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Abstract: Entropy generation during peristaltic flow of nanofluids in a non-uniform two dimensional
channel with compliant walls has been studied. The mathematical modelling of the governing
flow problem is obtained under the approximation of long wavelength and zero Reynolds number
(creeping flow regime). The resulting non-linear partial differential equations are solved with the
help of a perturbation method. The analytic and numerical results of different parameters are
demonstrated mathematically and graphically. The present analysis provides a theoretical model to
estimate the characteristics of several Newtonian and non-Newtonian fluid flows, such as peristaltic
transport of blood.
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1. Introduction

Over the last few decades, several mathematical models have been used for different kinds
of fluids, either Newtonian fluids [1–3], or non-Newtonian fluids [4–6] to describe the physical
phenomena of flow in fluid mechanics. There are many special cases of non-Newtonian fluids such as
nanofluids, micropolar fluids and Ellis fluids, etc. Nanofluids are one of the important special casess of
non-Newtonian fluids. Choi [7] was the first to introduce the motion of nanofluids in 1995. Nanofluids
are the new generation of heat-conducting fluids with suspended nano-sized particles in the range of
1–100 nm. Nanofluids indicate higher thermal conductivity than convectional coolants. Applications
of nanofluids have been investigated in various media by many researchers [8–12].

The rate of many physiological functions, including the flow of blood through blood vessels are
affected by the presence of drugs. In many critical cases such as contraction of muscles, secretion
of different materials change due to the rate of different biochemical reactions. The rate at which
blood flow through arteries can also be affected by drugs repetitive. The damaged parts of body can
only be repaired by drugs, but their restoration is not possible. There is the observation by clinicians
that a drug having higher efficacy may be less effective because the drug may have too many side
effects. Any discussion on drug dynamics must pay attention to different types of motion during
various physiological functions. Amongst these physiological functions, peristaltic motion is one
of them. Peristaltic flow is referred as wave propagation along the flexible walls of a channel/tube
forcing the contained fluid to flow in the same direction even without any external pressure gradient
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involved. The term peristaltic comes from the Greek word peristaltikos, which means clasping and
compressing. This type of flow can be found in many parts of living body such as, the muscular layers
of the digestive track that comprise smooth muscle tissue, the one way movement of the food mass
which is called a bolus controlled by a wave-like involuntary muscle contraction, transport of urine
from kidney to bladder, transport of cilia and blood flow in small vessels. There are a large number of
simulation techniques which may be aimed at analyzing the impedance of peristaltic flow of various
fluid models [13–19].

In the last few decades, investigations of physiological systems have been addressed in a large
amount of scientific studies. Although physiological systems are complicated systems that even though
they exhibit a certain degree of linearity, they also show chaotic and unpredictable behaviour. Moreover
in such types of systems involved, the study of heart rate involves a series of interesting features
which arise from a complex combination of both deterministic and stochastic physiological processes.
Another such type of system is blood pressure oscillation, while patients undergo their normal daily
activities. Ambulatory blood pressure monitoring is a clinical process to measure blood pressure
every 20–30 min during 24 or 48 hours. Moreover, blood flow increases when a person performs hard
physical activity and in such cases the blood circulation cannot remain normal. When the surrounding
temperature exceeds 20 ˝C, heat transfer takes place from the surface of the skin through the process
of evaporation by sweating while below 20 ˝C, humans loses heat by radiation and conduction. To
deal with such kinds of critical cases entropy measurements play a very important role to accurately
characterize such systems. The minimization of entropy generation is used to optimize the thermal
engineering devices and many enginnering systems, including electronic cooling designs, chemical
vapor deposition instruments and solar collectors. The entropy generation determines the level of the
available irreversibilities in a process. It is important to indicate that due to the limitations of the first
law of thermodynamics in the heat transfer engineering system, the second law of thermodynamics
is more reliable and efficient than the first law. Heat transfer through a chemical reaction, friction,
mixing and finite temperature is the key factor in the occurrence of irreversibility in a system which is
known as entropy generation. Entropy generation consists of two main parts: (a) thermal irreversibility
and (b) losses due to frictional factors. Bejan [20,21] originally formulated the analysis of entropy
generation and found various applications such as two phase flows [22], MHD pumps and electric
generators [23]. Moreover, study of entropy generation and peristaltic flow with thermal conductivity
of H2O + Cu nanofluid and entropy generation analysis for a CNT suspension nanofluid in plumb
ducts with peristalsis has been studies by Akbar et al. [24,25]. Rashidi et al. [26,27] analyzed entropy
generation in a steady MHD flow due to a rotating porous disk in a nanoluid and convective MHD
flow of third grade non-Newtonian fluid over a stretching sheet. A few pertinent studies on said topic
are mentioned in [28–32].

