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Abstract: Entropy, under a variety of names, has long been used as a measure of diversity in ecology,
as well as in genetics, economics and other fields. There is a spectrum of viewpoints on diversity,
indexed by a real parameter q giving greater or lesser importance to rare species. Leinster and
Cobbold (2012) proposed a one-parameter family of diversity measures taking into account both
this variation and the varying similarities between species. Because of this latter feature, diversity is
not maximized by the uniform distribution on species. So it is natural to ask: which distributions
maximize diversity, and what is its maximum value? In principle, both answers depend on q, but our
main theorem is that neither does. Thus, there is a single distribution that maximizes diversity from
all viewpoints simultaneously, and any list of species has an unambiguous maximum diversity value.
Furthermore, the maximizing distribution(s) can be computed in finite time, and any distribution
maximizing diversity from some particular viewpoint q > 0 actually maximizes diversity for all q.
Although we phrase our results in ecological terms, they apply very widely, with applications in
graph theory and metric geometry.

Keywords: diversity; biodiversity; species similarity; entropy; Rényi entropy; maximum entropy;
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1. Introduction

For decades, ecologists have used entropy-like quantities as measures of biological diversity.
The basic premise is that given a biological community or ecosystem containing n species in proportions
p1, . . . , pn, the entropy of the probability distribution (pi) indicates the extent to which the community
is balanced or “diverse”. Shannon entropy itself is often used; so too are many variants, as we shall
see. But almost all of them share the property that for a fixed number n of species, the entropy is
maximized by the uniform distribution pi = 1/n.

However, there is a growing appreciation that this crude model of a biological community is too
far from reality, in that it takes no notice of the varying similarities between species. For instance, we
would intuitively judge a meadow to be more diverse if it consisted of ten dramatically different plant
species than if it consisted of ten species of grass. This has led to the introduction of measures that
do take into account inter-species similarities [1,2]. In mathematical terms, making this refinement
essentially means extending the classical notion of entropy from probability distributions on a finite
set to probability distributions on a finite metric space.

The maximum entropy problem now becomes more interesting. Consider, for instance, a pond
community consisting of two very similar species of frog and one species of newt. We would not
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expect the maximum entropy (or diversity) to be achieved by the uniform distribution (1/3, 1/3, 1/3),
since the community would then be 2/3 frog and only 1/3 newt. We might expect the maximizing
distribution to be closer to (1/4, 1/4, 1/2); the exact answer should depend on the degrees of similarity
of the species involved. We return to this scenario in Example 7.

For the sake of concreteness, this paper is written in terms of an ecological scenario: a community
of organisms classified into species. However, nothing that we do is intrinsically ecological, or indeed
connected to any specific branch of science. Our results apply equally to any collection of objects
classified into types.

It is well understood that Shannon entropy is just one point (albeit a special one) on a continuous
spectrum of entropies, indexed by a parameter q ∈ [0, ∞]. This spectrum has been presented in at least
two ways: as the Rényi entropies Hq [3] and as the so-called Tsallis entropies Sq (actually introduced
as biodiversity measures by Patil and Taillie prior to Tsallis’s work in physics, and earlier still in
information theory [4–6]):

Hq(p) =
1

1− q
log

n

∑
i=1

pq
i , Sq(p) =

1
q− 1

(
1−

n

∑
i=1

pq
i

)
.

Both Hq and Sq converge to Shannon entropy as q→ 1. Moreover, Hq and Sq can be obtained from one
another by an increasing invertible transformation, and in this sense are interchangeable.

When Hq or Sq is used as a diversity measure, q controls the weight attached to rare species,
with q = 0 giving as much importance to rare species as common ones and the limiting case q = ∞
reflecting only the prevalence of the most common species. Different values of q produce genuinely
different judgements on which of two distributions is the more diverse. For instance, if over time
a community loses some species but becomes more balanced, then the Rényi and Tsallis entropies
decrease for q = 0 but increase for q = ∞. Varying q therefore allows us to incorporate a spectrum of
viewpoints on the meaning of the word “diversity”.

Here we use the diversity measures introduced by Leinster and Cobbold [1], which both (i) reflect
this spectrum of viewpoints by including the variable parameter q, and (ii) take into account the varying
similarities between species. We review these measures in Sections 2–4. In the extreme case where
different species are assumed to have nothing whatsoever in common, they reduce to the exponentials
of the Rényi entropies, and in other special cases they reduce to other diversity measures used by
ecologists. In practical terms, the measures of [1] have been used to assess a variety of ecological
systems, from communities of microbes [7,8] and crustacean zooplankton [9] to alpine plants [10] and
arctic predators [11], as well as being applied in non-biological contexts such as computer network
security [12].

Mathematically, the set-up is as follows. A biological community is modelled as a probability
distribution p = (p1, . . . , pn) (with pi representing the proportion of the community made up of
species i) together with an n× n matrix Z (whose (i, j)-entry represents the similarity between species i
and j). From this data, a formula gives a real number qDZ(p) for each q ∈ [0, ∞], called the “diversity of
order q” of the community. As for the Rényi entropies, different values of q make different judgements:
for instance, it may be that for two distributions p and p′,

1DZ(p) < 1DZ(p′) but 2DZ(p) > 2DZ(p′).

Now consider the maximum diversity problem. Fix a list of species whose similarities to one
another are known; that is, fix a matrix Z (subject to hypotheses to be discussed). The two basic
questions are:

• Which distribution(s) p maximize the diversity qDZ(p) of order q?
• What is the value of the maximum diversity supp

qDZ(p)?
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This can be interpreted ecologically as follows: if we have a fixed list of species and complete control
over their abundances within our community, how should we choose those abundances in order to
maximize the diversity, and how large can we make that diversity?

In principle, both answers depend on q. After all, we have seen that if distributions are ranked by
diversity then the ranking varies according to the value of q chosen. But our main theorem is that, in
fact, both answers are independent of q:

Theorem 1 (Main theorem). There exists a probability distribution on {1, . . . , n} that maximizes qDZ for all
q ∈ [0, ∞]. Moreover, the maximum diversity supp

qDZ(p) is independent of q ∈ [0, ∞].

So, there is a “best of all possible worlds”: a distribution that maximizes diversity no matter what
viewpoint one takes on the relative importance of rare and common species.

This theorem merely asserts the existence of a maximizing distribution. However, a second
theorem describes how to compute all maximizing distributions, and the maximum diversity, in a finite
number of steps (Theorem 2).

Better still, if by some means we have found a distribution p that maximizes the diversity of
some order q > 0, then a further result asserts that p maximizes diversity of all orders (Corollary 2).
For instance, it is often easiest to find a maximizing distribution for diversity of order ∞ (as in
Example 6 and Proposition 2), and it is then automatic that this distribution maximizes diversity of
all orders.

Let us put these results into context. First, they belong to the huge body of work on maximum
entropy problems. For example, the normal distribution has the maximum entropy among all
probability distributions on R with a given mean and variance, a property which is intimately
connected with its appearance in the central limit theorem. This alone would be enough motivation to
seek maximum entropy distributions in other settings (such as the one at hand), quite apart from the
importance of maximum entropy in thermodynamics, machine learning, macroecology, and so on.

Second, we will see that maximum diversity is very closely related to the emerging invariant
known as magnitude. This is defined in the extremely wide generality of enriched category theory
(Section 1 of [13]) and specializes in interesting ways in a variety of mathematical fields. For instance,
it automatically produces a notion of the Euler characteristic of an (ordinary) category, closely related
to the topological Euler characteristic [14]; in the context of metric spaces, magnitude encodes
geometric information such as volume and dimension [15–17]; in graph theory, magnitude is a new
invariant that turns out to be related to a graded homology theory for graphs [18,19]; and in algebra,
magnitude produces an invariant of associative algebras that can be understood as a homological
Euler characteristic [20].

This work is self-contained. To that end, we begin by explaining and defining the diversity
measures in [1] (Sections 2–4). Then come the results: preparatory lemmas in Section 5, and the main
results in Sections 6 and 7. Examples are given in Sections 8–10, including results on special cases such
as when the similarity matrix Z is either the adjacency matrix of a graph or positive definite. Perhaps
counterintuitively, a distribution that maximizes diversity can eliminate some species entirely. This is
addressed in Section 11, where we derive necessary and sufficient conditions on Z for maximization to
preserve all species. Finally, we state some open questions (Section 12).

