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Abstract: Based on a diffusion-like master equation we propose a formula using the Bregman
divergence for measuring entropic distance in terms of different non-extensive entropy expressions.
We obtain the non-extensivity parameter range for a universal approach to the stationary distribution
by simple diffusive dynamics for the Tsallis and the Kaniadakis entropies, for the Hanel–Thurner
generalization, and finally for a recently suggested log-log type entropy formula which belongs to
diverging variance in the inverse temperature superstatistics.
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1. Introduction

Over the last decades, there have been several suggestions for generalizations of the
Boltzmann–Gibbs–Shannon (BGS) entropy formula [1–6]. Most formulas can be grouped into categories
either by their mathematical form (trace form or a function of the trace form) [7], or by the scaling
properties for large systems, usually providing large entropies, S, even if not necessarily proportional
to the logarithm of the number of states, ln W [8–11]. Such entropy formulas are often presented based
on axioms, like the Khinchin or Shannon axioms for the most known logarithmic entropy formula due
to Boltzmann and Gibbs. Non-extensive entropy then abandons the additivity axiom and replaces
it with a more general assumption. For the group entropy, the assumption of the associativity of the
entropy composition rule is used [7]. Another way to obtain a generalized entropy formula starts
with physical properties, like the universality of the thermal equilibrium between two systems as
described by the zeroth law of thermodynamics [12,13], and by this it also includes the associativity
assumption [14]. It is also noteworthy that starting with a general, non-associative composition
prescription one arrives asymptotically at an associative one—only by repeating it in small steps and
reconstructing the effective composition formula in the continuous scaling limit [15].

Deformations of the original Boltzmann–Gibbs–Shannon entropy formula can also be achieved by
tracing it back from the canonical distribution, exponential in the subsystem energy, when parameters
of this distribution are treated as stochastic ones, or otherwise randomized, and hence integrated over
another—the superstatistical—distribution [16–18]. Instead of treating the temperature or its inverse
as a fluctuating quantity, one may also consider the number of degrees of freedom, and hence the
dimensionality of phase space, as a fluctuating quantity. In [19–23] it has been shown that simple
fluctuation patterns of the particle number, N, influencing the phase space volume Ω occupied by
an ideal gas, can lead both to an exponential distribution of exp(−ω/T) by a Poisson N distribution,
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or to cut power-law like Tsallis–Pareto distribution by a negative binomial N distribution. In general,
a trace form entropy,

K(S) :=
W

∑
i=1

pi K(− ln pi) (1)

emerges with K(S) satisfying a second order differential equation, the additivity restoration condition
(ARC) [24]. Connecting to a more traditional notation, the K function is related to the deformed
logarithm function as

lndef(x) = −K(− ln x) (2)

This form includes the one parameter deformed logarithms as well as the generalizations with
more parameters [12,13,25–27].

In the present paper we investigate whether such entropy formulas define an entropic distance
between two probability distributions, which has the following useful properties:

1. it is positive for any two different distributions;
2. it is zero for comparing any distribution with itself;
3. it is symmetric.

A symmetric distance measure is most naturally formulated as a sum of relative divergences,
ρ(P, Q) = σ(P|Q) + σ(Q|P). For deformed logarithms two basic forms of suggestions occur in
the literature, one based on the ratio Pn/Qn and one based on the difference in their logarithm,
cf. refs. [28–31]. Furthermore we are interested in a definition which describes a distance that is always
shrinking between a dynamically evolving distribution and the one belonging to maximal entropy
under a spontaneous dynamics.

In the following we show this behavior for the traditional logarithmic entropy formula and a
generally state-dependent nearest neighbour master equation (defined below), and then propose
a generalization of the symmetrized entropic distance measure based on the deformed logarithm
function. We conclude that some proposals encertain a shrinking of the entropic distance during an
approach to the stationary distribution only for a restricted range of the non-extensivity parameter(s)
used in the entropy formula.