Most of the above investigations cover peristaltic flows with different models of non-Newtonian
fluids and nanofluids. However, in none of the studies mentioned above, has entropy generation in
peristaltic blood-like flow of a nanofluid with compliant walls been incoporated. Therefore in view of
all the above discussion the goal of this study was to analyse the entropy generation with the peristaltic
flow of nanofluids. Analytical expressions are obtained for temperature profile, concentration profile,
entropy generation and velocity profile. Numerical solutions of these expressions are computed
and also presented graphically. The influence of all the physical parameters involved are computed
numerically and sketched. This paper can be summarized as follows: after the introduction in Section 1,
Section 2 characterizes the mathematical formulation of the governing flow problem, Section 3
illustrates the mathematical modelling of entropy generation while Section 4 interprets the solution of
the problem and finally, Section 5 is devoted to the numerical results and discussion, respectively.

2. Mathematical Formulation

Let us consider the peristaltic blood-like flow of a viscous fluid, incompressible and electrically
conducting nanofluid through a two dimensional non-uniform channel with peristaltic waves
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travelling down its walls. We have selected a Cartesian coordinate system for the channel in such a
way that the rx´ axis is taken along the axial direction and the ry´ axis is taken along the transverse
direction (see Figure 1). The geometry of the governing flow problem can be described as:

H
´

rx,rt
¯

“ b prxq ` rasin
2π

λ

´

rx´ rcrt
¯

, (1)

where:
b prxq “ b0 ` K̄rx. (2)
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The governing equationw of continuity, motion, thermal energy and nanoparticle concentration
for peristaltic nanofluid blood flow can be written as [17]:

Bru
Brx
`
Brv
Bry
“ 0, (3)

ρ f

ˆ

Bru
Brt
` ru

Bru
Brx
` rv

Bru
Bry

˙

“ ´
Brp
Brx
` µ

ˆ

BS
rxrx
Brx

`
BS

rxry

Bry

˙

`

g
”

p1´ Fq ρ f 0ζ pT´ T0q ´
´

ρp ´ ρ f 0

¯

pF´ F0q
ı

,
(4)

ρ f

ˆ

Brv
Brt
` ru

Brv
Brx
` rv

Brv
Bry

˙

“ ´
Brp
Brx
` µ

ˆ

BS
ryrx

Brx
`
BS

ryry

Bry

˙

`

g
”

p1´ Fq ρ f 0ζ pT´ T0q ´
´

ρp ´ ρ f 0

¯

pF´ F0q
ı

,
(5)

pρcq f

ˆ

BT
Brt
` ru

BT
Brx
` rv

BT
Bry

˙

“ Kn f

ˆ

B2T
Brx2 `

B2T
Bry2

˙

`

pρcqp DB

ˆ

BF
Brx
BT
Brx
`
BF
Bry
BT
Bry

˙

`
DT
T0

˜

ˆ

BT
Brx

˙2
`

ˆ

BT
Bry

˙2
¸

,
(6)

ˆ

BF
Brt
` ru

BF
Brx
` rv

BF
Bry

˙

“ DB

ˆ

B2F
Brx2 `

B2F
Bry2

˙

`
DT
T0

ˆ

B2T
Brx2 `

B2T
Bry2

˙

. (7)

The stress tensor for the Jeffrey fluid is defined as [17]:

S “
µ

1` λ1

` .
γ` λ2

..
γ
˘

. (8)
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Introducing the following non-dimensional quantities, we have:

x “
x
λ

, y “
y
ra

, t “
rcrt
λ

, u “
ru
rc

, v “
rv
rcδ

, p “
a2
rp

rcλµ
, h “

H
ra

, φ “
bo
ra

,

ν “
µ

ρ f o
, Re “

rcρ fra
µ

, θ “
T´ T0

T1 ´ T0
, Φ “

F´ F0

F1 ´ F0
,

GrF “
gra3 pF1 ´ F0q

´

ρp ´ ρ f 0

¯

ρ f 0ν2 , Nb “
pρcq pDB pF1 ´ F0q

Kn f
, δ “

ra
λ

,

GrT “
ζgra3 p1´ F0q pT1 ´ T0q

ν2 , Nt “
pρcqp DT pT1 ´ T0q

Kn f T0
, S “

ra
µrc

S.

