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Abstract: In recent work, Baez, Fong and the author introduced a framework for describing Markov
processes equipped with a detailed balanced equilibrium as open systems of a certain type. These
“open Markov processes” serve as the building blocks for more complicated processes. In this
paper, we describe the potential application of this framework in the modeling of biological systems
as open systems maintained away from equilibrium. We show that non-equilibrium steady states
emerge in open systems of this type, even when the rates of the underlying process are such that
a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states
minimize a quadratic form which we call “dissipation”. In some circumstances, the dissipation is
approximately equal to the rate of change of relative entropy plus a correction term. On the other
hand, Prigogine’s principle of minimum entropy production generally fails for non-equilibrium
steady states. We use a simple model of membrane transport to illustrate these concepts.
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1. Introduction

Life exists away from equilibrium. Left isolated, systems will tend toward thermodynamic
equilibrium. Open systems can be maintained away from equilibrium via the exchange of energy
and matter with the environment. In addition, biological systems typically consist of a large number
of interacting parts. This paper presents a way of describing these “parts” as morphisms in a
category. A category consists of a collection of objects along with morphisms or arrows between
objects, obeying certain conditions. We consider time-homogeneous Markov processes as a general
framework for modeling various biological and biochemical systems whose dynamical equations are
linear. Viewed as morphisms in a category, the “open Markov processes” discussed in this paper
provide a framework for describing open systems which can be combined to build larger systems.

Intuitively, one can think of a Markov process as specifying the dynamics of a probability or
“population” distribution that is spread across a finite set of states. A population distribution is a
non-normalized probability distribution, see for example [1]. The population of a particular state can
be any non-negative real number. The total population in an open Markov process is not constant
in time as population can flow in and out through certain boundary states. Part of the utility of
Markov processes as models of physical or biological systems stems from the flexibility in choosing
the correspondence between the states of the Markov process and the actual system it is to model. For
instance, the states of a Markov process could correspond to different internal states of a particular
molecule or chemical species. In this case, the transition rates describe the rates at which the molecule
transitions among these states. Or, the states of a Markov process could correspond to a molecule’s
physical location. In this case, the transition rates encode the rates at which that molecule moves from
place to place.
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This paper is structured as follows. In Section 2, we give some preliminary definitions from
the theory of Markov processes and explain the concept of an open Markov process. In Section 3,
we introduce a model of membrane transport as a simple example of an open Markov process.
In Section 4, we introduce the category DetBalMark. The objects in DetBalMark are finite sets of
“states” whose elements are labeled by non-negative real numbers which we call “populations”.
The morphisms in DetBalMark are Markov processes equipped with a detailed balanced equilibrium
distribution as well as maps specifying input and output states. If the outputs of one process match
the inputs of another process the two can be composed, yielding a new open Markov process. We
refer to the union of the input and output states as the “boundary” of an open Markov process.

In Section 5, we show that if the populations at the boundary of an open detailed balanced
Markov process are held fixed, then the non-equilibrium steady states which emerge minimize
a quadratic form, which we call the “dissipation”, subject to the constraint on the boundary
populations. Depending on the values of the boundary populations, these non-equilibrium steady
states can exist arbitrarily far from the detailed balanced equilibrium of the underlying Markov
process. In Section 6, we show that, for fixed boundary populations, this principle of minimum
dissipation approximates Prigogine’s principle of minimum entropy production in the neighborhood
of equilibrium plus a correction term involving only the flow of relative entropy through the
boundary of the open Markov process.

2. Open Markov Processes

In this section, we define open Markov processes, describe the detailed balanced condition for
equilibria and define non-equilibrium steady states for Markov processes.

An open Markov process, or open, continuous time, discrete state Markov chain, is a triple
(V, B, H) where V is a finite set of states, B ⊆ V is the subset of boundary states and H : RV → RV is
an infinitesimal stochastic Hamiltonian

Hij ≥ 0, i 6= j

∑
i

Hij = 0.