The main results of this paper previously appeared in a preprint of Leinster [21], but the proofs
we present here are substantially simpler. Of the new results, Lemma 8 (the key to our results on
preservation of species by maximizing distributions) borrows heavily from an argument of Fremlin
and Talagrand [22].
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Conventions

A vector x = (x1, . . . , xn) ∈ Rn is nonnegative if xi ≥ 0 for all i, and positive if xi > 0 for all i. The
support of x ∈ Rn is

supp(x) =
{

i ∈ {1, . . . , n} : xi 6= 0
}

,

and x has full support if supp(x) = {1, . . . , n}. A real symmetric n× n matrix Z is positive semidefinite if
xTZx ≥ 0 for all 0 6= x ∈ Rn, and positive definite if this inequality is strict.

2. A Spectrum of Viewpoints on Diversity

Ecologists began to propose quantitative definitions of biological diversity in the mid-twentieth
century [23,24], setting in motion more than fifty years of heated debate, dozens of further proposed
diversity measures, hundreds of scholarly papers, at least one book devoted to the subject [25], and
consequently, for some, despair (already expressed by 1971 in a famously-titled paper of Hurlbert [26]).
Meanwhile, parallel discussions were taking place in disciplines such as genetics [27], economists
were using the same formulas to measure wealth inequality and industrial concentration [28], and
information theorists were developing the mathematical theory of such quantities under the name of
entropy rather than diversity.

Obtaining accurate data about an ecosystem is beset with practical and statistical problems, but
that is not the reason for the prolonged debate. Even assuming that complete information is available,
there are genuine differences of opinion about what the word “diversity” should mean. We focus here
on one particular axis of disagreement, illustrated by the examples in Figure 1.

(a) (b)

Figure 1. Two bird communities. Heights of stacks indicate species abundances. In (a), there are four
species, with the first dominant and the others relatively rare; in (b), the fourth species is absent but the
community is otherwise evenly balanced.

One extreme viewpoint on diversity is that preservation of species is all that matters: “biodiversity”
simply means the number of species present (as is common in the ecological literature as well as the
media). Since no attention is paid to the abundances of the species present, rare species count for
exactly as much as common species. From this viewpoint, community (a) of Figure 1 is more diverse
than community (b), simply because it contains more species.

The opposite extreme is to ignore rare species altogether and consider only those that are most
common. (This might be motivated by a focus on overall ecosystem function.) From this viewpoint,
community (b) is more diverse than community (a), because it is better-balanced: (a) is dominated by
a single common species, whereas (b) has three common species in equal proportions.

Between these two extremes, there is a spectrum of intermediate viewpoints, attaching more or
less weight to rare species. Different scientists have found it appropriate to adopt different positions
on this spectrum for different purposes, as the literature amply attests.

Rather than attempting to impose one particular viewpoint, we will consider all equally. Thus,
we use a one-parameter family of diversity measures, with the “viewpoint parameter” q ∈ [0, ∞]
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controlling one’s position on the spectrum. Taking q = 0 will give rare species as much importance as
common species, while taking q = ∞ will give rare species no importance at all.

There is one important dimension missing from the discussion so far. We will consider not
only the varying abundances of the species, but also the varying similarities between them. This is
addressed in the next section.

3. Distributions on a Set with Similarities

In this section and the next, we give a brief introduction to the diversity measures of Leinster and
Cobbold [1]. We have two tasks. We must build a mathematical model of the notion of “biological
community” (this section). Then, we must define and explain the diversity measures themselves
(next section).

In brief, a biological community will be modelled as a finite set (whose elements are the species)
equipped with both a probability distribution (indicating the relative abundances of the species) and,
for each pair of elements of the set, a similarity coefficient (reflecting the similarities between species).

Let us now consider each of these aspects in turn. First, we assume a community or system of
individuals, partitioned into n ≥ 1 species. The word “species” need not have its standard meaning:
it can denote any unit thought meaningful, such as genus, serotype (in the case of viruses), or the
class of organisms having a particular type of diet. It need not even be a biological grouping; for
instance, in [29] the units are soil types. For concreteness, however, we write in terms of an ecological
community divided into species. The division of a system into species or types may be somewhat
artificial, but this is mitigated by the introduction of the similarity coefficients (as shown in [1], p. 482).

Second, each species has a relative abundance, the proportion of organisms in the community
belonging to that species. Thus, listing the species in order as 1, . . . , n, the relative abundances
determine a vector p = (p1, . . . , pn). This is a probability distribution: pi ≥ 0 for each species i, and
∑n

i=1 pi = 1. Abundance can be measured in any way thought relevant, e.g., number of individuals,
biomass, or (in the case of plants) ground coverage.

Critically, the word “diversity” refers only to the relative, not absolute, abundances. If half of
a forest burns down, or if a patient loses 90% of their gut bacteria, then it may be an ecological or
medical disaster; but assuming that the system is well-mixed, the diversity does not change. In the
language of physics, diversity is an intensive quantity (like density or temperature) rather than
an extensive quantity (like mass or heat), meaning that it is independent of the system’s size.

The third and final aspect of the model is inter-species similarity. For each pair (i, j) of species, we
specify a real number Zij representing the similarity between species i and j. This defines an n× n
matrix Z = (Zij)1≤i,j≤n. In [1], similarity is taken to be measured on a scale of 0 to 1, with 0 meaning
total dissimilarity and 1 that the species are identical. Thus, it is assumed there that

0 ≤ Zij ≤ 1 for all i, j, Zii = 1 for all i. (1)

In fact, our maximization theorems will only require the weaker hypotheses

Zij ≥ 0 for all i, j, Zii > 0 for all i (2)

together with the requirement that Z is a symmetric matrix. (In the appendix to [1], matrices satisfying
conditions (2) were called “relatedness matrices”.)

Just as the meanings of “species” and “abundance” are highly flexible, so too is the meaning
of “similarity”:

Example 1. The simplest similarity matrix Z is the identity matrix I. This is called the naive model
in [1], since it embodies the assumption that distinct species have nothing in common. Crude though
this assumption is, it is implicit in the diversity measures most popular in the ecological literature
(Table 1 of [1] ).
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Example 2. With the rapid fall in the cost of DNA sequencing, it is increasingly common to measure
similarity genetically (in any of several ways). Thus, the coefficients Zij may be chosen to represent
percentage genetic similarities between species. This is an effective strategy even when the taxonomic
classification is unclear or incomplete [1], as is often the case for microbial communities [7].

Example 3. Given a suitable phylogenetic tree, we may define the similarity between two present-day
species as the proportion of evolutionary time before the point at which the species diverged.

Example 4. In the absence of more refined data, we can measure species similarity according to
a taxonomic tree. For instance, we might define

Zij =


1 if i = j,

0.8 if species i and j are different but of the same genus,

0.5 if species i and j are of different genera but the same family,

0 otherwise.

Example 5. In purely mathematical terms, an important case is where the similarity matrix arises from
a metric d on the set {1, . . . , n} via the formula Zij = e−d(i,j). Thus, the community is modelled as
a probability distribution on a finite metric space. (The naive model corresponds to the metric defined
by d(i, j) = ∞ for all i 6= j.) The diversity measures that we will shortly define can be understood as
(the exponentials of) Rényi-like entropies for such distributions.

4. The Diversity Measures

Here we state the definition of the diversity measures of [1], which we will later seek to maximize.
We then explain the reasons for this particular definition.

As in Section 3, we take a biological community modelled as a finite probability distribution
p = (p1, . . . , pn) together with an n× n matrix Z satisfying conditions (2). As explained in Section 2,
we define not one diversity measure but a family of them, indexed by a parameter q ∈ [0, ∞] controlling
the emphasis placed on rare species. The diversity of order q of the community is

qDZ(p) =
(

∑
i∈supp(p)

pi(Zp)q−1
i

)1/(1−q)

(3)

(q 6= 1, ∞). Here supp(p) is the support of p (Conventions, Section 1), Zp is the column vector obtained
by multiplying the matrix Z by the column vector p, and (Zp)i is its i-th entry. Conditions (2) imply
that (Zp)i > 0 whenever i ∈ supp(p), and so qDZ(p) is well-defined.