(9)

Let us consider the creeping flow under the assumptions of long wavelength and low Reynolds
number approximation. Using Equation (9) in Equations (4)–(8) we get:

Bp
Bx
“

1
1` λ1

B2u
By2 ` GrTθ ´ GrFΦ, (10)

B2θ

By2 ` Nb
Bθ

By
BΦ
By
` Nt

ˆ

Bθ

By

˙2
“ 0, (11)

B2Φ
By2 `

Nt

Nb

ˆ

B2θ

By2

˙

“ 0, (12)

subject to no slip boundary conditions:

Bu
By
“ θ pyq “ Φ pyq “ 0, at y “ 0, (13)

u pyq “ 0, θ pyq “ Φ pyq “ 1, at y “ h “ 1` χ, (14)

where χ “
kxλ

b0
` φsin2π px´ tq and φ is the amplitude ratio. The expression for the compliant wall

can be defined as:
L pχq “ p´ p0, (15)

where p0 is pressure on outside surface of the wall due to tension in muscle, which is assumed to be
zero here. The L operator is used to described the stretched membrane with viscosity damping force
such as:

L “ ´T
B2

Bx2 `M
B2

Bt2 `D
B

Bt
, (16)

Bp
Bx
“ E1

B3χ

Bx3 ` E2
B3χ

Bt2Bx
` E3

B2χ

BtBx
“

1
1` λ1

B2u
By2 . (17)

In the above equation, E1 “ ´
Tra3

rcλ3µ
, E2 “ Mra3

rc{λ3µ, E3 “ Dra3{λ2µ are the non-dimensional

elasticity quantities.

3. Entropy Generation

The volumetric rate of the local entropy generation of the nanofluid can be defined as [33]:

S3

gen “
Kn f

T82

˜

ˆ

BT
Brx

˙2
`

˜

ˆ

BT
Bry

˙2
¸¸

`
µn f

T8

˜

2

˜

ˆ

Bru
Brx

˙2
`

ˆ

Brv
Bry

˙2
¸

`

ˆ

Bru
Bry
`
Brv
Brx

˙2
¸

`
RDB
T8

ˆ

BT
Bry

˙ˆ

BC
Bry

˙

`
RDB

F0
p∇Fq2 .

(18)



Entropy 2016, 18, 90 5 of 13

The above equation represents entropy generation due to heat transfer, fluid friction irreversibility
and combine product of concentration and temperature gradient. respectively. A characteristic entropy
generation is given by [33]:

S3

G “
K f pT1 ´ T0q

2

T82
ra2

. (19)

Using Equations (18) and (19), the dimensionless entropy generation number can be expressed
as follows:

NS “
S3

gen

S3

g
“

˜

Kn f

K f

¸˜

ˆ

Bθ

By

˙2
¸

` Br
1
Ω

˜

µn f

µ f p1` λ1q

¸

ˆ

Bu
By

˙2

`ε

ˆ

Bθ

By

˙ˆ

BΦ
By

˙

` Γ
ˆ

Λ
Ω

˙2 ˆ
BΦ
By

˙2
,

(20)

where Br, Ω, ε, Γ and Λ are defined as:

Br “
rc2µ f

K f pT1 ´ T0q
, ε “

RDBT8
K f

ˆ

F1 ´ F0

T1 ´ T0

˙

, Ω “
pT1 ´ T0q

T8
, Γ “

RDBF0

K f
, Λ “

F1 ´ F0

F0
. (21)

The nanofluid viscosity can be defined as [34]:

µn f “
µ f

`

1´ φ
˘2.5 , (22)

where µ f is the viscosity of the base fluid, φ is the solid volume fraction which is valid for
0.01 ! φ ! 0.04. When the thermal conductivity of the particle is over 100 times larger than that of
base fluid, the thermal conductivity in the sense of macroscopic effective medium theory known as
Maxwell model [34] which is given as:

Kn f “
κp ` 2κ f ` 2φ

´

κp ´ κ f

¯

κp ` 2κ f ´ φ
´

κp ´ κ f

¯ κ f . (23)

Here, κp, κ f are the thermal conductivities of the nanoparticles and nanofluid, respectively.