For each i ∈ V, the dynamical variable pi ∈ [0, ∞), i ∈ V, is the population at the ith state. We
call the resulting function p : V → [0, ∞) the population distribution. Populations evolve in time
according to the open master equation

dpi
dt

= ∑
j

Hij pj, i ∈ V − B (1)

pi(t) = bi(t), i ∈ B,

The off-diagonal entries Hij, i 6= j are the rates at which population transitions from the jth to
the ith state. A steady state distribution is a population distribution which is constant in time:

dpi
dt

= 0 for all i ∈ V. (2)

A closed Markov process, or continuous time, discrete state Markov chain, is an open Markov
process whose boundary is empty. For a closed Markov process, the open master equation becomes
the usual master equation

dp
dt

= Hp.
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In a closed Markov process, the total population is conserved:

∑
i

dpi
dt

= ∑
i,j

Hij pj = 0,

enabling one to talk about the relative probabilities of being in particular states. A steady-state
distribution in a closed Markov process is typically called an equilibrium. We say an equilibrium
q ∈ [0, ∞)V of a Markov process is detailed balanced if

Hijqj = Hjiqi for all i, j ∈ V. (3)

An open detailed balanced Markov process is an open Markov process (V, B, H) together with
a detailed balanced equilibrium q : V → (0, ∞) on V. In Section 5, we define the “dissipation”, which
depends on the detailed balanced equilibrium populations, hence we equip an open Markov process
with a specific detailed balanced equilibrium of the underlying closed Markov process. Thus, if a
Markov process admits multiple detailed balanced equilibria, we choose a specific one. Note that we
consider only detailed balanced equilibria such that the populations of all states are non-zero. Later,
it will become clear why this is important.

For a pair of distinct states i, j ∈ V, the term Hij pj is the flow of population from j to i. The net
flow of population from the jth state to the ith is

Jij(p) = Hij pj − Hji pi. (4)

Summing the net flows into a particular state we can define the net inflow Ji(p) ∈ R of a
particular state to be

Ji(p) = ∑
j

Jij(p) = ∑
j

Hij pj − Hji pi. (5)

Since ∑j Hji pi = 0, the right side of this equation is the time derivative of the population at the
ith state. Writing the master equation in terms of Jij(p) or Ji(p) we have

dpi
dt

= ∑
j

Jij(p) = Ji(p).

The net flow between each pair of states vanishes identically in a detailed balanced equilibrium q:

Jij(q) = 0.

For a closed Markov process, the existence of a detailed balanced equilibrium is equivalent to a
condition on the rates of a Markov process known as Kolmogorov’s criterion [2], namely that

Hi1i2 Hi2i3 · · ·Hin−1in Hini1 = Hi1in Hinin−1 · · ·Hi3i2 Hi2i1 (6)

for any finite sequence of states i1, i2, . . . , in of any length. This condition says that the product of the
rates along any cycle is equal to the product of the rates along the same cycle in the reverse direction.

A non-equilibrium steady state is a steady state in which the net flow between at least one
pair of states is non-zero. Thus, there could be population flowing between pairs of states, but in
such a way that these flows still yield constant populations at all states. In a closed Markov process,
the existence of non-equilibrium steady states requires that the rates of the Markov process violate
Kolmogorov’s criterion. We show that open Markov processes with constant boundary populations
admit non-equilibrium steady states even when the rates of the process satisfy Kolmogorov’s
criterion. Throughout this paper, we use the term equilibrium to mean detailed balanced equilibrium.
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3. Membrane Diffusion as an Open Markov Process

To illustrate these ideas, we consider a simple model of the diffusion of neutral particles across a
membrane as an open detailed balanced Markov process (V, B, H, q) with three states V = {A, B, C},
input A and output C. The states A and C correspond to the each side of the membrane, while B
corresponds within the membrane itself, see Figure 1.

A

B

C

Figure 1. A simple model for passive diffusion across a membrane.

