2. A Brief Review of Multi-Label Feature Selection

A major trend in multi-label feature selection studies involves applying a feature selection method
after transforming label sets into one or more labels [16,25,36]. Based on this approach, the feature
selection process can be performed after the transformation process is completed. One well-known
problem of the transformation method in this approach is Binary Relevance (BR), which separates
each label independently [34]. After separating the label set, a score function that is able to measure
the importance of features and labels, such as the Pearson correlation coefficient (BR + CC) [37] or
odds ratio (BR + OR) [38], can be employed. Because the final feature score is obtained by aggregating
all of the importance values of (feature, label) pairs, it requires a prohibitive computational cost if
a large label set is involved. On the other hand, efficient multi-label feature selection may not be
achieved if the transformation process consumes excessive computational resources. For example,
ELA + CHI evaluates the importance of each feature using χ2 statistics (CHI) between the feature and
a single label obtained by using Entropy-based Label Assignment (ELA), which separates multiple
labels and assigns them to duplicated patterns [25]. Thus, the label transformation process will require
a prohibitive execution time if the multi-label dataset is composed of a large number of patterns and
labels. Although the computational cost of the transformation process can be remedied by applying
a simple procedure [16,39], an inefficient feature selection process can occur if the scoring process
incurs excessive computational costs when evaluating the importance of features [26,34]. For example,
PPT + RF identifies appropriate weight values for features based on a label that is transformed by the
Pruned Problem Transformation (PPT) [39] and the conventional ReliefF (RF) scheme for single-label
feature selection [40]. Although the ReliefF method can be extended to handle multi-label problems
directly [35], the execution time to obtain the final feature subset can be excessively high if the
dataset is composed of a large number of patterns, because ReliefF requires similarity calculations for
pattern pairs.

In addition to the merits and side effects resulting from the immediate use of conventional
methods [41], algorithm adaptation strategies attempt to handle the problem of multi-label feature
selection directly [15,17,18,27,29,33]. In this approach, a feature subset is obtained by optimizing a
specific criterion (the name of corresponding multi-label feature selection method is presented in the
parenthesis if it is suggested by authors); a joint learning criterion involving feature selection and
multi-label learning concurrently [32,42], l2,1-norm function optimization (RFS) [29], a Hilbert–Schmidt
independence criterion (gMLC) [33], label ranking errors [27], F-statistics (MFS) [28], label-specific
feature selection (LIFT) [9] or memetic feature selection based on mutual information (MAMFS) [30].
However, if multi-label feature selection methods based on this strategy consider all features and labels
at once, the scoring process can be computationally prohibitive or even fail, owing to the internal
task of finding an appropriate hyperspace using pairwise pattern comparisons [27], a dependency
matrix calculation [33] and iterative matrix inverse operations [29]. As a promising starting point
for reducing the computational cost, the work of [18] demonstrated that mutual information can
be decomposed into a sum of dependencies among variable subsets (PMU), which is a very useful
property for solving multi-label learning problems [9,17]. In a similar approach, the dependency
calculation for feature and label pairs has been discarded (D2F) [14], and feature dependency has
been normalized using the number of previously-selected features (MDMR) [15]. More efficient score
functions, specialized into an incremental search strategy and a quadratic programming framework,
have also been considered, in methods known as AMI [43] and QPMLFS [44], respectively. However,
these mutual information-based score functions commonly require the calculation of the dependencies
between all variable pairs composed of a feature and a label. Thus, they share the same drawback
in terms of computational efficiency, because labels known to have no influence on the evaluation of
feature importance are included in the calculations as FIMF [17].

Although the characteristics of multi-label feature selection methods can vary according to how
the importance of features is modeled, conventional methods create a feature subset by scoring the
importance of features either for all labels [16,25,33] or all possible combinations drawn from the
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label set [17,18,27]. Thus, these methods inherently suffer from prohibitive computational costs when
the dataset is composed of a large number of labels. In this study, we will demonstrate that the
computational cost of evaluating the importance of features against a set of influential labels can be
reduced using our new label selection strategy, resulting in the acceleration of the feature selection
process. The contribution of this study can be summarized as follows:

• To accelerate multi-label feature selection processes involving large numbers of labels, we propose
a novel entropy-based label selection strategy to identify promising labels.

• To prevent the degradation of feature identification capability, a theoretical analysis is performed
regarding the process of evaluating feature importance in the multi-label situation.

• To preserve the computational cost, the proposed label selection method is designed to rely on
calculations that can be reused in the later feature selection process.

• In previous studies [14,17,18], the multi-label feature selection methods consider all of the labels
to identify an important feature subset. In contrast, we present a novel method that is able to
identify the important feature subset based on a subset of labels.

3. Proposed Method

3.1. Characteristics of Feature Importance and a Strategy to Reduce the Computational Cost

In this study, we focus on a mutual information-based multi-label feature selection method, owing
to the existence of thorough discussions regarding its theoretical background [14,17,18,43] and its
popularity [15,26,30,44,45]. Given a feature set F and label set L, the dependency, or shared entropy,
between F and L can be measured using mutual information as follows [46]:

M(F; L) = H(F)− H(F, L) + H(L) (1)

where H(X) = −∑x∈X P(x) log P(x) is the joint entropy with probability function P(x). If x is a
joint state of variables in X, then the entropy can be calculated directly. On the other hand, if the
given variable set X contains a set of numerical variables, then the entropy of X can be obtained by
discretizing each variable in X [47] or using the concept of differential entropy [48]. In practice, direct
computation of Equation (1) can be impractical, because an inaccurate probability estimation can occur
on account of the high dimensionality of a large label set L or an insufficient number of patterns [14].
To circumvent this difficulty, Equation (1) can be rewritten as [18]:

M(F; L) =
|F|+|L|

∑
k=2

k−1

∑
m=1

(−1)kVk(F′k−m × L′m) (2)

where × is the Cartesian product between two sets and Vk(·) is the sum of a k-degree interaction,
defined as [14]:

Vk(X′) = ∑
Y∈X′k

I(Y) (3)

where X′ is a power set of X without {∅}, Y is a possible element from X′k = {e|e ∈ X′, |e| = k} and
I(Y) is the interaction information involving a variable set Y. Specifically, this is defined as [49]:

I(Y) = − ∑
Z∈Y′

(−1)|Z|H(Z) (4)
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For example, if F = { f1} and L = {l1, l2}, then M(F; L) can be rewritten as:

M(F; L) = V2(F′1 × L′1)−V3(F′1 × L′2)

=
|F|

∑
i=1

|L|

∑
j=1

I( fi, lj)−
|F|

∑
i=1

|L|

∑
j=1

|L|

∑
k=j+1

I( fi, lj, lk)

Equation (2) indicates that the interaction information for all possible variable subsets across F
and L influences the dependency between F and L. Thus, it also indicates that the computational cost
of calculating Equation (2) increases exponentially according to the number of labels. To circumvent
intractable computational costs, Equation (2) can be approximated by setting a parameter that adjusts
the maximum allowed cardinality of variable subsets [14,17]:

M̃b(F; L) =
b

∑
k=2

k−1

∑
m=1

(−1)kVk(F′k−m × L′m) (5)

where 2 ≤ b ≤ |F|+ |L|. Equation (5) indicates that the computational cost can be significantly reduced
by setting b = 2, as follows:

M̃2(F; L) =
2

∑
k=2

k−1

∑
m=1

(−1)kVk(F′k−m × L′m) =
1

∑
m=1

(−1)2V2(F′2−m × L′m) = V2(F′1 × L′1) (6)

Equation (6) indicates that the dependency between F and L can be approximated by summing
over all of the interaction information terms of variable subsets containing a feature and a label. Thus,
a function D(F, L) that measures the dependency between F and L can be written as:

D(F, L) = V2(F′1 × L′1) = ∑
f∈F

∑
l∈L

I( f , l) (7)

For simplicity, the interaction information term for a variable subset involving only two variables
can be rewritten using the mutual information terms relating to the variable subset, as follows:

I(x, y) = − ∑
Z∈{x,y}′

(−1)|Z|H(Z) = H(x) + H(y)− H(x, y) = M(x; y)

As a result, D(F, L) can be rewritten as:

D(F, L) = ∑
f∈F

∑
l∈L

M( f ; l) (8)

Equation (8) indicates that all mutual information terms for all possible pairs ( f , l) with f ∈ F
and l ∈ L should be calculated to perform a multi-label feature selection based on D(F, L). Because
each feature in F contributes to D(F, L) independently, the optimal feature subset can be obtained by
selecting the top n features with the largest contributions (i.e., importance) to the value of D(F, L).
This is calculated as:

C( f ) = ∑
l∈L

M( f ; l) = |L| · H( f )−∑
l∈L

H( f , l) + ∑
l∈L

H(l) (9)

where f ∈ F. Equation (9) indicates that when the label set L is large, the scoring process may incur
high computational costs, because it must calculate the joint entropy term H( f , l). To reduce the
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computational cost, C( f ) should be approximated. Shannon’s inequality for information entropy
indicates that M( f ; l) is bounded as [46]:

0 ≤ M( f ; l) ≤ K( f , l) (10)

where K(a, b) = min (H(a), H(b)). Because the term K( f , l) does not involve the calculation of the
joint entropy term H( f , l), the scoring process can be accelerated by approximating the M( f ; l) term
using the K( f , l) term. As a result, C( f ) can be approximated as:

C̃( f ) = ∑
l∈L

K( f , l) = ∑
l∈L

min (H( f ), H(l)) (11)

In this study, Equation (11) will be used to calculate the dependency between features and
influential labels, in order to reduce computational costs. Suppose that a multi-label feature selection
method employs Equation (11) to evaluate the feature importance, where the joint dependency between
features and labels is not considered. Then, the importance of features is determined by the features’
own entropy values.

Proposition 1. If H(a) ≥ H(b), then C̃(a) ≥ C̃(b).

Proof. Suppose that there are two features a, b ∈ F, where H(a) ≥ H(b). Because the importance of
a and the importance of b are calculated using C̃(a) and C̃(b), the inequality C̃(a) ≥ C̃(b) will hold
if each K(a, l) value is greater than or equal to the corresponding K(b, l) value with the same label l.
When H(a) ≥ H(b), the value of K(a, l) is always greater than or equal to the corresponding K(b, l)
value, because the following relations are satisfied:

• If H(a) ≥ H(b) ≥ H(l), then K(a, l) = K(b, l) = H(l).
• If H(a) ≥ H(l) ≥ H(b), then K(a, l) = H(l) and K(b, l) = H(y), and thus, K(a, l) ≥ K(b, l).
• If H(l) ≥ H(a) ≥ H(b), then K(a, l) = H(a) and K(b, l) = H(b), and thus, K(a, l) ≥ K(b, l).

Because these relations hold for all pairs K(·, ·), a will correspond to a value C̃(a) that is greater
than or equal to the value of C̃(b).

Proposition 1 indicates that the computational cost can be significantly reduced, because the
scoring process can be performed without calculating the terms H( f , l). On the other hand, it also
indicates that features with higher entropy values will be included in the final feature subset S,
regardless of their dependencies with labels. Because the feature subset should depend on L, a strategy
to enhance the dependency between S and L without incurring an excessive computational cost is
required. To establish a proper strategy, the characteristics of C̃( f ) against C( f ) should be investigated.
First, we state Proposition 2 as follows.