4. Solution of the Problem

The solution of the non-linear coupled partial differential equations can be solve with the help of
homotopy perturbation method [13]. The homotopy for Equations (10)–(12) can be written as:

h pω, qq “ p1´ qq pL1 pωq ´L1 pω̌0qq ` q pL1 pωq ` GrTΘ´ GrFϑ´ Cq “ 0, (24)

h pϑ, qq “ p1´ qq
`

L2 pϑq ´L2
`

ϑ̌0
˘˘

` q

˜

L2 pϑq ` Nb
BΘ
By
Bϑ

By
` Nt

ˆ

Bϑ

By

˙2
¸

“ 0, (25)

h pΘ, qq “ p1´ qq
`

L2 pΘq ´L2
`

Θ̌0
˘˘

` q
ˆ

L2 pΘq `
Nt

Nb

ˆ

B2ϑ

By2

˙˙

“ 0. (26)

We have selected the following linear operator as:

L1 “
1

1` λ1

B2

By2 , (27)

L2 “
B2

By2 , (28)



Entropy 2016, 18, 90 6 of 13

and the initial guess is defined as:

ω̌0 “
´

y2 ´ h2
¯

p1` λ1q , (29)

Θ̌0 “ ϑ̌0 “ yh´1. (30)

The expansion series can be defined as:

ω px, yq “ ω0 ` qω1 ` q2ω2 ` . . . , (31)

ϑ px, yq “ ϑ0 ` qϑ1 ` q2ϑ2 ` . . . , (32)

Θ px, yq “ Θ0 ` qΘ1 ` q2Θ2 ` . . . . (33)

Using Equations (31)–(33) in Equations (24)–(26) and comparing the powers of q we get a system
of linear differential equations with their relevant boundary conditions. According to the scheme of
HPM, we obtained the solution as q Ñ 1 , and we get:

u px, yq “ ω px, yq
ˇ

ˇ

ˇqÑ1 “ ω0 ` qω1 ` q2ω2 ` . . . , (34)

θ px, yq “ ϑ px, yq
ˇ

ˇ

ˇqÑ1 “ ϑ0 ` qϑ1 ` q2ϑ2 ` . . . , (35)

Φ px, yq “ Θ px, yq
ˇ

ˇ

ˇqÑ1 “ Θ0 ` qΘ1 ` q2Θ2 ` . . . . (36)

The solution of velocity profile, temperature profile and nanoparticle concentration are written in
simplified form as:

u pyq “
p1` λ1q

`

p6´ 3C ´ GrF ` GrTq h3 ` 3 p´2` Cq hy2 ` pGrF ` GrTq y3˘

6h
`

GrT p1` λ1q pNb ` Ntq
`

h4 ´ 2hy3 ` y4˘

`

24h2
˘

`
p1` λ1qNt pNb ` Ntq

`

15GrFh4 `h4 ´ 2hy3 ` y4˘` GrT Nb pNb ` Ntq
`

3h6 ´ 10h3y3 ` 15y4h2 ´ 12hy5 ´ 12hy5 ` 4y6˘˘

360h6Nb
,

(37)

θ px, yq “
y
h
`

`

hNby` hNty´ Nby2 ´ Nty2˘

`

2h2
˘

`
1

2520h14 Nt pNb ` Ntq
2 yph7p105h6 ´ 21h4NbNt pNb ` Ntq

` 20Nt
2 pNb ` Ntq

2
q

´ 35h6
´

9h6 ´ 3h4NbNt pNb ` Ntq ` 4Nt2 pNb ` Ntq
2
¯

y

` 140h5
´

3h6 ´ 2h4NbNt pNb ` Ntq ` 4Nt
2 pNb ` Ntq

2
¯

y2

´ 70h4
´

3h6 ´ 6h4NbNt pNb ` Ntq ` 20Nt
2 pNb ` Ntq

2
¯

y3

` 112h3Nt pNb ` Ntq
`

´3h4Nb ` 20Nt pNb ` Ntq
˘

y4

` 112h2Nt pNb ` Ntq
`

h4Nb ´ 20Nt pNb ` Ntq
˘

y5

` 1280hNt2 pNb ` Ntq
2 y6 ´ 320Nt

2 pNb ` Ntq
2 y7q,

(38)