In this model, pA is the number of particles on one side of the membrane, pB the number of
particles within the membrane and pC the number of particles on the other side of the membrane.
The off-diagonal entries in the Hamiltonian Hij, i 6= j are the rates at which population hops from
j to i. For example, HAB is the rate at which population moves from B to A, or from inside the
membrane to the top of the membrane. Let us assume that the membrane is symmetric in the sense
that the rate at which particles hop from outside of the membrane to the interior is the same on either
side, i.e., HBA = HBC = Hin and HAB = HCB = Hout. We can draw such an open Markov process as
a labeled graph, see for instance Figure 2.

qA qB qCqA qC

Hin

Hout

Hout

Hin

Figure 2. A depiction of an open Markov process as a labeled, directed graph.

The labels on the edges are the corresponding transition rates. The states are labeled by
their detailed balanced equilibrium populations, which, up to an overall scaling, are given by
qA = qC = Hin Hout and qB = H2

in. Suppose the populations pA and pC are externally maintained
at constant values, i.e., whenever a particle diffuses from outside the cell into the membrane, the
environment around the cell provides another particle and similarly when particles move from inside
the membrane to the outside. We call (pA, pC) the boundary populations. Given the values of pA
and pC, the steady state population pB compatible with these values is

pB =
Hin pA + Hin pC
−HBB

=
Hin
Hout

pA + pC
2

.

In Section 5, we show that this steady state population minimizes the dissipation, subject to the
constraints on pA and pC.
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We thus have a non-equilibrium steady state p = (pA, pB, pC) with pB given in terms of the
boundary populations above. From these values, we can compute the boundary flows, JA, JC as

JA = ∑
j

JAj(p) = Hout pB − Hin pA

and
JC = ∑

j
JCj(p) = Hout pB − Hin pC.

Written in terms of the boundary populations this gives

JA =
Hin(pC − pA)

2

and

JC =
Hin(pA − pC)

2
.

Note that JA = −JC implying that there is a constant net flow through the open Markov process.
As one would expect, if pA > pC there is a positive flow from A to C and vice versa. Of course, in
actual membranes there exist much more complex transport mechanisms than the simple diffusion
model presented here. A number of authors have modeled more complicated transport phenomena
using the framework of networked master equation systems [3,4].

In our framework, we call the collection of all boundary population-flows pairs the steady state
“behavior” of the open Markov process. In recent work [5], Baez, Fong and the author construct a
functor � : DetBalMark → LinRel from the category of open detailed balanced Markov process to
the category of linear relations. Applied to an open detailed balanced Markov process, this functor
yields the set of allowed steady state boundary population-flow pairs. One can imagine a situation
in which only the populations and flows of boundary states are observable, thus characterizing a
process in terms of its behavior. This provides an effective “black-boxing” of open detailed balanced
Markov processes.

As morphisms in a category, open detailed balanced Markov processes can be composed, thereby
building up more complex processes from these open building blocks. The fact that “black-boxing”
is accomplished via a functor means that the behavior of a composite Markov process can be built
up from the composite behaviors of the open Markov processes from which it is built. In this paper,
we illustrate how this framework can be utilized to study linear master equation systems far from
equilibrium with a particular emphasis on the modeling of biological phenomena.

Markovian or master equation systems have a long history of being used to model and
understand biological systems. We make no attempt to provide a complete review of this line
of work. Schnakenberg, in his paper on networked master equation systems, defines the entropy
production in a Markov process and shows that a quantity related to entropy serves as a Lyapunov
function for master equation systems [6]. His book [4] provides a number of biochemical applications
of networked master equation systems. Oster, Perelson and Katchalsky developed a theory of
“networked thermodynamics” [7], which they went on to apply to the study of biological systems [3].
Perelson and Oster went on to extend this work into the realm of chemical reactions [8].

Starting in the 1970s, T. L. Hill spearheaded a line of research focused on what he called “free
energy transduction” in biology. A shortened and updated form of his 1977 text on the subject [9]
was republished in 2005 [10]. Hill applied various techniques, such as the use of the cycle basis, in
the analysis of biological systems. His model of muscle contraction provides one example [11].