Proposition 2. C̃( f ) is the upper bound of C( f ), written as:

0 ≤ C( f ) ≤ C̃( f ) (12)

Proof. Equation (9) shows that C( f ) is the sum of the mutual information terms between f and all
labels. Because each M( f ; l) term is bounded above by each K( f , l) term with the same label l and
C̃( f ) is the sum of all the K( f , l) terms, C̃( f ) is always greater than or equal to C( f ).

Proposition 2 indicates that a multi-label feature selection method employing C̃( f ) for the scoring
process, such as multi-label feature selection based on D(F, L), may imply the identification of a feature
subset that is far away from a designated solution if the value of C̃( f ) is dissimilar to C( f ). Thus,
a strategy for fine-tuning the C̃( f ) function towards the C( f ) function, within the constraints of given
computational resources, would be beneficial. In a multi-label feature selection method based on
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D(F, L), the method may repeatedly calculate the mutual information terms, along with l ∈ L, in order
to obtain the value of C( f ). Within this loop, let us define a function C̃j( f ), where j is the number of
labels considered for calculating the mutual information terms, as follows:

Definition 1. Let Y ⊂ L be the labels for which the actual mutual information between given features f and
l ∈ Y is calculated, where |Y| = j. Then, the score function C̃j( f ) is defined as:

C̃j( f ) = ∑
l∈Y

M( f ; l) + ∑
l∈Yc

K( f , l) (13)

where Y is a set of labels already considered during the loop, |Y| = j, Yc is a complementary set of Y and
Y ∪ Yc = L. Thus, C̃0( f ) = C̃( f ) and C̃|L|( f ) = C( f ). The number of calculated mutual information
terms will be incremented by one during each loop iteration, leading to a series of intermediate bounds,
as described in Lemma 1.

Lemma 1. Let Yj ⊂ L be the label subset Y for calculating C̃j( f ). Then, a series of bounds Cj( f ) can be
identified as:

C( f ) ≤ C̃|L|−1( f ) ≤ · · · ≤ C̃j( f ) ≤ · · · ≤ C̃1( f ) ≤ C̃( f ) (14)

where Yj ⊂ Yj+1.

Proof. For the inequality to hold, the following relation should be satisfied:

0 ≤ C̃j( f )− C̃j+1( f ) = ∑
l∈Yj

M( f ; l) + ∑
l∈Yc

j

K( f , l)− ∑
l∈Yj+1

M( f ; l)− ∑
l∈Yc

j+1

K( f , l) (15)

Equation (15) can be simplified as:

=

 ∑
l∈Yc

j

K( f , l)− ∑
l∈Yc

j+1

K( f , l)

−
 ∑

l∈Yj+1

M( f ; l)− ∑
l∈Yj

M( f ; l)


= ∑

l∈{Yc
j −Yc

j+1}︸ ︷︷ ︸
Part 1

K( f , l)− ∑
l∈{Yj+1−Yj}

M( f ; l)
(16)

Because Yj+1 = {Yj, y}, where y is a label and Yc
j = {L− Yj}, the label subset {Yc

j+1 − Yc
j } in

Part 1 can be simplified as:

{Yc
j −Yc

j+1} = {{L−Yj} − {L− {Yj, y}}} = {Yj, y} −Yj = y (17)

Thus, Equation (16) can be simplified as follows:

= ∑
l∈{y}

K( f , l)− ∑
l∈{y}

M( f ; l) = K( f , y)−M( f ; y) (18)

Equation (18) indicates that C̃j( f )− C̃j+1( f ) is always greater than or equal to zero. Because this
relation holds for 0 ≤ j ≤ |L| − 1, Lemma 1 can be obtained, which represents a series of bounds.

Lemma 1 indicates that it is possible to obtain a better approximation C̃j( f ) for estimating C( f )
by increasing the size of Y. That is, the ability of the function C̃j( f ) to measure the importance of
f in terms of the dependency between f and labels is enhanced. In other words, the algorithm is
able to reduce the computational cost by selecting a proper label subset Y, because the calculation for
the K( f , l) terms incurs a lower computational cost than that for the M( f ; l) terms. Suppose that the
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algorithm is able to identify a promising label set Y prior to the actual scoring process. Then, Lemma 1
can be generalized as Theorem 1.

Theorem 1. Suppose that the algorithm identifies a label subset Y prior to the scoring process. By calculating
the mutual information terms between f and the labels in Y, the following relation can be obtained:

C( f ) ≤ C̃j( f ) ≤ C̃( f ) (19)

Proof. Let us begin with the lower bound of C̃j( f ). For the inequality to hold, C̃j( f ) should be greater
than or equal to C( f ). Thus, the following equation should be satisfied:

0 ≤ C̃j( f )− C( f ) = ∑
l∈Y

M( f ; l) + ∑
l∈Yc

K( f , l)−∑
l∈L

M( f ; l) (20)

Equation (20) can be simplified as follows:

= ∑
l∈Y

M( f ; l) + ∑
l∈Yc

K( f , l)− ∑
l∈Y

M( f ; l)− ∑
l∈Yc

M( f ; l)

= ∑
l∈Yc

K( f , l)− ∑
l∈Yc

M( f ; l) = ∑
l∈Yc

(K( f , l)−M( f ; l)︸ ︷︷ ︸
Part 2

)
(21)

Equation (21) shows that Part 2 is always greater than or equal to zero, because each K( f , l) term
is the upper bound of the corresponding M( f ; l) term with the same label l. Thus, the lower bound is
always satisfied. Next, let us focus on the upper bound of C̃j( f ). To satisfy the inequality, C̃j( f ) should
be less than or equal to C̃( f ). Thus, the following equation should be satisfied:

0 ≤ C̃( f )− C̃j( f ) = ∑
l∈L

K( f , l)− ∑
l∈Y

M( f ; l)− ∑
l∈Yc

K( f , l) (22)

Equation (22) can be simplified as follows:

= ∑
l∈Y

K( f , l) + ∑
l∈Yc

K( f , l)− ∑
l∈Y

M( f ; l)− ∑
l∈Yc

K( f , l)

= ∑
l∈Y

K( f , l)− ∑
l∈Y

M( f ; l) = ∑
l∈Y

(K( f , l)−M( f ; l)︸ ︷︷ ︸
Part 3

)
(23)

Equation (23) shows that Part 3 is always greater than or equal to zero, because each K( f , l) term
is the upper bound of the corresponding M( f ; l) term with the same label l. Thus, the upper bound is
also always satisfied.