Φ px, yq “
y
h
`

´

´hNbNty´ hNt
2y` NbNty2 ` Nt

2y
¯

`

2h2Nb
˘

`
Nt2 pNb` Ntq2 y

`

´2h4 ` 5h2y2 ´ 5hy3 ` 2y4˘

30h6Nb
,

(39)

where:
C “ ´pE1 ` E2q

´

8π3φcos r2π px´ tqs
¯

` 4E3π2φsin r2π px´ tqs .
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5. Numerical Results and Discussion

In this section the influence of some controlling parameters such as Brownian motion parameter
Nb, thermophoresis parameter Nt, non dimensional elasticity parameters E1, E2 and E3, basic
density Grashof number GrF, thermal Grashof number GrT , Brinkman group parameter BΩ´ 1

and dimensionless constant parameter E on temperature profile, concentration profile, entropy
generation and velocity profile are presented graphically. Furthermore, In Equation (10), by taking
λ1 “ 0, GrT “ GrF “ 0, the present results can be reduced to the results obtained by Shapiro et al. [35]
and Srivastava [36] for a Newtonian fluid case pPower Law index n “ 1q . Moreover, Equation (10) can
also reduces to the same result obtained by Gupta and Seshadri [37] by taking λ1 “ 0, GrT “ GrF “ 0.
The present analysis can also be reduced to the similar results obtained by Mekheimer [18] for
Newtonian fluids pcouple stres parameter γ Ñ8q by taking λ1 “ 0, GrT “ GrF “ 0. Table 1 shows
the numerical comparison for velocity profile between a Newtonian and a non-Newtonian fluid.

Table 1. Numerical comparison of velocity profile between Newtonian and non-Newtonian fluids.

h(x,t)

u(y) u(y) u(y) u(y)

λ1 “ 0
(Newtonian Fluid)

λ1 “ 0.5
(Non-Newtonian

Fluid)

λ1 “ 0.8
(Non-Newtonian

Fluid)

λ1 “ 1.3
(Non-Newtonian

Fluid)

0 0.5636 0.8454 1.0145 1.2964
0.1324 0.5584 0.8377 1.0052 1.2845
0.2649 0.5425 0.8137 0.9765 1.2477
0.3973 0.5150 0.7726 0.9271 1.1847
0.5298 0.4758 0.7138 0.8566 1.0945
0.6623 0.4247 0.6371 0.7645 0.9769
0.7947 0.3617 0.5426 0.6511 0.8320
0.9272 0.2871 0.4307 0.5169 0.6605
1.0596 0.2015 0.3022 0.3627 0.4634
1.1921 0.1054 0.1582 0.1898 0.2425
1.3246 0 0 0 0

Figure 2 depicts the effect of Brownian motion Nb and thermophoresis parameter Nt on
temperature profile. It shows that temperature increases for the higher values of Nb and Nt indicating
that the boundary layer is increasingly heated and there is progressive thickening in the thermal
boundary layer. The reason behind is that Brownian motion enhances the thermal conductivity of a
nanofluid by generating micro-mixing and as a consequence of which the temperature profile increases
strongly. Also it is manifest from Equations (11) and (12) that the temperature is directly proportional
to Nt which further tells us that the temperature profile will increase for the higher values of Nt. Such
results have significant importance in the case of electromagnetic hyperthermia treatment because
the vital purpose of electromagnetic hyperthermia is to rise the temperature of cancerous tissues
above 42 ˝C. We observe in Figure 3 that the concentration profile is consistently reduced with an
increasing Nb while enhanced thermophoresis clearly corresponds to a significant increase in Φ pyq, i.e.
with an increment in Brownian motion, the impact of thermal conductivity increases and thus, the
concentration profile decreases.

The behavior of entropy generation for some pertinent parameters such as nondimensional
elasticity parameters E1, E2, E3, Brownian motion parameter Nb, thermophoresis parameter Nt, Basic
density Grashof number GrF, thermal Grashof number GrT and dimensionless constant parameter
E are plotted in Figures 4, 5, 6, 7 and 8a. Figure 4 shows a strong deceleration in entropy generation
for greater values of E1 and E2. An increase in tension or stiffness in the channel walls lead to
decrease in temperature and consequently entropy generation reduces. Figure 5 reveals that entropy
generation is an accelerating function for E3 and BrΩ´1. The Brinkman group parameter BΩ´ 1

regulates significance of viscous effects and it is also noticed that this parameter is associated with
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nanofluid viscosity term, i.e., Br
1
Ω