2. Probability Distributions

The Poisson distribution is ubiquitous in statistical phenomena, where the discreteness of the
basic variable, n, and its positivity are natural constraints. This distribution,

PPOI
n =

an

n!
e−a (3)

is parameterized by a single parameter, coinciding with the mean value of the variable n : a = 〈n〉 .
The logarithm of its characteristic function,

ln χPOI = ln ∑
n

e−nx PPOI
n = − 〈n〉 (1− e−x) (4)

generates all central moments of the distribution. Notably, due to δn2 = 〈n〉 the Poisson distribution
narrows for growing mean value of n.

This distribution plays a central role in different areas of physics: it occurs as the statistics
of spontaneous radioactive decays during given time intervals, as the number of photons in a
Glauber coherent state, or as the number distribution of randomly produced hadrons in high energy
experiments when uniformly filling the available phase space. In the latter case, a given total energy,
E, is distributed among n newly made particles in experiment. The statistical weight to find a single
particle with individual energy ω among the products is roughly proportional to the relative phase
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space described by a ratio of corresponding n-dimensional spheres. Its average over the Poisson
distribution is given by the following remarkable formula〈

(E−ω)n

En

〉
= ∑

n

(
1− ω

E

)n
PPOI

n = e− 〈n〉ω/E (5)

Several authors use the power n− 1 instead of n in this formula. The difference traces back to different
concepts on the hyperspheric phase space volume vs. surface. Since for large n it does not matter, we
do not go into details here.

This result allows for a Gibbsean interpretation of this statistical factor with the kinetic
temperature T = E/ 〈n〉 .

Beyond the Poissonian also sub- and super-Poissonian bosonic states occur with the corresponding
Bernoulli or negative binomial multiplicity distributions in experiments. The above ideal phase space
ratio averages in those cases to a statistical factor generalizing the exponential to a cut power-law form,
also known as a canonical distribution to the Tsallis entropy, e.g.,〈

(E−ω)n

En

〉
= ∑

n

(
1− ω

E

)n
PNBD

n =

(
1 +

1
k + 1

〈n〉ω/E
)−k−1

(6)

for the negative binomial distribution

PNBD
n =

(
k + n

n

)
pn(1 + p)−n−k−1 (7)

with 〈n〉 = p(k + 1)
The above Tsallis–Pareto distribution, Equation (6) can also be obtained as a canonical distribution

to the Tsallis entropy formula [3–5],

K(S) =
1

1− q ∑
i

(
pq

i − pi

)
(8)

with q = 1 + 1/(k + 1) and T = E/ 〈n〉 .
These and similar experiences suggest that different entropy formulas can be used as a basis

for defining the entropic distance. Earlier attempts mostly defined a divergence formula based on
the deformed logarithm, lndef, of the ratio of the two respective probabilities [31,32]. An alternative
approach—which we propose to follow—uses the difference of the deformed logarithms as a definition,
it is based on a Bregman type divergence. While for the traditional logarithm function these alternative
definitions coincide (due to ln(x/y) = ln x − ln y), they do differ appreciably for the deformed
logarithm functions in general use.

3. Master Equation

Let us denote the probability of having exactly n quanta in the observed system (part of phase
space) at the time t generally by Pn(t). This quantity may depend on further parameters, this is
suppressed in the notation by now. However, in any blind choice case it is proportional to the quantity
1/Wn, to the ratio of one to the number of possible ways to realize the state with n quanta.

A wide range of phenomena can be described by a simplified dynamics, assuming that only one
quantum can be exchanged in a time instant. In this case, the evolution of Pn(t) and Wn depends only
on the state probabilities of having one more or one less quantum. We consider here only the linearized
version of this dynamics, the so called master equation:

Ṗn = (λP)n+1 − (λP)n + (µP)n−1 − (µP)n (9)
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Here, λn is the transition (decay) rate from a state with n quanta to the state n − 1, µn is the
corresponding reverse (growth) rate from n to n + 1. In this case the occurrence of state n in a huge
parallel ensemble (Gibbs ensemble) of systems is fed by both the (n + 1) → n and (n − 1) → n
processes and it is diminished by the reverse processes. It is of special interest to investigate
processes when λ and µ are related by symmetry principles, like time reversal invariance or
subsystem—reservoir homogeneity.