Theorem 1 indicates that the value of C̃j( f ) is closer to C( f ) than C̃( f ) for any given label set Y,
except for Y = {∅}. In addition, in order to obtain a value C̃j( f ) similar to the value C( f ) for efficient
feature scoring with a small Y, the identification of a promising label set Y becomes an important task.
Because Lemma 1 implies that C̃j( f ) monotonically decreases to C( f ) as the size of Y increases and both
K( f , a)−M( f ; a) and K( f , b)−M( f ; b) are independent of each other where a, b ∈ Yc

j , a promising
label set Y that minimizes the difference between C( f ) and C̃j( f ) can be identified by including y ∈ Yc

in Y sequentially in a manner that maximizes K( f , y)−M( f ; y), as shown in Equation (18). However,
this task is inefficient, because it requires the calculation of all of the mutual information terms during
the loop. Moreover, in this manner, the promising label set Y can be different for each feature, owing
to the mutual information terms involved in Equation (18). This results in an excessive computational
cost for identifying a promising label set for each feature.
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3.2. An Efficient Process for Identifying a Promising Label Set

In the work of [14], it was demonstrated that the feature subset can reduce the uncertainty of labels
(i.e., the remaining entropy) by using its selected features. A feature is selected because it reduces the
uncertainty of labels to a greater extent than unselected features. Suppose that the algorithm identifies
a label subset Y for accelerating the scoring process. Because the algorithm precisely calculates the
dependency between features and labels in Y and approximates the dependency between features and
labels in Yc, the feature subset will be specialized to reduce the uncertainty of labels in Y. However,
there can be a subset of labels that does not significantly contribute to the uncertainty of labels,
particularly in large label sets, and these labels are known to lack influence on the importance of
features [17]. These observations indicate that a value C̃j( f ) similar to C( f ) can be obtained if the
algorithm identifies a Y that maintains the uncertainty of L as far as possible, with a fixed number
|Y|. If the uncertainty of Y is similar to that of L, then the importance of features will not change
significantly compared to cases in which the importance is evaluated based on L. The uncertainty of L
can be measured by using the entropy function [46]:

E(L) = H(L) (24)

Because the calculation of Equation (24) is impractical, owing to the high dimensionality of large
label set L, it can be rewritten as follows [14]:

E(L) = −
|L|

∑
k=1

(−1)kVk(L′) (25)

Equation (25) shows that the computational cost will increase exponentially according to
|L|, indicating that this can incur an intractable computational cost. To circumvent prohibitive
computational costs, Equation (25) can be approximated using Equation (5), by setting a parameter b:

Ẽb(L) = −
b

∑
k=1

(−1)kVk(L′) (26)

where 1 ≤ b ≤ |L|. Equation (26) indicates that the most efficient approximation of E(L) can be
obtained by setting b = 1, as follows:

Ẽ1(L) = −
1

∑
k=1

(−1)kVk(L′) = V1(L′) = ∑
l∈L

I(l) (27)

Because interaction information terms with only one variable can be rewritten using an entropy
term involving that variable, Equation (27) can be rewritten as follows:

Ẽ1(L) = ∑
l∈L

H(l) (28)

Equation (28) indicates that the uncertainty for a label set can be approximated by the sum of
the entropies for each label. Because H(·) ≥ 0, the optimal label set Y that maximizes Ẽ1(Y) can be
obtained by selecting the top |Y| labels with the largest entropy values.

In our multi-label feature selection, C̃( f ) becomes similar to C( f ) by replacing each K( f , l) term
with the corresponding M( f ; l) term that has the same label. As a result, the importance among
features can be changed, because this situation occurs on all features. Let us focus on the start of the
loop where Y = {∅}. In this step, all of the mutual information terms between f and all labels are
approximated by their upper bounds, and the final score f is determined by summing over all of these
values. Thus, K( f , l) terms where l ∈ Yc will contribute to the final score differently, because their
magnitudes can vary. Based on Equation (28), the proposed method will choose a label y with the
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largest entropy from Yc and update the final score by replacing the K( f , y) term with the M( f ; y) term.
In this case, the value of the replaced K( f , y) term is the largest among the values of the remaining
K( f , z) terms on account of Theorem 2, where z ∈ {Yc − y}.

Theorem 2. The label that implies the largest K( f , y) value with y ∈ Yc
j is the label with the largest

entropy value.

Proof. Suppose that there are two labels a, b ∈ Yc
j , with a 6= b and H(a) ≥ H(b). In this case, it also

holds that K( f , a) ≥ K( f , b), because H( f ) is fixed, and the function K(·, ·) outputs a smaller value
lying between H( f ) and the entropy value of the corresponding label. Because this relation always
holds for all label pairs that can be drawn from Yc

j , the inequality K( f , a) ≥ K( f , b) is always satisfied
if H(a) ≥ H(b).

Because Theorem 2 is satisfied for all features, which means that the promising label at each step
is the same for all features, the proposed method is able to efficiently identify the label to be considered
from each step, after sorting labels based on their entropy values and choosing the label with the
largest entropy from Yc sequentially. Thus, the proposed method will determine the importance of a
feature by summing the mutual information values between f and labels that significantly contribute
to the uncertainty of the original label set and the approximated values between f and labels with
small contributions to the original label set.