˜

µn f

µ f

¸

ˆ

Bu
By

˙2
in Equation (18). The Brinkman group parameter

appears directly proportional to the square of the velocity and an increase in BΩ´1 evidently accelerates
flow and as a result entropy will increase. The behavior of NS for different values of Nt and Nb is
demonstrated in Figure 6. From both figures, it is clear that entropy generation increases for higher
values of Nt and Nb. Physical interpretation of this behavior is that with the increase in the Brownian
motion parameter and thermophoresis parameter the process of heat generation and heat transfer
increases, i.e. Nt and Nb serve to boost the entropy generation markedly. Figure 7 provides a perspective
of the influence of GrT and GrF on NS pyq. Inspection of these graphs reveals that entropy generation
is an increasing function with the increase in GrT and GrF. Entropy generation is reduced strongly, as
seen in Figure 8a for higher values of E . However, beyond a certain point negligible entropy effect is
observed. Velocity profiles are displayed in Figures 8b and 9 for various values of E1, E2 and E3. In
such cases the flow is decelerating for progressive values of E1, E2 and E3. Due to the increase in E1

and E2 less resistance is offered to the flow and velocity distribution decreases similarly, E3 represents
the damping effect which creates resistivity in the flow and velocity profile decreases with the enhance
in E3. Physically, larger values in E1 reduces tension in the walls of blood vessels which speeds up the
blood flow. The walls of the channel or blood vessels are under strong influence of damping for higher
values of E3. In such situations the vessels or arteries are required the higher amount of force to extent
and taken up the blood ejected from the heart.
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Figure 2. Temperature distribution for various values of ௧ܰ and ௕ܰ. (a) red line: ௕ܰ = 0.1, green line: ௕ܰ = 0.3, blue line: ௕ܰ = 0.6, black line: ௕ܰ = 0.9. (b) red line: ௧ܰ = 0.1, green line: ௧ܰ = 0.3, blue 
line: ௧ܰ = 0.6, black line: ௧ܰ = 0.9. 

Figure 2. Temperature distribution for various values of Nt and Nb. (a) red line: Nb “ 0.1, green line:
Nb “ 0.3, blue line: Nb “ 0.6, black line: Nb “ 0.9; (b) red line: Nt “ 0.1, green line: Nt “ 0.3, blue line:
Nt “ 0.6, black line: Nt “ 0.9.
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Figure 3. Concentration distribution for various values of ௕ܰ and ௧ܰ. (a) red line: ௕ܰ = 0.1, green 
line:	 ௕ܰ = 0.3, blue line: ௕ܰ = 0.6, black line: ௕ܰ = 0.9. (b) red line: ௧ܰ = 0.1, green line: ௧ܰ = 0.3, 
blue line: ௧ܰ = 0.6, black line: ௧ܰ = 0.9. 
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Figure 4. Entropy generation for various values of ܧଵand ܧଶ. (a) red line: ܧଵ = 0.1, green line: ܧଵ =0.3, blue line: ܧଵ = 0.6, black line: ܧଵ = 0.9. (b) red line: ܧଶ = 0.1, green line: ܧଶ = 0.3, blue line: ܧଶ =0.6, black line: ܧଶ = 0.9. 
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Figure 5. Entropy generation for various values of ܧଷ and ܤΩିଵ. (a) red line: ܧଷ = 0.1, green line: ܧଷ = 0.3, blue line:	ܧଷ = 0.6, black line: ܧଷ = 0.9. (b) red line: ܤΩିଵ = 0.1, green line: ܤΩିଵ = 0.3, 
blue line: ܤΩିଵ = 0.6, black line: ܤΩିଵ = 0.9. 

Figure 3. Concentration distribution for various values of Nb and Nt. (a) red line: Nb “ 0.1, green
line: Nb “ 0.3, blue line: Nb “ 0.6, black line: Nb “ 0.9; (b) red line: Nt “ 0.1, green line: Nt “ 0.3, blue
line: Nt “ 0.6, black line: Nt “ 0.9.
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Figure 5. Entropy generation for various values of ܧଷ and ܤΩିଵ. (a) red line: ܧଷ = 0.1, green line: ܧଷ = 0.3, blue line:	ܧଷ = 0.6, black line: ܧଷ = 0.9. (b) red line: ܤΩିଵ = 0.1, green line: ܤΩିଵ = 0.3, 
blue line: ܤΩିଵ = 0.6, black line: ܤΩିଵ = 0.9. 