Although this formula is invalid for q = 1, it converges as q→ 1, and 1DZ(p) is defined to be the
limit. The same is true for q = ∞. Explicitly,

1DZ(p) = ∏
i∈supp(p)

(Zp)−pi
i = exp

(
− ∑

i∈supp(p)
pi log(Zp)i

)
,

∞DZ(p) = 1
/

max
i∈supp(p)

(Zp)i.

The applicability, context and meaning of Equation (3) are discussed at length in [1]. Here we
briefly review the principal points.

First, the definition includes as special cases many existing quantities going by the name of
diversity or entropy. For instance, in the naive model Z = I, the diversity qDI(p) is the exponential of
the Rényi entropy of order q, and is also known in ecology as the Hill number of order q. (References
for this and the next two paragraphs are given in Table 1 of [1].)
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Continuing in the naive model Z = I and specializing further to particular values of q, we obtain
other known quantities: 0DI(p) is species richness (the number of species present), 1DI(p) is the
exponential of Shannon entropy, 2DI(p) is the Gini–Simpson index (the reciprocal of the probability
that two randomly-chosen individuals are of the same species), and ∞DI(p) = 1/ maxi pi is the
Berger–Parker index (a measure of the dominance of the most abundant species).

Now allowing a general Z, the diversity of order 2 is 1
/

∑i,j piZij pj. Thus, diversity of order 2 is
the reciprocal of the expected similarity between a random pair of individuals. (The meaning given
to “similarity” will determine the meaning of the diversity measure: taking the coefficients Zij to be
genetic similarities produces a genetic notion of diversity, and similarly phylogenetic, taxonomic, and
so on.) Up to an increasing, invertible transformation, this is the well-studied quantity known as Rao’s
quadratic entropy.

Given distributions p and p′ on the same list of species, different values of q may make different
judgements on which of p and p′ is the more diverse. For instance, with Z = I and the two distributions
shown in Figure 1, taking q = 0 makes community (a) more diverse and embodies the first “extreme
viewpoint” described in Section 2, whereas q = ∞ makes (b) more diverse and embodies the
opposite extreme.

It is therefore most informative if we calculate the diversity of all orders q ∈ [0, ∞]. The graph
of qDZ(p) against q is called the diversity profile of p. Two distributions p and p′ can be compared
by plotting their diversity profiles on the same axes. If one curve is wholly above the other then the
corresponding distribution is unambiguously more diverse. If they cross then the judgement as to
which is the more diverse depends on how much importance is attached to rare species.

The formula for qDZ(p) can be understood as follows.
First, for a given species i, the quantity (Zp)i = ∑j Zij pj is the expected similarity between species

i and an individual chosen at random. Differently put, (Zp)i measures the ordinariness of the i-th
species within the community; in [1], it is called the “relative abundance of species similar to the i-th”.
Hence, the mean ordinariness of an individual in the community is ∑i pi(Zp)i. This measures the lack
of diversity of the community, so its reciprocal is a measure of diversity. This is exactly 2DZ(p).

To explain the diversity of orders q 6= 2, we recall the classical notion of power mean. Let
p = (p1, . . . , pn) be a finite probability distribution and let x = (x1, . . . , xn) ∈ [0, ∞)n, with xi > 0
whenever pi > 0. For real t 6= 0, the power mean of x of order t, weighted by p, is

Mt(p, x) =
(

∑
i∈supp(p)

pixt
i

)1/t

(Chapter II of [30]). This definition is extended to t = 0 and t = ±∞ by taking limits in t, which gives

M−∞(p, x) = min
i∈supp(p)

xi, M0(p, x) = ∏
i∈supp(p)

xpi
i , M∞(p, x) = max

i∈supp(p)
xi.

Now, when we take the “mean ordinariness” in the previous paragraph, we can replace the ordinary
arithmetic mean (the case t = 1) by the power mean of order t = q− 1. Again taking the reciprocal, we
obtain exactly Equation (3). That is,

qDZ(p) = 1/Mq−1(p, Zp) (4)

for all p, Z, and q ∈ [0, ∞]. So in all cases, diversity is the reciprocal mean ordinariness of an individual
within the community, for varying interpretations of “mean”.

The diversity measures qDZ(p) have many good properties, discussed in [1]. Crucially, they are
effective numbers: that is,

qDI(1/n, . . . , 1/n) = n
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for all q and n. This gives meaning to the quantities qDZ(p): if qDZ(p) = 32.8, say, then the community
is nearly as diverse as a community of 33 completely dissimilar species in equal proportions. With the
stronger assumptions (1) on Z, the value of qDZ(p) always lies between 1 and n.

Diversity profiles are decreasing: as less emphasis is given to rare species, perceived diversity
drops. More precisely:

Proposition 1. Let p be a probability distribution on {1, . . . , n} and let Z be an n × n matrix satisfying
conditions (2). If (Zp)i has the same value K for all i ∈ supp(p) then qDZ(p) = 1/K for all q ∈ [0, ∞].
Otherwise, qDZ(p) is strictly decreasing in q ∈ [0, ∞].

Proof. This is immediate from Equation (4) and a classical result on power means (Theorem 16 of [30]):
Mt(p, x) is increasing in t, strictly so unless xi has the same value K for all i ∈ supp(p), in which case
it has constant value K.

So, any diversity profile is either constant or strictly decreasing. The first part of the next lemma
states that diversity profiles are also continuous:

Lemma 1. Fix an n× n matrix Z satisfying conditions (2). Then:

i. qDZ(p) is continuous in q ∈ [0, ∞] for each distribution p;
ii. qDZ(p) is continuous in p for each q ∈ (0, ∞).

Proof. See Propositions A1 and A2 of the appendix of [1].

Finally, the measures have the sensible property that if some species have zero abundance, then
the diversity is the same as if they were not mentioned at all. To express this, we introduce some
notation: given a subset B ⊆ {1, . . . , n}, we denote by ZB the submatrix (Zij)i,j∈B of Z.

Lemma 2 (Absent species). Let Z be an n× n matrix satisfying conditions (2). Let B ⊆ {1, . . . , n}, and let
p be a probability distribution on {1, . . . , n} such that pi = 0 for all i 6∈ B. Then, writing p′ for the restriction
of p to B,

qDZB(p′) = qDZ(p)

for all q ∈ [0, ∞].

Proof. This is trivial, and is also an instance of a more general naturality property (Lemma A13 in the
appendix of [1]).

5. Preparatory Lemmas

For the rest of this work, fix an integer n ≥ 1 and an n× n symmetric matrix Z of nonnegative reals whose
diagonal entries are positive (that is, strictly greater than zero). Also write

∆n =
{
(p1, . . . , pn) ∈ Rn : pi ≥ 0, p1 + · · ·+ pn = 1

}
for the set of probability distributions on {1, . . . , n}.

To prove the main theorem, we begin by making two apparent digressions.
Let M be any matrix. A weighting on M is a column vector w such that Mw is the column vector

whose every entry is 1. It is trivial to check that if both M and its transpose have at least one weighting,
then the quantity ∑i wi is independent of the choice of weighting w on M; this quantity is called the
magnitude |M| of M (Section 1.1 of [13]).

When M is symmetric (the case of interest here), |M| is defined just as long as M has at least one
weighting. When M is invertible, M has exactly one weighting and |M| is the sum of all the entries
of M−1.
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The second digression concerns the dichotomy expressed in Proposition 1: every diversity
profile is either constant or strictly decreasing. We now ask: which distributions have constant
diversity profile?

This question turns out to have a clean answer in terms of weightings and magnitude. To state it,
we make some further definitions.

Definition 1. A probability distribution p on {1, . . . , n} is invariant if qDZ(p) = q′DZ(p) for all
q, q′ ∈ [0, ∞].