Algorithm 1 describes the procedural steps of the proposed method. The proposed method
first initializes F∗ using F (Line 6). Next, the entropy of each label in L is calculated, and then,
L∗ is created by sorting labels based on their entropy values (Line 7). This process prevents the
occurrence of repetitive sorting operations for each feature in identifying the most promising label at
each step. Next, the proposed method calculates the contribution of each feature C̃( fi) (Lines 8–10).
It should be noted that the recalculation of H(lj) to obtain M( fi; lj) = H( fi)− H( fi, lj) + H(lj) and
K( fi, lj) = min(H( fi), H(lj)) is unnecessary, because these values have been calculated in Line 7.
Finally, the proposed method sorts features in F∗ based on the C̃(·) values for each feature and then
outputs the top n features in F∗ (Lines 11 and 12).

Algorithm 1 Pseudo-code of the proposed method.

1: Input:
2: F, L, n, |Y|; where F is a set of original features, L is a set of original labels, n is the number

of features to be selected and |Y| is the number of labels to be considered.

3: Output:
4: S; where S is the final feature subset with n features.

5: Process:
6: Create F∗ = { f1, . . . , f|F|} by assigning F to F∗;
7: Create L∗ = {l1, . . . , l|L|} by sorting L using H(l) where l ∈ L;
8: for all fi ∈ F∗ do
9: C̃( fi)← ∑

|Y|
j=1 M( fi; lj) + ∑

|L|
j=|Y|+1 K( fi, lj);

10: end for
11: Sort F∗ based on C̃(·) values;
12: Output the top n features in F∗.

Finally, we describe the computational cost of the proposed method and compare this to a
conventional binary relevance-based feature selection method, such as BR + CC, to show the efficiency
of the proposed method. For a dataset with |W| patterns, |F| features and |L| labels, the time complexity
of BR + CC can be written as O(|W| · |F| · |L|), because it evaluates the Pearson correlation coefficient
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between each feature and each label and then aggregates those values to identify the features to be
included in the final feature subset. Let us assume that the computational cost for computing mutual
information and Pearson correlation coefficients is the same, as both operations commonly involve
two variables and have to examine |W| patterns. Because the proposed method calculates the mutual
information value between a feature and labels in Y, the computational cost for this process will be
O(|W| · |F| · |Y|). It should be noted that the calculation results for the entropy of each feature and each
label are used to calculate mutual information terms, thus calculating K(·, ·) terms does not increase
the computational cost. Our analysis indicates that the computational cost of the proposed method
will be significantly influenced by the size of the promising label set Y.

4. Experimental Results

4.1. Datasets and Experimental Settings

We conducted experiments related to the performance of the proposed method on eight
multi-label datasets, composed of various numbers of labels [50,51]. Five datasets—Bibtex,
Delicious, Enron, Language Log (LLog) and Slashdot—were obtained from the application of text
categorization [10–12,30]; the Corel5K dataset was obtained from annotated images, each containing
multiple objects [52]. Two datasets—Genbase and Yeast—were obtained by representing the multiple
classes of biological functions [2,53]. These datasets have frequently been employed for the purpose
of comparison in multi-label feature selection studies [15,18,35]. We discretized the Yeast dataset
by using an equal-width interval scheme, in order to apply the feature selection methods [47].
Then, we mapped each numerical value into one of two bins. Table 1 presents the standard
statistics for the multi-label datasets used in our experiments [10,54]. For a multi-label dataset
U = {(ui, λi)|1 ≤ i ≤ |U|}, the label density can be defined as:

LD(U) =
1
|U|

|U|

∑
i=1

|λi|
|L|

where this indicates how many labels are assigned to a pattern, in the average portion against |L|.
Thus, a smaller value for the label density indicates a higher sparsity for the given label set.

Table 1. Standard characteristics of multi-label datasets.

Datasets Domain Patterns Features Labels

Number Type Number Density

Bibtex Text 7395 1836 Nominal 159 0.015
Corel5K Image 5000 499 Nominal 374 0.009

Delicious Text 16,105 500 Nominal 983 0.019
Enron Text 1702 1001 Nominal 53 0.064

Genbase Biology 662 1186 Nominal 27 0.046
Language Log (LLog) Text 1460 1004 Nominal 75 0.001

Slashdot Text 3782 1079 Nominal 22 0.054
Yeast Biology 2417 103 Numeric 14 0.303

To test the performance of the proposed method from the viewpoint of computational efficiency,
we choose five multi-label feature selection methods: BR + CC [37], BR + OR [38], ELA + CHI [25],
FIMF [17] and MFS [28]. Two multi-label feature selection methods—BR + CC and BR + OR—perform
the feature selection process based on the binary relevance-based problem transformation strategy.
In this approach, the importance of each feature is determined by the sum of the Pearson’s correlation
coefficient values or the odd ratio values between the features and labels. ELA + CHI avoids the need
for additional efforts in considering the dependencies between labels, by encoding multiple labels
into single labels. MF-Statistics (MFS) is chosen as a candidate because of its simple calculations for
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measuring feature contributions. FIMF reduces the computational cost for the multi-label feature
scoring process by discarding unimportant variable subsets. To obtain the score for all features, we set
the promising feature subset to F for FIMF. Superiority among multi-label feature selection methods is
determined by comparing the execution times (in seconds) for obtaining the output feature subset.