One quantity central to the study of non-equilibrium systems is the rate of entropy
production [12–15]. Prigogine’s principle of minimum entropy production [16] asserts that for
non-equilibrium steady states that are near equilibrium, entropy production is minimized. This is
an approximate principle that is obtained by linearizing the relevant equations about an equilibrium
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state. In fact, for open detailed balanced Markov processes, non-equilibrium steady states are
governed by a different minimum principle that holds exactly, arbitrarily far from equilibrium. We
show that for fixed boundary conditions, non-equilibrium steady states minimize a quantity we call
“dissipation”. If the populations of the non-equilibrium steady state are close to the population of the
underlying detailed balanced equilibrium, one can show that dissipation is close to the rate of change
of relative entropy plus a boundary term. Dissipation is in fact related to the Glansdorff–Prigogine
criterion, which states that a non-equilibrium steady state is stable if the second order variation of the
entropy production is non-negative [6,12].

Many of the mathematical results underlying the theory of non-equilibrium steady states can
be found in the book by D. Jiang, M. Qian and M.P. Qian [17]. More recently, results concerning
fluctuations have been extended to master equation systems [18]. In the past two decades, H. Qian of
the University of Washington and collaborators have published numerous results on non-equilibrium
thermodynamics, biology and related topics [19–21].

This paper is part of a larger project which uses category theory to unify a variety of
diagrammatic approaches found across the sciences including, but not limited to, electrical circuits,
control theory and bond graphs [22,23]. We hope that the categorical approach will shed new light on
each of these subjects as well as their interrelation, particularly as we generalize the results presented
in this and recent papers to the more general, non-linear, setting of open chemical reaction networks.

4. The Category of Open Detailed Balanced Markov Processes

In this section, we describe how open detailed balanced Markov processes are the morphisms
in a certain type of symmetric, monoidal, dagger-compact category. In previous work, Baez,
Fong and the author [5] used the framework of decorated cospans [24] to construct the category
DetBalMark. Here, we give an intuitive description of this category and refer to those papers for the
mathematical details.

An object in DetBalMark is a finite set with populations, i.e., a finite set X together with a
map pX : X → [0, ∞) assigning a population pi ∈ [0, ∞) to each element i ∈ X. A morphism
M : (X, pX)→ (Y, pY) consists of an open detailed balanced Markov process (V, B, H, q) together
with input and output maps i : X → V and o : Y → V which preserve population, i.e., pX = q ◦ i
and pY = q ◦ i. The union of the images of the input and output maps form the boundary of the open
Markov processes B = i(X) ∪ o(Y).

One can draw an open detailed balanced Markov process as a labeled directed graph whose
vertices are labeled by their equilibrium populations and with specified subsets of the vertices as the
input and the output states. Recall our simple model of membrane diffusion as an open detailed
balanced Markov process, which we draw in Figure 3, as a morphism from the input X = {A} to the
output Y = {C}

qA qB qCX YqA qC

HBA

HAB

HCB

HBC

i o

Figure 3. An open detailed balanced Markov process modeling membrane transport.

This is a morphism in DetBalMark from X to Y where X and Y are finite sets with populations.
In this simple example, X and Y both contain a single element, namely A and C respectively. Suppose
we had another such membrane as depicted in Figure 4.
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C′

D

E

Figure 4. Another layer of membrane whose interior population is labeled by D and whose exterior
populations are labeled by C′ and E.

This is a morphism in DetBalMark from with input Y = {C′} and output Z = {E}. Two
open detailed balanced Markov processes can be composed if the detailed balanced equilibrium
populations at the outputs of one match the detailed balanced equilibrium populations at the inputs
of the other. This requirement guarantees that the composite of two open detailed balanced Markov
process still admits a detailed balanced equilibrium, see Figure 5.

qA qB qCX YqA qC

HBA

HAB

HCB

HBC

qC′ qD qEY ZqC′ qE

HDC′

HC′D

HED

HDE

Figure 5. Membranes arranged in series modeled as an open detailed balanced Markov process.