Let B ⊆ {1, . . . , n}, and let 0 6= w ∈ [0, ∞)B be a nonnegative vector. Then there is a probability
distribution p(w) on {1, . . . , n} defined by

(p(w))i =

{
wi/ ∑j∈B wj if i ∈ B,

0 otherwise.

In particular, let B be a nonempty subset of {1, . . . , n} and w a nonnegative weighting on
ZB = (Zij)i,j∈B. Then w 6= 0, so p(w) is defined, and p(w)i = wi/ |ZB| for all i ∈ B.

Lemma 3. The following are equivalent for p ∈ ∆n:

i. p is invariant;
ii. (Zp)i = (Zp)j for all i, j ∈ supp(p);

iii. p = p(w) for some nonnegative weighting w on ZB and some nonempty subset B ⊆ {1, . . . , n}.

Moreover, in the situation of (iii), qDZ(p) = |ZB| for all q ∈ [0, ∞].

Proof. (i)⇐⇒ (ii) is immediate from Proposition 1.
For (ii) =⇒ (iii), assume (ii). Put B = supp(p) and write K = (Zp)i for any i ∈ B. Then K > 0, so

we may define w ∈ RB by wi = pi/K (i ∈ B). Evidently p = p(w) and w is nonnegative. Furthermore,
w is a weighting on ZB, since whenever i ∈ B,

(ZBw)i = ∑
j∈B

Zij pj/K =
n

∑
j=1

Zij pj/K = 1.

Finally, for (iii) =⇒ (ii) and “moreover”, take B and w as in (iii). Then supp(p(w)) ⊆ B, so for all
i ∈ supp(p(w)), (

Z · p(w)
)

i =
(
ZBw/ |ZB|

)
i = 1/ |ZB| .

Hence qDZ(p(w)) = |ZB| for all q ∈ [0, ∞] by Proposition 1.

We now prove a result that is much weaker than the main theorem, but will act as a stepping
stone in the proof.

Lemma 4. For each q ∈ (0, 1), there exists an invariant distribution that maximizes qDZ.

Proof. Let q ∈ (0, 1). Then qDZ is continuous on the compact space ∆n (Lemma 1(ii)), so attains
a maximum at some point p. Take j, k ∈ supp(p) such that (Zp)j is least and (Zp)k is greatest.
By Lemma 3, it is enough to prove that (Zp)j = (Zp)k.
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Define δj ∈ ∆n by taking (δj)i to be the Kronecker delta δji, and δk similarly. Then p + t(δj − δk) ∈
∆n for all real t sufficiently close to 0, and

0 =
d
dt

(
qDZ(p + t(δj − δk)

)1−q
)∣∣∣∣

t=0
(5)

= (q− 1)

(
∑

i∈supp(p)
Zij pi(Zp)q−2

i − ∑
i∈supp(p)

Zik pi(Zp)q−2
i

)
+ (Zp)q−1

j − (Zp)q−1
k (6)

≥ (q− 1)

(
n

∑
i=1

Zij pi(Zp)q−2
j −

n

∑
i=1

Zik pi(Zp)q−2
k

)
+ (Zp)q−1

j − (Zp)q−1
k (7)

= q
(
(Zp)q−1

j − (Zp)q−1
k
)

(8)

≥ 0, (9)

where Equation (5) holds because p is a supremum, Equation (6) is a routine computation,
inequalities (7) and (9) follow from the defining properties of j and k, and Equation (8) uses the
symmetry of Z. Equality therefore holds throughout, and in particular in (9). Hence (Zp)j = (Zp)k,
as required.

An alternative proof uses Lagrange multipliers, but is complicated by the possibility that qDZ

attains its maximum on the boundary of ∆n.
The result we have just proved only concerns the maximization of qDZ for specific values of q, but

the following lemma will allow us to deduce results about maximization for all q simultaneously.

Definition 2. A probability distribution on {1, . . . , n} is maximizing if it maximizes qDZ for all
q ∈ [0, ∞].

Lemma 5. For 0 ≤ q′ ≤ q ≤ ∞, any invariant distribution that maximizes q′DZ also maximizes qDZ.
In particular, any invariant distribution that maximizes 0DZ is maximizing.

Proof. Let 0 ≤ q′ ≤ q ≤ ∞ and let p be an invariant distribution that maximizes q′DZ. Then for all
r ∈ ∆n,

qDZ(r) ≤ q′DZ(r) ≤ q′DZ(p) = qDZ(p),

since diversity profiles are decreasing (Proposition 1).

6. The Main Theorem

For convenience, we restate the main theorem:

Theorem 1 (Main theorem). There exists a probability distribution on {1, . . . , n} that maximizes qDZ for all
q ∈ [0, ∞]. Moreover, the maximum diversity supp∈∆n

qDZ(p) is independent of q ∈ [0, ∞].

Proof. An equivalent statement is that there exists an invariant maximizing distribution. To prove
this, choose a decreasing sequence (qλ)

∞
λ=1 in (0, 1) converging to 0. By Lemma 4, we can choose for

each λ ≥ 1 an invariant distribution pλ that maximizes qλDZ. Since ∆n is compact, we may assume
(by passing to a subsequence if necessary) that the sequence (pλ) converges to some point p ∈ ∆n. We
will show that p is invariant and maximizing.

We show that p is invariant using Lemma 3. Let i, j ∈ supp(p). Then i, j ∈ supp(pλ) for all λ� 0,
so (Zpλ)i = (Zpλ)j for all λ� 0, and letting λ→ ∞ gives (Zp)i = (Zp)j.

To show that p is maximizing, first note that pλ′ maximizes qλDZ whenever λ′ ≥ λ ≥ 1
(by Lemma 5). Fixing λ and letting λ′ → ∞, this implies that p maximizes qλDZ, since qλDZ is
continuous (Lemma 1(ii)).
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Thus, p maximizes qλDZ for all λ. But qλ → 0 as λ→ ∞, and diversity is continuous in its order
(Lemma 1(i)), so p maximizes 0DZ. Since p is invariant, Lemma 5 implies that p is maximizing.

The theorem can be understood as follows (Figure 2a). Each particular value of the viewpoint
parameter q ranks the set of all distributions p in order of diversity, with p placed above p′ when
qDZ(p) > qDZ(p′). Different values of q rank the set of distributions differently. Nevertheless, there is
a distribution pmax that is at the top of every ranking. This is the content of the first half of Theorem 1.

(a)

q = 0

pmax

p

p′

q = 2

pmax

p′

p

(b)

qDZ

q

p
p′

pmax

Figure 2. Visualizations of the main theorem: (a) in terms of how different values of q rank the set of
distributions; and (b) in terms of diversity profiles.

Alternatively, we can visualize the theorem in terms of diversity profiles (Figure 2b). Diversity
profiles may cross, reflecting the different priorities embodied by different values of q. But there is at
least one distribution pmax whose profile is above every other profile; moreover, its profile is constant.

Theorem 1 immediately implies:

Corollary 1. Every maximizing distribution is invariant.

This result can be partially understood as follows. For Shannon entropy, and more generally any
of the Rényi entropies, the maximizing distribution is obtained by taking the relative abundance pi to
be the same for all species i. This is no longer true when inter-species similarities are taken into account.
However, what is approximately true is that diversity is maximized when (Zp)i, the relative abundance
of species similar to the i-th, is the same for all species i. This follows from Corollary 1 together with the
characterization of invariant distributions in Lemma 3(ii); but it is only “approximately true” because
it is only guaranteed that (Zp)i = (Zp)j when i and j both belong to the support of p, not for all i and
j. It may in fact be that some or all maximizing distributions do not have full support, a phenomenon
we examine in Section 11.

The second half of Theorem 1 tells us that associated with the matrix Z is a numerical invariant,
the constant value of a maximizing distribution:

Definition 3. The maximum diversity of Z is Dmax(Z) = supp∈∆n
qDZ(p), for any q ∈ [0, ∞].

We show how to compute Dmax(Z) in the next section.
If a distribution p maximizes diversity of order 2, say, must it also maximize diversity of orders 1

and ∞? The answer turns out to be yes:

Corollary 2. Let p be a probability distribution on {1, . . . , n}. If p maximizes qDZ for some q ∈ (0, ∞] then p
maximizes qDZ for all q ∈ [0, ∞].