The quality of a feature subset is measured in terms of the multi-label classification performance,
based on feature subsets selected by each method. The size of the promising label set |Y| is identified by
conducting a series of experiments (Section 4.2). We evaluate the performance of each method using the
binary relevance-based logistic regressor (BRLR), owing to its strong capability for predicting binary
outcomes that form the basis of a label set [55]. In particular, 80% of the randomly chosen patterns
from the dataset are used in the training process, and the remaining 20% are used to measure the
performance of each feature selection method [18]. Because the multi-label classification performance
can differ depending on the number of input features, we measure the classification performance by
changing the size from one to 50, with intervals of five features. The experiments were repeated ten
times, and the multi-label classification performance is reported according to each evaluation measure.
We considered two evaluation measures, which are employed in many multi-label learning studies:
Hamming loss and ranking loss [10,18]. Let T = {(ti, λi)|1 ≤ i ≤ |T|} be a set of test patterns where
λi is a true label set for ti and is unknown to the multi-label classifier, resulting in U = W ∪ T and
W ∩ T = ∅. For each test pattern ti, a classifier such as BRLR will output a set of confidence values
ψi = {ψi,1, . . . , ψi,|L|} for each label l ∈ L after learning on the training set W. If a confidence value
ψi,l is larger than the predefined threshold value, such as 0.5, then the corresponding label l can be
included in the predicted label subset Yi. Based on the ground truth λi, confidence values ψi and
predicted label subset Yi, the multi-label classification performance can be measured according to each
evaluation measure. In particular, the Hamming loss is defined as:

hloss(T) =
1
|T|

|T|

∑
i=1

1
|L| |λi4Yi|

where4 denotes the symmetric difference between two sets. The ranking loss is defined as:

rloss(T) =
1
|T|

|T|

∑
i=1

|(a, b)|a ∈ λi, b ∈ λ̄i, ψi,a ≤ ψi,b|
|λi||λ̄i|

where λ̄i is a complementary set to λi. The Hamming loss evaluates the number of times
that a pattern-label pair is misclassified, and the ranking loss determines the ranking quality
of different labels for each test pattern. The two evaluation measures both indicate a good
classification performance for low values. All methods were carefully implemented in a MATLAB 8.2
programming environment and tested on an Intel Core i7-3930K (3.2 GHz) (Intel, Santa Clara, CA,
USA) with 64 GB memory.

4.2. Determination of the Size of a Promising Label Set

In this study, the proposed method is able to output different feature subsets according to the
size of promising label set |Y|. Because the quality of feature subsets can vary according to |Y|,
we conducted a series of experiments to set the size of the promising label set for the proposed method.
For clarity, we represent the classification performance according to n = 10, 30 and 50, where |Y| varies.
For each parameter setting with regard to n and |Y|, the experiment is repeated ten times, and the
average classification performance is reported.

Figure 2 illustrates the Hamming loss performance of the proposed method, with varying n and
|Y|. In each figure, the horizontal and vertical axes represent the size of the promising label set Y
and the corresponding Hamming loss value, respectively. Specifically, the lines with filled circles,
rectangles and diamonds represent the Hamming loss performances for n = 10, 30 and 50, respectively.
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The experimental results indicate that the classification performance changes according to n and |Y|.
In the experiments involving the Bibtex, Corel5K, Delicious, Enron, Yeast and LLog datasets, the results
indicate that the Hamming loss performance improves steeply until 10%–20% of the labels are included
in Y. It is interesting to note that the proposed method achieves a comparable or better Hamming
loss performance when Y is composed of a much smaller number of labels than L. For example,
Figure 2a shows that the Hamming loss performance improves until |Y| = 32, which is approximately
20% of the given label set, and it is better than that of |Y| = |L| = 159. Because a smaller size of
Y will accelerate the proposed method, this indicates that the proposed method is able to quickly
identify the final feature subset without significantly degrading the classification performance. For the
Ranking loss experiments presented in Figure 3, a similar tendency can be observed. For example, in
the experiments for the Bibtex dataset, the Ranking loss performance of |Y| = 32 is better than that
of |Y| = |L| = 159 and does not change significantly after that. Overall, the experimental results all
indicate that the feature subset quality can be maintained even though |Y| is set to a much smaller
value than |L|. Based on our experiments, the size of the promising label set can be identified for
each dataset. Table 2 presents the size of the promising label set |Y| for each dataset for the proposed
method. In addition, we choose 50 as the default value for the number of input features n, because this
achieves a better multi-label classification performance in most cases.

Table 2. The size of promising label set |Y| according to each dataset determined by our experiments.

Datasets Bibtex Corel5K Delicious Enron Genbase LLog Slashdot Yeast

|Y| 32 112 98 5 24 38 18 3
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Figure 2. Hamming loss performance of eight datasets according to the size of promising labels
|Y| while varying the number of input features n. BRLR, binary relevance-based logistic regressor.
(a) Bibtex dataset; (b) Corel5K dataset; (c) Delicious dataset; (d) Enron dataset; (e) Genbase dataset;
(f) LLog dataset; (g) Slashdot dataset; (h) Yeast dataset.
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Figure 3. Ranking loss performance of eight datasets according to the size of promising labels |Y|while
varying the number of input features n. (a) Bibtex dataset; (b) Corel5K dataset; (c) Delicious dataset;
(d) Enron dataset; (e) Genbase dataset; (f) LLog dataset; (g) Slashdot dataset; (h) Yeast dataset.

4.3. Comparison to Conventional Multi-Label Feature Selection Methods

Because our primary goal is to develop an efficient multi-label feature selection method,
we conducted empirical experiments on multi-label datasets with respect to the execution time.
Table 3 presents the execution times (in seconds) of multi-label feature selection methods for each
dataset. The execution time of the fastest multi-label feature selection method is highlighted in
boldface. The experimental results indicate that the proposed method outputs the selected feature
subsets significantly faster than the other methods. For example, the proposed method outputs the
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feature subset 9.5-times faster than BR + CC, which is the second-best method for the experiments on
the Delicious dataset.

Table 3. Execution time (in seconds) of six comparison methods (Proposed, BR + CC, BR + OR,
ELA + CHI, FIMF, and MFS). The best performance among six comparing methods on each dataset is
highlighted as the bold face.