Figure 4. Entropy generation for various values of E1 and E2. (a) red line: E1 “ 0.1, green line: E1 “ 0.3,
blue line: E1 “ 0.6, black line: E1 “ 0.9; (b) red line: E2 “ 0.1, green line: E2 “ 0.3, blue line: E2 “ 0.6,
black line: E2 “ 0.9.
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Figure 5. Entropy generation for various values of ܧଷ and ܤΩିଵ. (a) red line: ܧଷ = 0.1, green line: ܧଷ = 0.3, blue line:	ܧଷ = 0.6, black line: ܧଷ = 0.9. (b) red line: ܤΩିଵ = 0.1, green line: ܤΩିଵ = 0.3, 
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Figure 5. Entropy generation for various values of E3 and BΩ´1. (a) red line: E3 “ 0.1, green line:
E3 “ 0.3, blue line: E3 “ 0.6, black line: E3 “ 0.9; (b) red line: BΩ´1 “ 0.1, green line: BΩ´1 “ 0.3,
blue line: BΩ´1 “ 0.6, black line: BΩ´1 “ 0.9.
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Figure 6. Entropy generation for various values of ௧ܰ and ௕ܰ. (a) red line: ௧ܰ = 0.1, green line: ௧ܰ =0.3, blue line: ௧ܰ = 0.6, black line: ௧ܰ = 0.9. (b) red line: ௕ܰ = 0.1, green line: ௕ܰ = 0.3, blue line: ௕ܰ = 0.6, black line: ௕ܰ = 0.9. 

(a) (b) 

Figure 7. Entropy generation for various values of ݎ்ܩ  and	ݎܩி. (a) red line: ݎ்ܩ = 0.1, green line: ݎ்ܩ = 0.3, blue line: ݎ்ܩ = 0.6, black line: ݎ்ܩ = 0.9. (b) red line: ݎܩி = 0.1, green line: ݎܩி = 0.3, 
blue line: ݎܩி = 0.6, black line: ݎܩி = 0.9.  

(a) (b) 

Figure 8. (a) Entropy generation for various values of ℰ. Red line: ߝ = 0.01, green line: ߝ = 0.03, blue 
line: ߝ = 0.06, black line: ߝ = 0.09. (b) Velocity profile for various values of ܧଵ. Red line: ܧଵ = 0.1, 
green line: ܧଵ = 0.3, blue line: ܧଵ = 0.6, black line: ܧଵ = 0.9.  

Figure 6. Entropy generation for various values of Nt and Nb. (a) red line: Nt “ 0.1, green line:
Nt “ 0.3, blue line: Nt “ 0.6, black line: Nt “ 0.9; (b) red line: Nb “ 0.1, green line: Nb “ 0.3, blue line:
Nb “ 0.6, black line: Nb “ 0.9.
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Figure 8. (a) Entropy generation for various values of ℰ. Red line: ߝ = 0.01, green line: ߝ = 0.03, blue 
line: ߝ = 0.06, black line: ߝ = 0.09. (b) Velocity profile for various values of ܧଵ. Red line: ܧଵ = 0.1, 
green line: ܧଵ = 0.3, blue line: ܧଵ = 0.6, black line: ܧଵ = 0.9.  

Figure 7. Entropy generation for various values of GrT and GrF. (a) red line: GrT “ 0.1, green line:
GrT “ 0.3, blue line: GrT “ 0.6, black line: GrT “ 0.9; (b) red line: GrF “ 0.1, green line: GrF “ 0.3,
blue line: GrF “ 0.6, black line: GrF “ 0.9.
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Figure 8. (a) Entropy generation for various values of ℰ. Red line: ߝ = 0.01, green line: ߝ = 0.03, blue 
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Figure 8. (a) Entropy generation for various values of E . Red line: ε “ 0.01, green line: ε “ 0.03, blue
line: ε “ 0.06, black line: ε “ 0.09; (b) Velocity profile for various values of E1. Red line: E1 “ 0.1, green
line: E1 “ 0.3, blue line: E1 “ 0.6, black line: E1 “ 0.9.
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Figure 9. Velocity profile for various values of ܧଶ and ܧଷ. (a) red line: ܧଶ = 0.1, green line: ܧଶ = 0.3, 
blue line: ܧଶ = 0.6, black line: ܧଶ = 0.9. (b) red line: ܧଷ = 0.1, green line: ܧଷ = 0.3, blue line: ܧଷ =0.6, black line: ܧଷ = 0.9. 