Proof. Let q ∈ (0, ∞] and let p be a distribution maximizing qDZ. Then

qDZ(p) ≤ 0DZ(p) ≤ Dmax(Z) = qDZ(p),
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where the first inequality holds because diversity profiles are decreasing. So equality holds throughout.
Now qDZ(p) = 0DZ(p) with q 6= 0, so Proposition 1 implies that p is invariant. But also
0DZ(p) = Dmax(Z), so p maximizes 0DZ. Hence by Lemma 5, p is maximizing.

The significance of this corollary is that if we wish to find a distribution that maximizes diversity
of all orders q, it suffices to find a distribution that maximizes diversity of a single nonzero order.

The hypothesis that q > 0 in Corollary 2 cannot be dropped. Indeed, take Z = I. Then 0DI(p) is
species richness (the cardinality of supp(p)), which is maximized by any distribution p of full support,
whereas 1DI(p) is the exponential of Shannon entropy, which is maximized only when p is uniform.

7. The Computation Theorem

The main theorem guarantees the existence of a maximizing distribution pmax, but does not tell
us how to find it. It also states that qDZ(pmax) is independent of q, but does not tell us what its value is.
The following result repairs both omissions.

Theorem 2 (Computation theorem). The maximum diversity and maximizing distributions of Z are given
as follows:

i. For all q ∈ [0, ∞],
sup
p∈∆n

qDZ(p) = max
B
|ZB| (10)

where the maximum is over all B ⊆ {1, . . . , n} such that ZB admits a nonnegative weighting.
ii. The maximizing distributions are precisely those of the form p(w) where w is a nonnegative weighting on

ZB for some B attaining the maximum in Equation (10).

Proof. Let q ∈ [0, ∞]. Then

sup{qDZ(p) : p ∈ ∆n} = sup{qDZ(p) : p ∈ ∆n, p is invariant} (11)

= sup{|ZB| : ∅ 6= B ⊆ {1, . . . , n}, ZB admits a nonnegative weighting} (12)

= max{|ZB| : B ⊆ {1, . . . , n}, ZB admits a nonnegative weighting}, (13)

where Equation (11) follows from the fact that there is an invariant maximizing distribution
(Theorem 1), Equation (12) follows from Lemma 3, and Equation (13) follows from the trivial fact that
|ZB| ≥ 0 = |Z∅| whenever ZB admits a nonnegative weighting.

This proves part (i). Every maximizing distribution is invariant (Corollary 1), so part (ii) follows
from Lemma 3.

Remark 1. The computation theorem provides a finite-time algorithm for finding all the maximizing
distributions and computing Dmax(Z), as follows. For each of the 2n subsets B of {1, . . . , n}, perform
some simple linear algebra to find the space of nonnegative weightings on ZB; if this space is nonempty,
call B feasible and record the magnitude |ZB|. Then Dmax(Z) is the maximum of all the recorded
magnitudes. For each feasible B such that |ZB| = Dmax(Z), and each nonnegative weighting w on ZB,
the distribution p(w) is maximizing. This generates all of the maximizing distributions.

This algorithm takes exponentially many steps in n, and Remark 3 provides strong evidence that
the time taken cannot be reduced to a polynomial in n. But the situation is not as hopeless as it might
appear, for two reasons.

First, each step of the algorithm is fast, consisting as it does of solving a system of linear equations.
For instance, in an implementation in MATLAB on a standard laptop, with no attempt at optimization,
the maximizing distributions of 25× 25 matrices were computed in a few seconds. (We thank Christina
Cobbold for carrying out this implementation.) Second, for certain classes of matrices Z, we can make
substantial improvements in computing time, as observed in Section 10.
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8. Simple Examples

The next three sections give examples of the main results, beginning here with some simple,
specific examples.

Example 6. First consider the naive model Z = I, in which different species are deemed to be
entirely dissimilar. As noted in Section 4, qDI(p) is the exponential of the Rényi entropy of order q.
It is well-known that Rényi entropy of any order q > 0 is maximized uniquely by the uniform
distribution. This result also follows trivially from Corollary 2: for clearly ∞DI(p) = 1/ maxi pi is
uniquely maximized by the uniform distribution, and the corollary implies that the same is true for all
values of q > 0. Moreover, Dmax(I) = |I| = n.

Example 7. For a general matrix Z satisfying conditions (1), a two-species system is always maximized
by the uniform distribution p1 = p2 = 1/2. When n = 3, however, nontrivial examples arise.
For instance, take the system shown in Figure 3, consisting of one species of newt and two species of
frog. Let us first consider intuitively what we expect the maximizing distribution to be, then compare
this with the answer given by Theorem 2.

Z =

 1 0.4 0.4
0.4 1 0.9
0.4 0.9 1

 newt
frog species A

frog species B
0.9

0.4

0.4

Figure 3. Hypothetical three-species system. Distances between species indicate degrees of dissimilarity
between them (not to scale).

If we ignore the fact that the two frog species are more similar to each other than they are to the
newt, then (as in Example 6) the maximizing distribution is (1/3, 1/3, 1/3). At the other extreme, if we
regard the two frog species as essentially identical then effectively there are only two species, newts
and frogs, so the maximizing distribution gives relative abundance 0.5 to the newt and 0.5 to the frogs.
So with this assumption, we expect diversity to be maximized by the distribution (0.5, 0.25, 0.25).

Intuitively, then, the maximizing distribution should lie between these two extremes. And indeed,
it does: implementing the algorithm in Remark 1 (or using Proposition 3 below) reveals that the unique
maximizing distribution is (0.478, 0.261, 0.261).

One of our standing hypotheses on Z is symmetry. The last of our simple examples shows that if
Z is no longer assumed to be symmetric, then the main theorem fails in every respect.

Example 8. Let Z =
( 1 1/2

0 1

)
, which satisfies all of our standing hypotheses except symmetry. Consider

a distribution p = (p1, p2) ∈ ∆2. If p is (1, 0) or (0, 1) then qDZ(p) = 1 for all q. Otherwise,

0DZ(p) = 3− 2
1 + p1

, (14)

2DZ(p) =
2

3(p1 − 1/2)2 + 5/4
, (15)

∞DZ(p) =

{
1/(1− p1) if p1 ≤ 1/3,

2/(1 + p1) if p1 ≥ 1/3.
(16)
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From Equation (14) it follows that supp∈∆2
0DZ(p) = 2. However, this supremum is not attained;

0DZ(p)→ 2 as p→ (1, 0), but 0DZ(1, 0) = 1. Equations (15) and (16) imply that

sup
p∈∆2

2DZ(p) = 1.6, sup
p∈∆2

∞DZ(p) = 1.5,

with unique maximizing distributions (1/2, 1/2) and (1/3, 2/3) respectively.
Thus, when Z is not symmetric, the main theorem fails comprehensively: the supremum

supp∈∆n
0DZ(p) may not be attained; there may be no distribution maximizing supp∈∆n

qDZ(p) for all
q simultaneously; and that supremum may vary with q.

Perhaps surprisingly, nonsymmetric similarity matrices Z do have practical uses. For example, it
is shown in Proposition A7 of [1] that the mean phylogenetic diversity measures of Chao, Chiu and
Jost [31] are a special case of the measures qDZ(p), obtained by taking a particular Z depending on the
phylogenetic tree concerned. This Z is usually nonsymmetric, reflecting the asymmetry of evolutionary
time. More generally, the case for dropping the symmetry axiom for metric spaces was made in [32],
and Gromov has argued that symmetry “unpleasantly limits many applications” (p. xv of [33]). So the
fact that our maximization theorem fails for nonsymmetric Z is an important restriction.

9. Maximum Diversity on Graphs

Consider those matrices Z for which each similarity coefficient Zij is either 0 or 1. A matrix Z of
this form amounts to a (finite, undirected) reflexive graph with vertex-set {1, . . . , n}, with an edge
between i and j if and only if Zij = 1. (That is, Z is the adjacency matrix of the graph.) Our standing
hypotheses on Z then imply that Zii = 1 for all i, so every vertex has a loop on it; this is the meaning
of reflexive.