We shall quote the general detailed balance solution of Equation (9), Peq
n = Qn, as the equilibrium

distribution. Since the equation is homogeneous and linear in the Qn-s the overall normalization is
not fixed by it. Being the equilibrium distribution, all Q̇n-s should be zero. That condition is fulfilled
only if

(λQ)n+1 = (µQ)n (10)

from which it follows that also
(λQ)n = (µQ)n−1 (11)

holds, annullating all evolution. Based on this observation, the detailed balance distribution satisfies

Qn =

n−1
∏
i=0

µi

n
∏
j=1

λj

Q0 (12)

where Q0 can be obtained from the normalization condition

∑
n

Qn = 1 (13)

This is kept during the evolution, since ∑n Ṗn = 0 upon Equation (9).

4. Entropic Distance

Based on the Boltzmann-Gibbs entropy,

S = −∑
n

Pn ln Pn (14)

a distance measure from a reference distribution, Qn is based on the quantity

σ(P|Q) = ∑
n

Pn ln
Pn

Qn
(15)

By this definition σ(Q|Q) = 0, and it gives a positive Kullback–Leibler divergence [33–35]
between the normalized distributions Pn and Qn. This can be easily proved by using the Jensen
inequality, ∏ APi

i ≤ ∑ Pi Ai applied to Ai = Qi/Pi. The symmetric combination, based on a sum of
Bregman type divergences [28–31],

ρ(P, Q) = σ(P|Q) + σ(Q|P) = ∑
n
(Pn −Qn) ln

Pn

Qn
(16)

is non-negative then term by term. For a fixed, time-independent Qn the master Equation (9) causes
σ(P|Q) to decrease:

σ̇(P|Q) = ∑
n
[(λP)n+1 − (λP)n + (µP)n−1 − (µP)n] ln

Pn

Qn
(17)



Entropy 2016, 18, 42 5 of 9

The sum can be re-arranged by summation index re-definition to

σ̇(P|Q) = ∑
n
[(λP)n+1 − (µP)n] ln

PnQn+1

QnPn+1
(18)

This expression is non-positive for arbitrary Pn(t) values only if

λn+1Qn+1 = µnQn (19)

Namely, one arrives solely in this case at the (1− x) ln x type expression under the sum. But
this means that the reference distribution, to which any initial distribution approaches if evolving
according to the master equation, is the detailed balance distribution! It can be shown that by the
virtue of the master equation also the distance σ(Q|P) is decreasing term by term. The symmetrically
summed Kullback–Leibler distance to the detailed balance distribution is also reduced: ρ̇(P, Q) ≤ 0,
due to

σ̇(Q|P) = ∑
n
(Pn −Qn)

Ṗn

Pn
= ∑

n
−(λP)n+1

Qn

Pn
(1− x)2 ≤ 0 (20)

(Here x = (µP)n/(λP)n+1).
In principle different distance measures (based on deformed entropy formulas) can also be used

to investigate this property of a linear master equation. If one considers an entropy defined by a
deformed logarithm function,

S = −∑
n

Pn lndef Pn (21)

then the Kullback–Leibler divergence and the definition of the distance between probability
distributions can be modified accordingly as

ρ(P, Q) = ∑
n
(Pn −Qn) (lndef Pn − lndef Qn) = ∑

n
Rn (22)

This measure is zero only if Pn = Qn for all n; otherwise it is positive if lndef P is a strictly
increasing function, i.e., ln′def P > 0 on the whole interval (0, 1).