Datasets Proposed BR + CC BR + OR ELA + CHI FIMF MFS

Bibtex 6.9 36.7 287.3 57.4 44.7 34.2
Corel5K 4.9 18.0 128.0 14.6 17.4 14.4

Delicious 9.8 93.1 800.1 241.6 101.6 102.5
Enron 0.2 3.4 19.2 9.2 3.6 2.2

Genbase 0.7 1.6 7.8 1.7 2.1 0.9
LLog 1.2 4.7 25.4 3.0 4.1 2.7

Slashdot 1.3 2.0 13.3 7.7 5.1 1.7
Yeast 0.0 0.1 0.7 1.7 0.3 0.1

After selecting a subset of features from the original feature set, the execution time of the later
learning algorithm will be reduced. To illustrate this aspect, we represent the execution time of BRLR
using both the original feature set and selected features when n is set to 50 in Table 4, because the
execution time of the learning algorithm is not influenced by the quality of the selected features.
The results show that BRLR requires a considerably lower execution time when 50 features are given,
indicating the merit of feature selection with respect to the execution time of the learning method.

Table 4. Execution time (in seconds) of BRLR using the original feature set and selected features (n = 50).
The better performance on each dataset is highlighted as the bold face.

Feature set Bibtex Corel5K Delicious Enron Genbase LLog Slashdot Yeast

Original 29,555.3 4085.7 36,181.9 430.2 4.0 429.4 492.4 1.0
n = 50 86.6 144.4 1121.8 3.3 1.5 2.0 7.1 0.2

Next, we consider the multi-label learning accuracy, as indicated by the feature subset selected by
each method. Figures 4 and 5 illustrate the multi-label classification performance of each feature
selection method for the eight datasets in terms of the Hamming loss and ranking loss. Here,
the horizontal axis and vertical axis represent the number of input features and multi-label classification
performance value, respectively. Although the proposed method requires a considerably lower
execution time than the compared methods, the experimental results indicate that the feature subset
selected by the proposed method provides a similar multi-label classification performance as that
provided by the compared methods. Specifically, for the experiments involving the Bibtex, Genbase,
Slashdot and Yeast datasets, as shown in Figure 4a,e,g,h, respectively, the Hamming loss values of
the feature subsets selected by the six multi-label feature selection methods, including the proposed
method, improve as the number of input features increases. In the experiments involving the Bibtex,
Delicious and Enron datasets, as shown in Figure 4a,c,d, respectively, the feature subset selected by
the proposed method yields a better multi-label classification performance compared to the feature
subsets selected by the compared methods, even though the proposed method outputs the feature
subset at least 5.0-, 9.5- and 11.0-times faster, respectively, than the other methods. Finally, in the
experiments involving the Corel5K, Genbase, Slashdot and Yeast datasets, as shown in Figure 4b,e,g,h,
respectively, the feature subset selected by the proposed method achieves a similar multi-label
classification performance, despite consuming a lower execution time. Figure 5 illustrates the ranking
loss performance of the feature subsets selected by each multi-label feature selection method. Again,
the feature subset selected by the proposed method results in ranking loss values that are similar to or
better than those produced by the compared methods.
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Figure 4. Hamming loss performance of eight datasets according to the number of input features n.
(a) Bibtex dataset; (b) Corel5K dataset; (c) Delicious dataset; (d) Enron dataset; (e) Genbase dataset;
(f) LLog dataset; (g) Slashdot dataset; (h) Yeast dataset.
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Figure 5. Ranking loss performance of eight datasets according to the number of input features n.
(a) Bibtex dataset; (b) Corel5K dataset; (c) Delicious dataset; (d) Enron dataset; (e) Genbase dataset;
(f) LLog dataset; (g) Slashdot dataset; (h) Yeast dataset.
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Tables 5 and 6 present the classification performance of each feature selection method
when n = 50, as obtained from the experiments depicted in Figures 4 and 5. To demonstrate the effect
of feature selection on the multi-label classification, we also present the baseline classification
performance, achieved when the original feature set is given to BRLR. The multi-label feature selection
method that produces the best average classification performance value among seven values according
to each dataset is highlighted in boldface. To conduct performance analysis among the comparing
multi-label feature selection methods, the Friedman test is employed that is a widely-used statistical
test for comparisons of multiple methods over a number of datasets [56]. Given k methods and
N datasets, let rj

i denote the rank of the j-th method on the i-th dataset (mean ranks are shared

in the case of ties). Let Rj = 1
N ∑N

i=1 rj
i denote the average rank for the j-th method, under the

null hypothesis (i.e., all methods have equal performance); the following Friedman statistic FF
will be distributed according to the F-distribution with k − 1 numerator degrees of freedom and
(k− 1)(N − 1) denominator degrees of freedom:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
, where χ2

F =
12N

k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]

Table 5. Hamming loss performance of each multi-label feature selection method when n = 50. The best
performance among six comparing methods on each dataset is highlighted as the bold face.

Datasets Baseline Proposed BR + CC BR + OR ELA + CHI FIMF MFS

Bibtex 0.029 0.009 0.012 0.011 0.011 0.010 0.011
Corel5K 0.018 0.010 0.010 0.010 0.010 0.010 0.010

Delicious 0.028 0.019 0.019 0.019 0.019 0.019 0.020
Enron 0.165 0.055 0.064 0.058 0.065 0.063 0.065

Genbase 0.001 0.001 0.001 0.002 0.001 0.001 0.001
LLog 0.097 0.016 0.019 0.024 0.022 0.018 0.019

Slashdot 0.070 0.042 0.043 0.054 0.044 0.043 0.054
Yeast 0.216 0.209 0.211 0.211 0.211 0.211 0.211

Table 6. Ranking loss performance of each multi-label feature selection method when n = 50. The best
performance among six comparing methods on each dataset is highlighted as the bold face.