What is the maximum diversity of the adjacency matrix of a graph? Before answering this question,
we explain why it is worth asking. Mathematically, the question is natural, since such matrices Z are
extreme cases. More exactly, the set of symmetric matrices Z satisfying conditions (1) is convex, the
adjacency matrices of graphs are the extreme points of this convex set, and the diversity measure
qDZ(p) is a convex function of Z for certain values of q (such as q = 2). Computationally, the answer
turns out to lead to a lower bound on the difficulty of computing the maximum diversity of a given
similarity matrix. Biologically, it is less clear that the question is relevant, but neither is it implausible,
given the importance in biology of graphs (food webs, epidemiological contact networks, etc.).

We now recall some terminology. Vertices x and y of a graph are adjacent, written x ∼ y, if there is
an edge between them. (In particular, every vertex of a reflexive graph is adjacent to itself.) A set of
vertices is independent if no two distinct vertices are adjacent. The independence number α(G) of a graph
G is the maximal cardinality of an independent set of vertices of G.

Proposition 2. Let G be a reflexive graph with adjacency matrix Z. Then the maximum diversity Dmax(Z) is
equal to the independence number α(G).

Proof. We will maximize the diversity of order ∞ and apply Theorem 1. For any probability
distribution p on the vertex-set {1, . . . , n}, we have

∞DZ(p) = 1
/

max
i∈supp(p)

∑
j : i∼j

pj. (17)

First we show that Dmax(Z) ≥ α(G). Choose an independent set B of maximal cardinality, and
define p ∈ ∆n by

pi =

{
1/α(G) if i ∈ B,

0 otherwise.
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For each i ∈ supp(p), the sum on the right-hand side of Equation (17) is 1/α(G). Hence
∞DZ(p) = α(G), and so α(G) ≤ Dmax(Z).

Now we show that Dmax(Z) ≤ α(G). Let p ∈ ∆n. Choose an independent set B ⊆ supp(p)
with maximal cardinality among all independent subsets of supp(p). Then every vertex of supp(p) is
adjacent to at least one vertex in B, otherwise we could adjoin it to B to make a larger independent
subset. Hence

∑
i∈B

∑
j : i∼j

pj = ∑
i∈B

∑
j∈supp(p) : i∼j

pj ≥ ∑
j∈supp(p)

pj = 1.

So there exists i ∈ B such that ∑j : i∼j pj ≥ 1/#B, where #B denotes the cardinality of B. But #B ≤ α(G),
and therefore

max
i∈supp(p)

∑
j : i∼j

pj ≥ 1/α(G),

as required.

Remark 2. The first part of the proof (together with Corollary 2) shows that a maximizing distribution
can be constructed by taking the uniform distribution on some independent set of largest cardinality,
then extending by zero to the whole vertex-set. Except in the trivial case Z = I, this maximizing
distribution never has full support. We return to this point in Section 11.

Example 9. The reflexive graph G = •−•−• (loops not shown) has adjacency matrix Z =
( 1 1 0

1 1 1
0 1 1

)
.

The independence number of G is 2; this, then, is the maximum diversity of Z. There is a unique
independent set of cardinality 2, and a unique maximizing distribution, (1/2, 0, 1/2).

Example 10. The reflexive graph •−•−•−• again has independence number 2. There are three
independent sets of maximal cardinality, so by Remark 2, there are at least three maximizing
distributions,

(1/2, 0, 1/2, 0), (1/2, 0, 0, 1/2), (0, 1/2, 0, 1/2),

all with different supports. (The possibility of multiple maximizing distributions was also observed in
the case q = 2 by Pavoine and Bonsall [34].) In fact, there are further maximizing distributions not
constructed in the proof of Proposition 2, namely, (1/2, 0, t, 1/2− t) and (1/2− t, t, 0, 1/2) for any
t ∈ (0, 1/2).

Example 11. Let d be a metric on {1, . . . , n}. For a given ε > 0, the covering number N(d, ε) is the
minimum cardinality of a subset A ⊆ {1, . . . , n} such that⋃

i∈A
B(i, ε) = {1, . . . , n},

where B(i, ε) = {j : d(i, j) ≤ ε}. The number log N(d, ε) is known as the ε-entropy of d [35].
Now define a matrix Zε by

Zε
ij =

{
1 if d(i, j) ≤ ε,

0 otherwise.

Then Zε is the adjacency matrix of the reflexive graph G with vertices {1, . . . , n} and i ∼ j if and only
if d(i, j) ≤ ε. Thus, a subset of B ⊆ {1, . . . , n} is independent in G if and only if d(i, j) > ε for every
i, j ∈ B. It is a consequence of the triangle inequality that

N(d, ε) ≤ α(G) ≤ N(d, ε/2),

and so by Proposition 2,
N(d, ε) ≤ Dmax(Zε) ≤ N(d, ε/2).
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Recalling that log qDZ extends the classical notion of Rényi entropy, this thoroughly justifies the name
of ε-entropy (which was originally justified by vague analogy).

The moral of the proof of Proposition 2 is that by performing the simple task of maximizing
diversity of order ∞, we automatically maximize diversity of all other orders. Here is an example of
how this can be exploited.

Recall that every graph G has a complement G, with the same vertex-set as G; two vertices are
adjacent in G if and only if they are not adjacent in G. Thus, the complement of a reflexive graph is
irreflexive (has no loops), and vice versa. A set B of vertices in an irreflexive graph X is a clique if all
pairs of distinct elements of B are adjacent in X. The clique number ω(X) of X is the maximal cardinality
of a clique in X. Thus, ω(X) = α(X).

We now recover a result of Berarducci, Majer and Novaga (Proposition 5.10 of [36]).

Corollary 3. Let X be an irreflexive graph. Then

sup
p

∑
(i,j) : i∼j

pi pj = 1− 1
ω(X)

where the supremum is over probability distributions p on the vertex-set of X, and the sum is over pairs of
adjacent vertices of X.

Proof. Write {1, . . . , n} for the vertex-set of X, and Z for the adjacency matrix of the reflexive graph X.
Then for all p ∈ ∆n,

∑
(i,j) : i∼j in X

pi pj =
n

∑
i,j=1

pi pj − ∑
(i,j) : i∼j in X

pi pj

= 1−
n

∑
i,j=1

piZij pj = 1− 1
/2DZ(p).

Hence by Theorem 1 and Proposition 2,

sup
p∈∆n

∑
(i,j) : i∼j in X

pi pj = 1− 1
Dmax(p)

= 1− 1
α(X)

= 1− 1
ω(X)

.

It follows from this proof and Remark 2 that ∑(i,j) : i∼j pi pj can be maximized as follows: take the
uniform distribution on some clique in X of maximal cardinality, then extend by zero to the whole
vertex-set.

Remark 3. Proposition 2 implies that computationally, finding the maximum diversity of an arbitrary
Z is at least as hard as finding the independence number of a reflexive graph. This is a very well-studied
problem, usually presented in its dual form (find the clique number of an irreflexive graph) and called
the maximum clique problem [37]. It is NP-hard, so on the assumption that P 6= NP, there is no
polynomial-time algorithm for computing maximum diversity, nor even for computing the support of
a maximizing distribution.

10. Positive Definite Similarity Matrices

The theory of magnitude of metric spaces runs most smoothly when the matrices Z concerned are
positive definite [16,38]. We will see that positive (semi)definiteness is also an important condition
when maximizing diversity.

Any positive definite matrix is invertible and therefore has a unique weighting. (A positive
semidefinite matrix need not have a weighting at all.) Now the crucial fact about magnitude is:
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Lemma 6. Let M be a positive semidefinite n× n real matrix admitting a weighting. Then

|M| = sup
x∈Rn : xTMx 6=0

(
∑n

i=1 xi
)2

xTMx
> 0.

If M is positive definite then the supremum is attained by exactly the nonzero scalar multiples x of the unique
weighting on M.