The condition of the convergence to the Pn = Qn detailed balance solution then reads as

ρ̇ = ∑
n

Ṗn R′n ≤ 0 (23)

with
R′n =

∂Rn

∂Pn
= lndef Pn − lndef Qn + (Pn −Qn) ln′def Pn (24)

On the other hand, from the master equation one obtains

Ṗn = Γn (xn+1 − xn)− Γn−1 (xn − xn−1) (25)

with xn = Pn/Qn and Γn = (λQ)n+1 = (µQ)n. Substituting Equation (25) into Equation (23) and
re-arranging the summation indices finally we arrive at the requirement

ρ̇ = ∑
n

Γn (xn+1 − xn)
[
R′n − R′n+1

]
≤ 0 (26)

This is satisfied if R′n is strictly increasing, which means that R′′n > 0 for all possible Pn and Qn

values; ρ̇ = 0 being realized only if xn+1 = xn = 1 (the last equality is due to the normalization
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∑n Pn = ∑n Qnxn = 1 while ∑n Qn = 1). The condition for approaching the detailed balance
distribution then finally reads as

dR′n
dxn

= Qn
[
2 ln′def Pn + (Pn −Qn) ln′′def Pn

]
= QnR′′n > 0 (27)

It is clear that this is a more detailed restriction than just the concavity of the entropy formula.
The Q-independent part of the expression in the bracket equals (P lndef P)′′, whose positivity is the
well-known concavity requirement for the entropy formula. In cases when also ln′′def P < 0, this
concaivity suffices for the uniform approach to the stationary distribution. In the opposite case we
arrive at the nontrivial constraint (P lndef P)′′ > ln′′def P at Qn = 1.

Let us now test whether some familiar suggestions for deformed logarithms satisfy this constraint.
The Tsallis logarithm is defined as

lndef Pn =
Pq−1

n − 1
q− 1

(28)

It results in ln′def Pn = Pq−2
n > 0 and due to Equation (27) the final constraint is

QnPq−3
n [qPn + (2− q)Qn] > 0 (29)

This is fulfilled for arbitrary (P, Q) probability distribution pairs if 0 ≤ q ≤ 2; otherwise it might
be violated. The classical logarithm is reconstructed when q = 1.

The kappa-exponential, promoted by Kaniadakis [36], belongs to the deformed logarithm

lndef Pn =
Pκ

n − P−κ
n

2κ
(30)

In this case one obtains

(1 + κ)
[

P1+κ
n + QnP−κ

n

]
+ (1− κ)

[
P1−κ

n + QnPκ
n

]
> 0 (31)

as the condition for the correct evolution towards the detailed balance solution by the linear master
equation. This is fulfilled universally (i.e., for arbitrary Pn and Qn in the physical interval of [0, 1]) as
long as κ2 ≤ 1. One obtains this result as follows. Both square bracket expressions in Equation (31)
are non-negative. Their sum is also non-negative if −1 ≤ κ ≤ +1. Otherwise there are Pn values near
to zero for which one of the summands, either due to (1− κ) < 0 or due to (1 + κ) < 0, diverge to
negative infinity, spoiling the inequality in this way. The classical logarithm is reconstructed for κ = 0
and in order to have the same power-law tail in canonical distributions κ = q− 1. The condition for
universal evolution translates to 0 ≤ q ≤ 2.

By now there is a much bigger variety of suggested entropy formulas, many of them having
the trace form using a deformed logarithm function [37–39]. Here we analyse one of them, the (c, d)
entropy suggested by Hanel and Thurner [8], since it includes a number of different entropy formulas
suggested earlier as particular cases. It is given as

Sc,d =
W

∑
i=1

[A Γ(d + 1, 1− c ln pi)− Bpi] (32)

with

Γ(d + 1, z) =

∞∫
z

tde−tdt (33)

being the incomplete gamma function. The coefficients A and B can be determined by considering
the equiprobability case, pi = 1/W, resulting in Seq.prob.

c,d = K(ln W), and applying the conditions
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lndef 1 = −K(0) = 0 and ln′def 1 = K′(0) = 1. By this procedure one obtains A = 1/(Γ1 + cΓ′1) and
B = AΓ1, with Γ1 = Γ(d + 1, 1) and Γ′1 = −1/e.

