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Abstract: A simple harmonic oscillator canonical ensemble model for Schwarzchild black hole
quantum tunneling radiation is proposed in this paper. Firstly, the equivalence between canonical
ensemble model and Parikh–Wilczek’s tunneling method is introduced. Then, radiated massless
particles are considered as a collection of simple harmonic oscillators. Based on this model, we treat
the black hole as a heat bath to derive the energy flux of the radiation. Finally, we apply the result to
estimate the lifespan of a black hole.
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1. Introduction

Since Hawking discovered that a black hole has thermal radiation in the 1970s, there has been
an ongoing argument about whether Hawking radiation violates unitary principle in black hole
physics, which is the so-called black hole information paradox [1–5].

In 2000s, Parikh and Wilzeck treated the emission of Hawking radiation as tunnelling—namely,
out-going Hawking particles feel a barrier due to their self-gravity. Considering the effect of
backreaction, which preserves the principle of energy conservation during tunneling, the spectra
are not thermal spectra anymore. According to Parikh and Wilzeck’s original result, the emission
probability for a Schwarzchild black hole is

Γ ∝ e−8πMω+4πω2
= exp(∆S), (1)

in which ∆S is the increment of entropy. They claimed that the unitary principle is preserved according
to this result [6–8].

The Parikh–Wilczeks (PW) tunneling framework has been applied for other black holes. From then on,
the tunneling rate is generally proportional to exp(∆S) for different black holes, such as RN black
hole, Kerr black hole, and Kerr–Newman black hole, etc. Meanwhile, the emission of charged massive
particles is also investigated [9–31].

It is interesting that the following formula always appears in the calculation

dS =
1
T
(dM−V+dQ−Ω+dJ), (2)

which implies that the tunneling is equivalent to a quasi-static process. Of course, a quasi-static process
is reversible, while an arbitrary thermodynamical process is not. Once a non-quasi-static process is
considered, the information should be lost. This argument was proposed in Reference [18], and it
inspires us to apply a canonical ensemble method for tunneling model.
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In a traditional fashion, a cannonical ensemble is derived in the following way. Considering that
the system interacts with a huge heat bath, they exchange energy with each other and constitute an
isolated system. According to the principle of equivalent possibility, the probability of the system in s
state is

Ps ∝ ΩBH(Etot − Es). (3)

Since Es � Etot, take Taylor expansion,

ln ΩBH(Etot − Es) =ln ΩBH(Etot) + (
∂ln ΩBH

∂E
)E=Etot(−Es)+

1
2
(

∂2ln ΩBH

∂E2 )E=Etot(−Es)
2 + · · ·

(4)

Keep the leading term, and define

β = (
∂lnΩ

∂E
)E=Etot , (5)

Then, Expression (3) becomes
Ps ∝ exp(−βEs). (6)

This is a so-called canonical ensemble. It is worth noting that we only take the first order in Taylor
expansion here. It becomes interesting when the second order is also considered. Let us define the
following parameter

λ =
1
2
(

∂2ln Ω
∂E2 )E=Etot = −

kBβ2

2CBH
, (7)

in which CBH is the heat capacity of a black hole and kB is the Boltzmann constant. Then, the expansion
up to second order is

ln ΩBH = −βEs + λE2
s . (8)

For a Schwarzchild black hole, β = 8πM and λ = 4π (in Planck units), and λ is a constant. Thus,

Ps ∝ e−8πMEs+4πE2
s . (9)

The above formula for the probability of s state is similar to the tunneling rate given by
Parikh–Wilzeck’s framework. It sheds light on the calculation of the corrected average energy flux
and the corrected lifespan of black hole. Generally, the lifespan of a black hole is calculated through
the Stefan–Boltzmann law because of the pure black-body feature of Hawking radiation. However,
in Parikh–Wilczek’s tunneling model, Hawking radiation spectra are not pure thermal spectra anymore.
So, the average energy flux should also be corrected. Then, the flux would lead to the correction for
the lifespan of black holes.

There may be a question about which ensemble should be chosen for other black holes. Let us
take the emission of charged massive particles from a Kerr black hole as an example. A generalized
PW model is studied in [20] and [27]. The result is still Γ ∝ exp(∆S), but ∆S looks more complex,

∆S = 2π[(M−ω)2 + (M−ω)
√
(M−ω)2 − a2]− 2π[M2 + M

√
M2 − a2]. (10)

In this situation, the whole energy and charge are conserved, but emissions take away part of them.
Therefore, the energy and charge of the black hole are decreasing. It is natural to think about a grand
canonical ensemble rather than a canonical ensemble. However, the concrete study of energy flux in
this case is very difficult due to the complex expression of ∆S.