Proof. This is a small extension of Proposition 2.4.3 of [13]. Choose a weighting w on M. By the
Cauchy–Schwarz inequality,

(xTMw)2 ≤ (xTMx)(wTMw),

or equivalently (
∑ xi

)2
≤ (xTMx) |M| , (18)

for all x ∈ Rn. Equality holds when x is a scalar multiple of w, and if M is positive definite, it holds only
then. Finally, taking x = (1, 0, . . . , 0)T in (18) and using positive semidefiniteness gives |M| > 0.

From this, we deduce:

Lemma 7. Let B $ {1, . . . , n}. If Z is positive semidefinite and both Z and ZB admit a weighting, then
|ZB| ≤ |Z|. Moreover, if Z is positive definite and the unique weighting on Z has full support, then |ZB| < |Z|.

Proof. The first statement follows from Lemma 6 and the fact that ZB is positive semidefinite. The
second is trivial if B = ∅. Assuming not, let y ∈ RB be the unique weighting on ZB (which is positive
definite), and write x ∈ Rn for the extension of y by zero to {1, . . . , n}. Then y 6= 0, x 6= 0, and

|ZB| =
(
∑i∈B yi

)2

yTZBy
=

(
∑n

i=1 xi
)2

xTZx
.

But x does not have full support, so by hypothesis, it is not a scalar multiple of the unique weighting
on Z. Hence by Lemma 6, (∑ xi)

2/xTZx < |Z|.

We now apply this result on magnitude to the maximization of diversity.

Proposition 3. Suppose that Z is positive semidefinite. If Z has a nonnegative weighting w, then
Dmax(Z) = |Z| and w/ |Z| is a maximizing distribution. Moreover, if Z is positive definite and its
unique weighting w is positive then w/ |Z| is the unique maximizing distribution.

Proof. This follows from Theorem 2 and Lemma 7.

In particular, if Z is positive semidefinite and has a nonnegative weighting, then its maximum
diversity can be computed in polynomial time.

Corollary 4. If Z is positive definite with positive weighting, then its unique maximizing distribution has
full support.

In other words, when Z has these properties, its maximizing distribution eliminates no species.
Here are three classes of such matrices Z.

Example 12. Call Z ultrametric if Zik ≥ min{Zij, Zjk} for all i, j, k and Zii > maxj 6=k Zjk for all i. (Under
the assumptions (1) on Z, the latter condition just states that distinct species are not completely similar.)
If Z is ultrametric then Z is positive definite with positive weighting, by Proposition 2.4.18 of [13].
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Such matrices arise in practice: for instance, Z is ultrametric if it is defined from a phylogenetic or
taxonomic tree as in Examples 3 and 4.

Example 13. Let r ∈ ∆n be a probability distribution of full support, and write Z for the diagonal
matrix with entries 1/r1, . . . , 1/rn. Then for 0 < q < ∞,

− log qDZ(p) =

{
1

q−1 log ∑i∈supp(p) pq
i r1−q

i if q 6= 1,

∑i∈supp(p) pi log(pi/ri) if q = 1.

The right-hand side is the Rényi relative entropy or Rényi divergence Iq(p | r) (Section 3 of [3]). Evidently
Z is positive definite, and its unique weighting r is positive. (In fact, Z is ultrametric.) So Proposition 3
applies; in fact, it gives the classical result that Iq(p | r) ≥ 0 with equality if and only if p = r.

Example 14. The identity matrix Z = I is certainly positive definite with positive weighting.
By topological arguments, there is a neighbourhood U of I in the space of symmetric matrices such
that every matrix in U also has these properties. (See the proofs of Propositions 2.2.6 and 2.4.6 of [13].)
Quantitative versions of this result are also available. For instance, in Proposition 2.4.17 of [13] it was
shown that Z is positive definite with positive weighting if Zii = 1 for all i and Zij < 1/(n− 1) for all
i 6= j. In fact, this result can be improved:

Proposition 4. Suppose that Zii = 1 for all i, j and that Z is strictly diagonally dominant (that is,
Zii > ∑j 6=i Zij for all i). Then Z is positive definite with positive weighting.

Proof. Since Z is real symmetric, it is diagonalizable with real eigenvalues. By the hypotheses on Z
and the Gershgorin disc theorem (Theorem 6.1.1 of [39]), every eigenvalue of Z is in the interval (0, 2).
It follows that Z is positive definite and that every eigenvalue of I− Z is in (−1, 1). Hence I− Z is
similar to a diagonal matrix with entries in (−1, 1), and so ∑∞

k=0(I−Z)k converges to (I− (I−Z))−1 =

Z−1. Thus,

Z−1 =
∞

∑
k=0

(I− Z)k =
∞

∑
k=0

(Z− I)2k(2I− Z). (19)

Writing e = (1 · · · 1)T , the unique weighting on Z is w = Z−1e. The hypotheses on Z imply that
Z− I has nonnegative entries and (2I− Z)e has positive entries. Hence by (19),

w = Z−1e ≥ (Z− I)0(2I− Z)e = (2I− Z)e

entrywise, and so w is positive.

Thus, a matrix Z that is ultrametric, or satisfies conditions (1) and is strictly diagonally dominant,
has many special properties: the maximum diversity is equal to the magnitude, there is a unique
maximizing distribution, the maximizing distribution has full support, and both the maximizing
distribution and the maximum diversity can be computed in polynomial time.

11. Preservation of Species

We saw in Examples 9 and 10 that for certain similarity matrices Z, none of the maximizing
distributions has full support. Mathematically, this simply means that maximizing distributions
sometimes lie on the boundary of ∆n. But ecologically, it may sound shocking: is it reasonable that
diversity can be increased by eliminating some species?

We argue that it is. Consider, for instance, a forest consisting of one species of oak and ten species
of pine, with each species equally abundant. Suppose that an eleventh species of pine is added, again
with equal abundance (Figure 4). This makes the forest even more heavily dominated by pine, so it
is intuitively reasonable that the diversity should decrease. But now running time backwards, the
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conclusion is that if we start with a forest containing the oak and all eleven pine species, eliminating
the eleventh should increase diversity.

oak
pine

Figure 4. Hypothetical community consisting of one species of oak (�) and ten species of pine (•), to
which one further species of pine is then added (◦). Distances between species indicate degrees of
dissimilarity (not to scale).

To clarify further, recall from Section 3 that diversity is defined in terms of the relative abundances
only. Thus, eliminating species i causes not only a decrease in pi, but also an increase in the other
relative abundances pj. If the i-th species is particularly ordinary within the community (like the
eleventh species of pine), then eliminating it makes way for less ordinary species, resulting in a more
diverse community.

The instinct that maximizing diversity should not eliminate any species is based on the assumption
that the distinction between species is of high value. (After all, if two species were very nearly
identical—or in the extreme, actually identical—then losing one would be of little importance.) If
one wishes to make that assumption, one must build it into the model. This is done by choosing a
similarity matrix Z with a low similarity coefficient Zij for each i 6= j. Thus, Z is close to the identity
matrix I (assuming that similarity is measured on a scale of 0 to 1). Example 14 guarantees that in this
case, there is a unique maximizing distribution and it does not, in fact, eliminate any species.

(The fact that maximizing distributions can eliminate some species has previously been discussed
in the ecological literature in the case q = 2; see Pavoine and Bonsall [34] and references therein.)

We now derive necessary and sufficient conditions for a similarity matrix Z to admit at least
one maximizing distribution of full support, and also necessary and sufficient conditions for every
maximizing distribution to have full support. The latter conditions are genuinely more restrictive; for
instance, if Z =

(
1 1
1 1

)
then some but not all maximizing distributions have full support.

Lemma 8. If at least one maximizing distribution for Z has full support then Z is positive semidefinite and
admits a positive weighting. Moreover, if every maximizing distribution for Z has full support then Z is
positive definite.

Proof. Fix a maximizing distribution p of full support. Maximizing distributions are invariant
(Corollary 1), so by (i) =⇒ (iii) of Lemma 3, |Z| p is a weighting of Z and |Z| > 0. In particular,
Z has a positive weighting.