If qC = qC′ in our two membrane models, we can compose them by identifying C with C′ to
yield an open detailed balanced Markov process modeling the diffusion of neutral particles across
membranes arranged in series, see Figure 6.

qA qB qCX qA

HBA

HAB

HCB

HBC

qD qE ZqE

HDC

HCD

HED

HDE

Figure 6. Composition of open detailed balanced Markov processes results in an open detailed
balanced Markov process.

Notice that the states corresponding to C and C′ in each process have been identified and become
internal states in the composite which is a morphism from X = {A} to Z = {E}. This open Markov
process can be thought of as modeling the diffusion across two membranes in series, see Figure 7.

One can “black-box” an open detailed balanced Markov process by converting it into an electrical
circuit, applying the already known black-boxing functor for electrical circuits [23] and translating
the result back into the language of open Markov processes [5]. The key step in this process is the
construction of a quadratic form which we call “dissipation”, analogous to power in electrical circuits,
which is minimized when the populations of an open Markov process are in a steady state.
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A

B

C

D

E

Figure 7. A depiction of two membranes arranged in series.

5. Principle of Minimum Dissipation

Here, we show that by externally fixing the populations at boundary states, one induces steady
states which minimize a quadratic form which we call “dissipation”.

Definition 1. Given an open detailed balanced Markov process we define the dissipation functional of a
population distribution p to be

D(p) =
1
2 ∑

i,j
Hijqj

(
pj

qj
− pi

qi

)2

. (7)

Given boundary populations b ∈ [0, ∞)B, we can minimize this functional over all p which agree
on the boundary. Differentiating the dissipation functional with respect to an internal population,
we get

∂D(p)
∂pn

= −2 ∑
j

Hnj
pj

qn
.

Multiplying by qn
2 yields

qn

2
∂D(p)

∂pn
= −∑

j
Hnj pj,

where we recognize the right-hand side from the open master equation for internal states. We see
from Equation (1) that, for fixed boundary populations, the conditions for p to be a steady state,
namely that

dpi
dt

= 0 for all i ∈ V (8)

is equivalent to the condition that

∂D(p)
∂pn

= 0 for all n ∈ V − B. (9)
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Definition 2. We say a population distribution obeys the principle of minimum dissipation with
boundary population b if p minimizes D(p) subject to the constraint that p|b = b.

With this, we can state the following theorem:

Theorem 3. A population distribution p ∈ RV is a steady state with boundary population b ∈ RB if and only
if p obeys the principle of minimum dissipation with boundary population b.

Proof. This follows from Theorem 28 in [5].

Given specified boundary populations, one can compute the steady state boundary flows by
minimizing the dissipation subject to the boundary conditions.

Definition 4. We call a population-flow pair a steady state population-flow pair if the flows arise from a
population distribution which obeys the principle of minimum dissipation.

Definition 5. The behavior of an open detailed balanced Markov process with boundary B is the set of all
steady state population-flow pairs (pB, JB) along the boundary.

Indeed, there is a functor � : DetBalMark→ LinRel which maps open detailed balanced Markov
processes to their steady state behaviors. This is the main result of our previous paper [5]. The fact
that this is a functor means that the behavior of a composite open detailed balanced Markov process
can be computed as the composite of the behaviors.

6. Dissipation and Entropy Production

In the last section, we saw that non-equilibrium steady states with fixed boundary populations
minimize the dissipation. In this section, we relate the dissipation to a divergence between
population distributions known in various circles as the relative entropy, relative information or
the Kullback–Leibler divergence. The relative entropy is not symmetric and violates the triangle
inequality, which is why it is called a “divergence” rather than a metric, or distance function. We
show that for population distributions near a detailed balanced equilibrium, the rate of change of the
relative entropy is approximately equal to the dissipation plus a “boundary term”.