This paper is organized as follows: in Section 2, we will talk about the simple harmonic oscillator
(SHO) canonical ensemble model in detail. In Section 3, we will apply the result of Section 2 to estimate
the lifespan of a black hole with initial mass M and discuss. SI units rather than Planck units is used
in the following content.
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2. SHO Canonical Ensemble Model

According to quantum field theory for free field, photons can be identified as excited quanta of
an electromagnetic field’s harmonic mode. The frequency of ~p mode is ω~p = |p|/h̄. Treat the thermal
system as a collection of harmonic modes. The energy of the radiation is

Es = ∑
p

np h̄ωp. (11)

The partition function in first order is

Z = ∑
{n~p}

e−∑~p βn~p h̄ω~p , (12)

where {n~p} presents the distribution of particles. It means that we sum over all order set
{n1, n2, n3, ..., ni, ...} in which index i runs over the whole momentum space. It is obvious that Z
can also be expressed as

∑
{n~p}

∏
~p

e−βn~p h̄ω~p = ∏
~p

∑
n~p

e−βn~p h̄ω~p . (13)

Define Z~p = ∑n~p e−βn~p h̄ω~p , then Z = ∏p Zp. There is no mixture between different modes. Thus,
for an arbitrary mode, the average particle number is

n̄ =
∑∞

n=0 ne−βnh̄ω

∑∞
n=0 e−βnh̄ω

=
1

eβh̄ω − 1
. (14)

This is the boson distribution.
In Parikh–Wilzeck’s tunneling model, they treated the outgoing particle as s-mode. The s-mode

should be thought of as a superposition of plane wave at large r region. On one hand, the emission
rate is Γ ∝ e−8πGMω/c3+4πGh̄ω2/c5

. On the other hand, considering second order in canonical ensemble,
the probability of a particular s state is Ps ∝ e−8πGMEs/h̄c3+4πGE2

s /h̄c5
. Obviously, for one particle state

Es = h̄ω, the result is exactly the same with Parikh–Wilzeck’s tunneling model. However, since
Es = ∑{np} np h̄ωp, the term 4πGE2

s /h̄c5 mixes different modes. In order to simplify the calculation,
the approximation that every mode is independent is considered in our model. Thus, the total partition
function is still Z = ∏p Zp. For single harmonic mode, there is

∑
n

e−βnh̄ω+λn2 h̄2ω2
. (15)

Average particle number n̄ = ∑∞
n=0 ne−βnh̄ω

∑∞
n=0 e−βnh̄ω = 1

eβh̄ω−1
should be replaced by

n̄ =
∑∞

n=0 ne−βnh̄ω+λn2 h̄2ω2

∑∞
n=0 e−βnh̄ω+λn2 h̄2ω2

. (16)

It is very difficult to calculate the average number, and there is one more serious problem; the sum (15)
is divergence. Meanwhile, whether or not the average number (16) converges is still a problem.
Obviously, Expression (15) needs regularization. This is an important issue. However, we want to find
the asymptotic expansion of Expression (16) rather than the precise summation in this paper. It can be
done in the following way. Define function

Ξ(s, x) = ∑∞
n=0 ne−nx+n2sx2

∑∞
n=0 e−nx+n2sx2 . (17)
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Expand the function with respect to variable s

Ξ(s, x) = Ξ(0, x) + (
∂Ξ
∂s

)s=0 + O(s2) =
1

ex − 1
+

e2x + 3ex

(ex − 1)3 x2s + O(s2). (18)

Supposing that the black hole is a heat bath with minus heat capacity in flat spacetime,
the corrected average energy flux can be calculated as

ju =
2

(2πh̄)3

∫ +∞

0
dpx

∫ +∞

−∞
dpy

∫ +∞

−∞
dpzn̄pxc2, (19)

in which n̄ is irrelevant with direction. However, it depends on the value of momentum p.
Integral under spherical coordinates,

ju =
2πk4

BT4

(2πh̄)3c2

∫ ∞

0
Ξ(λk2

BT2, x)x3dx

=
2πk4

BT4

(2πh̄)3c2

∫ ∞

0

x3

ex − 1
dx + λ

2πk6
BT6

(2πh̄)3c2

∫ ∞

0

e2x + 3ex

(ex − 1)3 x5dx + O(λ2).

(20)

Finally, the result is

ju = σT4 + λσ
4(π4 − 45ζ(5))

9ζ(4)
k2

BT6 + O(T8), (21)

in which σ is the Stefan–Boltzman constant and ζ(n) is Riemann zeta function. By the same method,
the corrected flux for a massless fermion can also be calculated as follows:

ju =
2πk4

B
(2πh̄)3c2

7π4

120
T4 +

2πk4
B

(2πh̄)3c2
2555π10

66
4πG
h̄c5 k2

BT6 + O(T8). (22)

3. Lifespan of a Black Hole

Once the corrected flux is known, the corrected lifespan of a black hole can also be calculated.
Under a simple consideration of energy conservation, the increment of the black hole energy should
equal to minus energy flow from it, which means

c2 dM
dt

= −ju A. (23)

The flux ignoring the higher order of s = λk2
BT2 is expressed as

ju = σT4 +
4πG
h̄c5 σ

4(π4 − 45ζ(5))
9ζ(4)

k2
BT6. (24)

Assuming that the surface area of radiation is coincident with horizon area, and substituting the
temperature of Hawking radiation T = h̄c3/8πkBGM and values of all parameters into Equation (23),
we obtain

dM
dt

= −16πGσ

c6M2 (
h̄c3

8πGkB
)4(1 +

4(π4 − 45ζ(5))
9ζ(4)

(
h̄c3

8πGkB
)2 4πGk2

B
h̄c5M2 )

= −3.90× 1015

M2 (1 +
2.04× 10−16

M2 ).