Datasets Baseline Proposed BR + CC BR + OR ELA + CHI FIMF MFS

Bibtex 0.966 0.091 0.120 0.114 0.107 0.107 0.125
Corel5K 0.546 0.199 0.216 0.229 0.193 0.204 0.192

Delicious 0.248 0.126 0.158 0.153 0.166 0.155 0.167
Enron 0.478 0.096 0.108 0.110 0.114 0.110 0.115

Genbase 0.005 0.006 0.004 0.003 0.006 0.006 0.005
LLog 0.524 0.156 0.198 0.251 0.235 0.158 0.244

Slashdot 0.393 0.138 0.137 0.245 0.141 0.139 0.245
Yeast 0.184 0.179 0.180 0.180 0.180 0.182 0.178

Table 7 represents the Friedman statistics FF and the corresponding critical values on each
evaluation metric. As shown in Table 7, at a significance level of α = 0.05, the null hypothesis of
equal performance among the comparing algorithms is rejected in terms of each evaluation measure.
Consequently, we need to proceed with certain post hoc tests to analyze the relative performance
among the comparison methods [56]. As we are interested in whether the proposed method achieves
similar performance against other methods even though it consumes lesser computational cost,
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the Bonferroni–Dunn test is employed [57]. Here, the difference between the average ranks of the
proposed method and one comparing method is compared with the following critical difference (CD).

CD = qα

√
k(k + 1)

6N

Table 7. Summary of the Friedman statistics FF (k = 7, N = 8) and the critical value in terms of each
evaluation measure.

Evaluation Measure FF Critical Value (α = 0.05)

Hamming loss 5.506 2.324
Ranking loss 4.868 2.324

For the Bonferroni–Dunn test, we have qα = 2.638 at a significance level of α = 0.05, and thus,
CD = 2.849 (k = 7, N = 8). Accordingly, the performance between the proposed method and one
comparison method is deemed to be statistically similar if their average ranks over all datasets within
one CD. To visualize the relative performance of the proposed method and other methods, Figure 6
illustrates the CD diagrams on each evaluation measure, where the average rank of each method
is marked along the axis where lower ranks are placed in the right-side [56]. In each subfigure,
any comparison method whose average rank is within one CD to that of the proposed method is
interconnected with a thick line. Otherwise, any algorithm not connected with the proposed method
is considered to have significantly different performance between themselves. The experimental
results show that the feature subset selected by the proposed method achieves a significantly better
classification performance than the baseline, indicating that the proposed method is able to improve
the classification performance. In addition, the feature subset selected by the proposed method
gives similar classification performances to those of the compared methods. Because the proposed
method consumes lower computational cost than the compared methods, this means the proposed
method is able to identify the important feature subset quickly, without degrading the multi-label
classification performance.

7 6 5 4 3 2 1

Baseline Proposed

BR+OR

BR+CC

ELA+CHI

FIMF

MFS

(a) Hamming loss

7 6 5 4 3 2 1

Baseline Proposed

BR+CC

BR+OR

ELA+CHI

FIMF

MFS

(b) Ranking loss

Figure 6. Comparison of the proposed method against other methods with the Bonferroni–Dunn test.
Methods connected with the proposed method in the critical difference (CD) diagram are considered to
have statistically similar performance (significance level α = 0.05).

4.4. Comparison to Label Selection Strategy

In the proposed method, the promising label set is identified by choosing the labels with the
largest entropies. To validate our label selection strategy, we implemented an opposing method,
which chooses labels with the smallest entropies to compose Y. For this comparison method, we did
not expect the classification performance to change significantly, because M( f ; y) ≤ K( f , y) ≤ H(y),
where y is the considered label, and thus, the final score of the features according to the number of
considered labels will not significantly change. Figure 7 compares the Hamming loss performance
results for the eight datasets, according to the label selection strategy. Each figure contains two lines,
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representing the Hamming loss performance for each label selection strategy. The line with the filled
circles represents the Hamming loss performance of the proposed method, and that with the filled
diamonds represents the performance of the comparison method, according to the number of selected
labels. The experimental results indicate that the Hamming loss performance of the proposed method
significantly outperforms the compared method, endorsing the validity of our label selection strategy.
In contrast, the experimental results also show that the Hamming loss performance of the compared
method did not change significantly, confirming our expectations. In the experiments regarding the
ranking loss, shown in Figure 8, a similar tendency can be observed.
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Figure 7. Comparison results for the Hamming loss performance of eight datasets according to each
label selection strategy. (a) Bibtex dataset; (b) Corel5K dataset; (c) Delicious dataset; (d) Enron dataset;
(e) Genbase dataset; (f) LLog dataset; (g) Slashdot dataset; (h) Yeast dataset.
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Figure 8. Comparison results for the ranking loss performance of eight datasets according to each
label selection strategy. (a) Bibtex dataset; (b) Corel5K dataset; (c) Delicious dataset; (d) Enron dataset;
(e) Genbase dataset; (f) LLog dataset; (g) Slashdot dataset; (h) Yeast dataset.

5. Conclusions

In this paper, we have proposed an efficient multi-label feature selection method, based on a
novel entropy-based label selection strategy. The proposed method reduces the computational cost of
evaluating the feature importance by calculating the exact dependencies between the features and the
promising label set and approximating the dependencies for influential labels. The experimental
results demonstrate that the proposed method can generate the feature subset quickly, without
requiring an excessive execution time or incurring a significant degradation in discriminating capability,
thus supporting the efficiency of the proposed method. Future research directions will include the
investigation of the multi-label learning performance with respect to the label selection strategy.
Our experiments indicate that the feature subset selected by the proposed method can possibly deliver
a better discriminating capability, even though the size of the promising label set is smaller than that
of the original label set. Thus, we would like to investigate this issue more deeply.
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