The relative entropy of two distributions p, q is given by

I(p, q) = ∑
i

pi ln
(

pi
qi

)
. (10)

It is well known that, for a closed Markov process admitting a detailed balanced equilibrium,
the relative entropy with respect to this detailed balanced equilibrium distribution is monotonically
decreasing with time, see for instance [2]. There is an unfortunate sign convention in the definition
of relative entropy: while entropy is typically increasing, relative entropy typically decreases. More
generally, the relative entropy between any two population distributions is non-increasing in a closed
Markov process.

In an open Markov process, the sign of the rate of change of relative entropy is indeterminate.
Consider an open Markov process (V, B, H). For any two population distributions p(t) and q(t)
which obey the open master equation let us introduce the quantities

Dpi
Dt

=
dpi
dt
− ∑

j∈V
Hij pj (11)
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and

Dqi
Dt

=
dqi
dt
− ∑

j∈V
Hijqj, (12)

which measure the rate at which population flows into the ith state from outside the system. These
quantities are sometimes referred to as the boundary-fluxes. Notice that Dpi

Dt = 0 for i ∈ V − B, as the
populations of internal states evolve according to the master equation. In terms of these quantities,
the rate of change of relative entropy for an open Markov process can be written as

d
dt

I(p(t), q(t)) = ∑
i,j∈V

Hij pj

(
ln
(

pi
qi

)
−

piqj

qi pj

)
+ ∑

i∈B

Dpi
Dt

∂I
∂pi

+
Dqi
Dt

∂I
∂qi

. (13)

The first term is the rate of change of relative entropy for a closed Markov process. This is
less than or equal to zero [25,26]. Thus, the rate of change of relative entropy in an open Markov
process satisfies

d
dt

I(p(t), q(t)) ≤ ∑
i∈B

Dpi
Dt

∂I
∂pi

+
Dqi
Dt

∂I
∂qi

. (14)

This inequality tells us that the rate of change of relative entropy in an open Markov processes
is bounded by the rate at which relative entropy flows through its boundary. If q is an equilibrium
solution of the master equation

dq
dt

= Hq = 0,

then the rate of change of relative entropy can be written as

d
dt

I(p(t), q) = ∑
i,j∈V

(Hij pj − Hji pi) ln

(
piqj

qi pj

)
+ ∑

i∈B

Dpi
Dt

∂I
∂pi

. (15)

Furthermore, if q satisfies detailed balance we can write this as

d
dt

I(p(t), q) = −1
2 ∑

i,j∈V
Jij Aij + ∑

i∈B

Dpi
Dt

∂I
∂pi

, (16)

where

Jij(p) = Hij pj − Hji pi (17)

is the thermodynamic flux from j to i and

Aij(p) = ln

(
Hij pj

Hji pi

)
(18)

is the conjugate thermodynamic force. This quantity:

1
2 ∑

i,j∈V
Jij Aij

is what Schnakenberg calls “the rate of entropy production” [6]. This is always non-negative. Note
that due to the sign convention in the definition of relative entropy, in the absence of the boundary
term, a positive rate of entropy production corresponds to a decreasing relative entropy.
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We shall shortly relate the rate of change of relative entropy to the dissipation for open detailed
balanced Markov processes, but first let us consider the quantity Aij(p). It is the entropy production
per unit flow from j to i. If Jij(p) > 0, i.e., if there is a positive net flow of population from j to i, then
Aij(p) > 0. In addition, Jij(p) = 0 implies that Aij(p) = 0. Thus, we see that this form of entropy
production is, by definition, non-negative.