(25)

The lifespan is found as the following when the above equation is solved.

t =
10−23

1.23
× (

M3

3
− 2.04× 10−16M + (2.04× 10−16)

3
2 arctan(

M√
2.04× 10−16

)), (26)
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in which M is the initial mass of the black hole.
Our result shows that the lifespan correction is extremely small. Treating billion sun mass as

initial mass for black hole, and taking it as a concrete example to estimate the lifespan, we find that the
result from the uncorrected Stefan–Boltzmann’s law is 3× 1093 years, but the correction is less than
two years! However, it is still significant to have a systematic method by which the correction can be
calculated order by order.

4. Discussion

The similarity between PW’s result and (grand) canonical ensemble is remarkable. This led
to an order by order estimation of energy flux and black hole lifespan. However, it is not new to
find high order correction of Hawking radiation energy flux. Modak [32] has also constructed an
order by order calculation for energy flux of Hawking radiation. They studied the energy flux by the
following integral

〈E〉 = 1
2π

∫ ∞

0
〈nω〉ωdω (27)

In our point of view, the degenerate degree of every energy level is less considered in their method.
On the contrary, the barrier for high angular momentum is less considered in our method. One can
expect that the precise flux should be larger than their result, but smaller than ours.

On the other hand, Modak [32] studied backreaction at the quantum level. They thought that
redefining κ(M) = 1

4M → κ(M − nh̄ω) = 1
4(M−nh̄ω)

would account for the effect of backreaction.
The quantum state is

|ψ〉 = N
∞

∑
n=0

e−
4πnω(M−nh̄ω)

h̄ |nL
out〉 ⊗ |nR

out〉. (28)

However, this yielded a contraditctory result to PW’s model. No matter what particular tunneling
process, the effect of backreaction in PW’s result can be summarized as follows.

− 2π(E−ΦH(Q)q−ΩH(M, J)j)
κ(M, Q, J)

= −2π
∫ {E,q,j}

{0,0,0}

dE′ −ΦH(Q)dq′ −ΩH(M, J)dj′

κ(M, Q, J)

→ −2π
∫ {E,q,j}

{0,0,0}

dE′ −ΦH(Q− q′)dq′ −ΩH(M− E′, J − j′)dj′

κ(M− E′, Q− q′, J − j′)

= 2π
∫ {M−E,Q−q,J−j}

{M,Q,J}

dM′ −ΦH(Q′)dQ′ −ΩH(M′, J′)dJ′

κ(M′, Q′, J′)

(29)

in which E, q, j is respectively the energy, charge, and angular momentum of outgoing particles. It is
simplest for a Schwarzchild black hole.

− 2πE
κ(M)

−→− 2π
∫ E

0

dE′

κ(M− E′)
= 2π

∫ M−E

M

dM′

κ(M′)

= 2π
∫ M−E

M

dM′
1

4M′
= −8πME + 4πE2

(30)

So, the compatible way to correct by hand is redefining −8πnMh̄ω −→ −8πnMh̄ω + 4πn2h̄2ω2.
The quantum state should be

|ψ〉 = N
∞

∑
n=0

e−
4πnMω−2πn2 h̄ω2

h̄ |nL
out〉 ⊗ |nR

out〉. (31)

In the simple harmonic oscillator canonical ensemble model, three assumptions are needed at the
present stage: (i) The coincidence between canonical ensemble and PW’s framework can go beyond
the single particle state; (ii) The black hole is treated as a heat bath with minus heat capacity in flat
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spacetime; (iii) No mixture between different modes. Assumption i is the most fundamental one in our
model, and (ii) and (iii) are not. Assumption ii can be changed. One can take the effect from curved
spacetime into account, then go further to study the spectra in Schwarzchild—AdS spacetime. If this
is the case, the mode summation cannot be done by integrating in phase space like Expression (19).
Reference [33] gives a systemic method to calculate the sum in spherical spacetime. However, the
infinity red shift due to Killing horizon can only be cured by introducing a UV cut-off at present stage.

Assumption (iii) can also be relaxed, since it is just a working assumption. It is worth to study what
the effect of the mixture term in the partition function is. Meanwhile, there is a more serious problem
about the divergence of the sum. Fortunately, its Taylor series is well defined when s = λk2

BT2 � 1,
such that we can calculate the flux order by order. However, if s = λk2

BT2 ∼ 1, this expansion

becomes invalid. The corresponding temperature is T ∼
√

h̄c5

4πGk2
B

, which is close to Planck scale.

This suggests that there is a huge change while the emission temperature is near Planck scale. Finding
a regularization for the divergent sum may be important in further investigation.
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