The corresponding deformed logarithm of the probability, based on the form Equation (21), is

lndef Pn = − A
Pn

Γ(d + 1, 1− c ln Pn) + B (34)

Here, for instance, the c = q, d = 0 choice gives the Tsallis logarithm, Equation (28) with A = e/(1− c)
and B = 1/(1− c).

The first and second derivative of the deformed logarithm are given as

ln′def Pn =
A
P2

n

(
Γ + cΓ′

)
,

ln′′def Pn = − A
P3

n

(
2Γ + 3cΓ′ + c2Γ′′

)
(35)

with
Γ′ = −Pc

n
e
(1− c ln Pn)

d (36)

and
Γ′′ =

Pc
n
e
(1− c ln Pn)

d−1 [1− d− c ln Pn] (37)

Here we used the abbreviations Γ, Γ′ and Γ′′ without explicitely writing out the arguments d + 1
and 1− c ln Pn.

All this leads to the following criterion for the term by term approach to the stationary distribution
Qn by a general Pn via the diffusion like master equation:

A
[

Qn

(
2Γ + 3cΓ′ + c2Γ′′

)
− Pn

(
cΓ′ + c2Γ′′

)]
> 0 (38)

Suppose now that A > 0. This requires eΓ(d + 1, 1) > c. (In the above d = 0 example that
translates to c < 1.) Furthermore, considering the extreme case Qn = 0 (equivalent to the concavity
condition) we deal with(

cΓ′ + c2Γ′′
)
=

c
e

Pc
n(1− c ln Pn)

d−1 [(c− 1)(1− c ln Pn)− cd] < 0 (39)

This is fulfilled for 0 < c < 1 and d > 1− 1/c. Once this is so, observing that the lhs expression of
the inequality Equation (39) is linear in Qn, the condition has to be checked only at the other endpoint
of the Qn interval. At Qn = 1 we have:(

2Γ + 3cΓ′ + c2Γ′′
)

> Pn

(
cΓ′ + c2Γ′′

)
(40)

Although this criterion looks involved, we note, that at Pn = 1 it simplifies to 1/A > 0, i.e.,
Γ(d + 1, 1) > c/e as supposed above. Similar analysis can be done for the opposite, A < 0 case.

Finally, the recently suggested doubly logarithmic entropy formula, designed for extreme large
fluctuations in a reservoir by Biro et al. [23,24], considers

lndef Pn = − ln (1− ln Pn) (41)

as the deformed logarithm, leading to

1
P2

n(1− ln Pn)2

[
2Pn − (Pn + Qn) ln Pn

]
> 0 (42)
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for the evolution condition ρ̇ < 0. This is fulfilled for any pair of distributions, since ln Pn < 0 is
always true.

5. Conclusions

By now the use of non-extensive entropy formulas is clearly numerous. A review of all areas
of physics where a power-law tailed canonical distribution occurs can be found in [5]. Furthermore,
applications to non-Gaussian velocity distributions in dusty plasmas can be found in [40,41]. In this
paper we have concentrated on a mathematical problem in the background testing generalized entropy
formulas with respect to whether they serve as a basis for a well-behaving distance measure which
describes an approach to the stationary distribution of state-dependent diffusion-like master equations.
We have found that, in some parameter range of the suggested modern entropy formulas, the distance
measure, based on the difference of deformed logarithms of the respective distributions, behaves well
as shrinking uniformly, term by term during the time evolution towards the stationary distribution of
general, state-dependent diffusion-like master equations. In particular, while the Tsallis entropy and
other generalized entropy formulas (involving further deformed logarithm functions) guarantee the
above term by term approach only in a restricted range of parameters, the extreme case belonging to a
diverging variance in the temperature superstatistics, with a log-log form entropy formula, behaves
universally well in this respect.
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