6. Conclusions 

Entropy generation during peristaltic blood-like flow of a non-Newtonian nanofluid in a channel 
having complaint walls has been studied in this article. The governing flow problem is solved under 
the approximations of long wave length and zeros Reynolds number. The resulting non-linear 
coupled differential equations are solved by means of the homotopy perturbation method and the 
solutions have been obtained up to 3rd order approximation. Numerical solutions have been 
obtained with the help of the computational software “Mathematica” to calculate the expression for 
velocity profile, temperature profile and concentration profile. The main outcomes of the present 
investigation are categorized below:  

 Temperature distribution increases when ௕ܰ and ௧ܰ increases. 
 Concentration distribution is increasing for ௕ܰ but its attitude is opposite for ௧ܰ. 
 Entropy generation is increasing for different values of ܧଷ ,Ωିଵܤ , 	 ௧ܰ  and ௕ܰ  but it is a 

decreasing function for the parameters ݎ்ܩ , ,ிݎܩ ℰ and ܧଵ. 
 Velocity profile diminishes for large values of ܧଵ, 	ܧଶ	 and ܧଷ. 
 The present model may be beneficial in understanding the dynamic of blood flow small blood 

vessels by taking into account the important wall elastic parameters.  
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Figure 9. Velocity profile for various values of E2 and E3. (a) red line: E2 “ 0.1, green line: E2 “ 0.3,
blue line: E2 “ 0.6, black line: E2 “ 0.9; (b) red line: E3 “ 0.1, green line: E3 “ 0.3, blue line: E3 “ 0.6,
black line: E3 “ 0.9.
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6. Conclusions

Entropy generation during peristaltic blood-like flow of a non-Newtonian nanofluid in a channel
having complaint walls has been studied in this article. The governing flow problem is solved under
the approximations of long wave length and zeros Reynolds number. The resulting non-linear coupled
differential equations are solved by means of the homotopy perturbation method and the solutions
have been obtained up to 3rd order approximation. Numerical solutions have been obtained with
the help of the computational software “Mathematica” to calculate the expression for velocity profile,
temperature profile and concentration profile. The main outcomes of the present investigation are
categorized below:

‚ Temperature distribution increases when Nb and Nt increases.
‚ Concentration distribution is increasing for Nb but its attitude is opposite for Nt.
‚ Entropy generation is increasing for different values of E3, BΩ´1, Nt and Nb but it is a decreasing

function for the parameters GrT , GrF, E and E1.
‚ Velocity profile diminishes for large values of E1, E2 and E3.
‚ The present model may be beneficial in understanding the dynamic of blood flow small blood

vessels by taking into account the important wall elastic parameters.
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Nomenclature

ru, rv velocity components pm{sq
rx, ry Cartesian coordinate pmq
rp pressure in fixed frame

`

N{m2˘

ra wave amplitude pmq
b prxq width of the channel
b0 half width at the inlet
rc wave velocity pm{sq
Ns dimensionless entropy number
Re Reynolds number
rt time psq
GrF basic density Grashof number
GrT thermal Grashof number
Nb Brownian motion parameter
Nt thermophoresis parameter
K̄ p! 1q constant
Br Brinkman number

T8 environmental temperature (K)
Λ constant parameter
M wall mass per unit area
D coefficient of viscous damping
T, F temperature pKq and concentration
g acceleration due to gravity

`

m{s2˘

DB Brownian diffusion coefficient
`

m2{s
˘

DT thermophoretic diffusion coefficient
`

m2{s
˘

K mean absorption constant
S stress tensor
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Greek Symbols

κp thermal conductivities of the nano particles
λ1 ratio b/w relaxation to retardation time
Kn f thermal conductivity of nanofluid pW{m Kq
µ viscosity of the fluid

`

N s{m2˘

Γ diffusive coefficient
ε dimensionless constant parameter
Ω dimensionless temperature difference
Φ nano particle volume fraction
θ temperature profile
δ wave number

`

m´1˘

.
γ shear rate
cp effective heat capacity of nano particle pJ{Kq
ν nanofluid kinematic viscosity

`

m2{s
˘

pρqp nano particle mass density
`

kg{m3˘

ρ f fluid density
`

kg{m3˘

ρ f0 fluid density at the reference temperature pT0q
`

kg{m3˘

ζ volumetric expansion coefficient of the fluid
pρcq f heat capacity of fluid pJ{Kq
λ wavelength pmq
φ amplitude ratio
λ2 delay time
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