Now we imitate the proof of Proposition 3B of [22]. For each s ∈ Rn such that ∑n
i=1 si = 0, define

a function fs : R→ R by
fs(t) = (p + ts)TZ(p + ts).

Using the symmetry of Z and the fact that |Z| p is a weighting, we obtain

fs(t) = pTZp + 2sTZp · t + sTZs · t2

= 1/ |Z|+ sTZs · t2. (20)

Now ∑ si = 0 and p has full support, so p + ts ∈ ∆n for all real t sufficiently close to zero. But
fs(t) = 1/2DZ(p + ts) for such t, so fs has a local minimum at 0. Hence sTZs ≥ 0. It follows that fs is
everywhere positive.
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We have shown that sTZs ≥ 0 whenever s ∈ Rn with ∑ si = 0. Now take x ∈ Rn with ∑ xi 6= 0.
Put s = x/

(
∑ xi

)
− p. Then ∑ si = 0, and

xTZx =
(
∑ xi

)2
fs(1) > 0. (21)

Hence Z is positive semidefinite.
For “moreover”, assume that every maximizing distribution for Z has full support. By (21), we

need only show that sTZs > 0 whenever s 6= 0 with ∑ si = 0. Given such an s, choose t ∈ R such that
p + ts lies on the boundary of ∆n. Then p + ts does not have full support, so is not maximizing, so
does not maximize 2DZ (by Corollary 2). Hence fs(t) > fs(0), which by (20) implies that sTZs > 0.

We can now prove the two main results of this section.

Proposition 5. The following are equivalent:

i. there exists a maximizing distribution for Z of full support;
ii. Z is positive semidefinite and admits a positive weighting.

Proof. (i) =⇒ (ii) is the first part of Lemma 8. For the converse, assume (ii) and choose a positive
weighting w. Then |Z| > 0, so p = w/ |Z| is a probability distribution of full support. We have
qDZ(p) = |Z| for all q, by Lemma 3. But the computation theorem implies that Dmax(Z) = |ZB| for
some B ⊆ {1, . . . , n} such that ZB admits a weighting, so Dmax(Z) ≤ |Z| by Lemma 7. Hence p is
maximizing.

Proposition 6. The following are equivalent:

i. every maximizing distribution for Z has full support;
ii. Z has exactly one maximizing distribution, which has full support;

iii. Z is positive definite with positive weighting;
iv. Dmax(Z) > Dmax(ZB) for every nonempty proper subset B of {1, . . . , n}.

(The weak inequality Dmax(Z) ≥ Dmax(ZB) holds for any Z, by the absent species lemma
(Lemma 2).)

Proof. (i) =⇒ (iii) and (iii) =⇒ (ii) are immediate from Lemma 8 and Proposition 3 respectively, while
(ii) =⇒ (i) is trivial.

For (i) =⇒ (iv), assume (i). Let ∅ 6= B $ {1, . . . , n}. Choose a maximizing distribution p′ for ZB,
and denote by p its extension by zero to {1, . . . , n}. Then p does not have full support, so there is some
q ∈ [0, ∞] such that p fails to maximize qDZ. Hence

Dmax(ZB) =
qDZB(p′) = qDZ(p) < Dmax(Z),

where the second equality is by the absent species lemma.
For (iv) =⇒ (i), assume (iv). Let p be a maximizing distribution for Z. Write B = supp(p), and

denote by p′ the restriction of p to B. Then for any q,

Dmax(ZB) ≥ qDZB(p′) = qDZ(p) = Dmax(Z),

again by the absent species lemma. Hence by (iv), B = {1, . . . , n}.

12. Open Questions

The main theorem, the computation theorem and Corollary 2 answer all the principal questions
about maximizing the diversities qDZ. Nevertheless, certain questions remain.
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First, there are computational questions. We have found two classes of matrix Z for which the
maximum diversity and maximizing distributions can be computed in polynomial time: ultrametric
matrices (Example 12) and those close to the identity matrix I (Example 14). Both are biologically
significant. Are there other classes of similarity matrix for which the computation can be performed in
less than exponential time?

Second, we may seek results on maximization of qDZ(p) under constraints on p. There are
certainly some types of constraint under which both parts of Theorem 1 fail, for trivial reasons:
if we choose two distributions p and p′ whose diversity profiles cross (Figure 2b) and constrain
our distribution to lie in the set {p, p′}, then there is no distribution that maximizes qDZ for all q
simultaneously, and the maximum value of qDZ also depends on q. But are there other types of
constraint under which the main theorem still holds?

In particular, the distribution might be constrained to lie close to a given distribution p. The
question then becomes: if we start with a distribution p and have the resources to change it by only a
given small amount, what should we do in order to maximize the diversity?

Third, there are suggestive resemblances between the theory developed here and the theory of
evolutionarily stable strategies (ESSs) for matrix games (Chapter 6 of [40]), taking the payoff matrix
for the game to be the dissimilarity matrix (1 − Zij). For instance, the condition in Lemma 3(ii)
that (Zp)i = (Zp)j for all i, j ∈ supp(p) appears as one of the ESS criteria in [41]; the diversity
maximization algorithm of Remark 1 closely resembles the method for finding ESSs in [42]; and the
positive definiteness conditions in Section 11 are related to negative definiteness conditions in the
ESS literature (such as [41]). Can results on evolutionary games be translated to give new results—or
improved proofs of existing results—on maximizing diversity? In particular, the evolutionary game
literature contains results on local extrema of quadratic forms [43], which (for q = 2, at least) may be
useful in answering the question of constrained maximization posed in the previous paragraph.

Fourth, we have confined ourselves to considering a single, static population and its diversity.
In ecological situations, what is the relationship between diversity maximization and population
dynamics? This is a very broad question, but there has been work in ecology on the entropy–dynamics
connection. For instance, Zhang and Harte [44] used the principle that Boltzmann entropy should be
maximized to predict population dynamics under resource constraints, incorporating into their model
a parameter that reflects distinguishability within species relative to distinguishability between species.

Fifth, we have seen that every symmetric matrix Z satisfying conditions (2) (for instance, every
symmetric matrix of positive reals) has attached to it a real number, the maximum diversity Dmax(Z).
What is the significance of this invariant?

We know that it is closely related to the magnitude of matrices. This has been most intensively
studied in the context of metric spaces. By definition, the magnitude of a finite metric space X is
the magnitude of the matrix Z = (e−d(i,j))i,j∈X ; see [13,38,45], for instance. In the metric context,
the meaning of magnitude becomes clearer after one extends the definition from finite to compact
spaces (which is done by approximating them by finite subspaces). Magnitude for compact metric
spaces has recognizable geometric content: for example, the magnitude of a 3-dimensional ball is a
cubic polynomial in its radius (Theorem 2 of [15]) and the magnitude of a homogeneous Riemannian
manifold is closely related to its total scalar curvature (Theorem 11 of [17]).

Thus, it is natural to ask: can one extend Theorem 1 to some class of “infinite matrices” Z?
(For instance, Z might be the form (x, y) 7→ e−d(x,y) arising from a compact metric space. In this case,
the maximum diversity of order 2 is a kind of capacity, analogous to classical definitions in potential
theory; for a compact subset of Rn, it coincides with the Bessel capacity of an appropriate order [16].)
And if so, what is the geometric significance of maximum diversity in that context?

There is already evidence that this is a fruitful line of enquiry. In [16], Meckes gave a definition of
the maximum diversity of order 2 of a compact metric space, and used it to prove a purely geometric
theorem relating magnitude to fractional dimensions of subsets of Rn. If this maximum diversity can
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be shown to be equal to the maximum diversity of all other orders then further geometric results may
come within reach.

The final question concerns interpretation. Throughout, we have interpreted qDZ(p) in terms
of ecological diversity. However, there is nothing intrinsically biological about any of our results.
For example, in an information-theoretic context, the “species” might be the code symbols, with two
symbols seen as similar if one is easily mistaken for the other; or if one wishes to transmit an image,
the “species” might be the colours, with two colours seen as similar if one is an acceptable substitute
for the other (much as in rate distortion theory [46]). Under these or other interpretations, what is the
significance of the theorem that the diversities of all orders can be maximized simultaneously?
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