We can understand Aij(p) as the force resulting from a difference in chemical potential. Let us
elaborate on this point to clarify the relation of our framework to the language of chemical potentials
used in non-equilibrium thermodynamics. Markov processes are special cases of chemical reactions
obeying mass action kinetics in which each reaction is unimolecular. Let us assume that we are
dealing with only unimolecular reactions and that our system is an ideal mixture so that the chemical
potential µi associated to the ith state or species is given by:

µi = µo
i + T ln(xi), (19)

where T is the temperature of the system in units where Boltzmann’s constant is equal to one, µo
i

is some reference chemical potential of the ith species and xi = ni
∑i ni

is the molar fraction of the
ith species with ni giving the number of moles of the ith species [13]. Note that this is equal to the
fraction of the population in the ith state xi = ni

∑i ni
= pi

∑i pi
. The difference in chemical potential

between two states gives the force associated with the flow which seeks to reduce this difference in
chemical potential

µj − µi = µo
j − µo

i + T ln
( pj

pi

)
.

This potential difference vanishes when pi and pj are in equilibrium and we have

0 = µo
j − µo

i + T ln
( qj

qi

)
,

or that

qj

qi
= e−

µo
j −µo

i
T . (20)

If the equilibrium distribution q satisfies detailed balance, then this also gives an expression for

the ratio of the transition rates
Hji
Hij

in terms of the standard chemical potentials. Thus, we can translate
between differences in chemical potential and ratios of populations via the relation

µj − µi = T ln

(
pjqi

qj pi

)
,

which, if q satisfies detailed balance gives

µj − µi = T ln

(
Hij pj

Hji pi

)
.

We recognize the right hand side as the force Aij(p) times the temperature of the system T:

µj − µi

T
= Aij(p). (21)

Let us return to our expression for d
dt I(p(t), q) where q is an equilibrium distribution:

d
dt

I(p(t), q) = −1
2 ∑

i,j∈V

(
Hij pj − Hji pi

)
ln

(
qi pj

qj pi

)
+ ∑

i∈B

Dpi
Dt

∂I
∂pi

.
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Consider the situation in which p is near to the equilibrium distribution q and let εi denote the
deviation in the ratio pi

qi
from unity so that

pi
qi

= 1 + εi. (22)

We collect these deviations in a vector denoted by ε. Expanding the logarithm to first order in ε

we have that

d
dt

I(p(t), q) = −1
2 ∑

i,j∈V

(
Hij pj − Hji pi

) (
εj − εi

)
+ ∑

i∈B

Dpi
Dt

∂I
∂pi

+ O(ε2),

which gives

d
dt

I(p(t), q) = −1
2 ∑

i,j∈V

(
Hij pj − Hji pi

) ( pj

qj
− pi

qi

)
+ ∑

i∈B

Dpi
Dt

∂I
∂pi

+ O(ε2).

By O(ε2), we mean a sum of terms of order ε2
i . When q is a detailed balanced equilibrium, we

can rewrite this quantity as

d
dt

I(p(t), q) = −1
2 ∑

i,j
Hijqj

(
pj

qj
− pi

qi

)2

+ ∑
i∈B

Dpi
Dt

∂I
∂pi

+ O(ε2).

We recognize the first term as the negative of the dissipation D(p) which yields

d
dt

I(p(t), q) = −D(p) + ∑
i∈B

Dpi
Dt

∂I
∂pi

+ O(ε2). (23)

We see that for open Markov processes, minimizing the dissipation approximately minimizes
the rate of decrease of relative entropy plus a term which depends on the boundary populations. In
the case that boundary populations are held fixed so that dpi

dt = 0, i ∈ B, we have that

Dpi
Dt

= − ∑
j∈V

Hij pj, i ∈ B.

In this case, the rate of change of relative entropy can be written as

d
dt

I(p(t), q) = ∑
i∈V−B

dpi
dt

pi
qi

+ O(ε2). (24)

Summarizing the results of this section, we have that for p arbitrarily far from the detailed
balanced equilibrium equilibrium q, the rate of relative entropy reduction can be written as

dI(p(t), q)
dt

= −1
2 ∑

i,j
Jij(p)Aij(p) + ∑

i∈B

Dpi
Dt

∂I
∂pi

.

For p in the vicinity of a detailed balanced equilibrium, we have that

dI(p(t), q)
dt

= −D(p) + ∑
i∈B

Dpi
Dt

∂I
∂pi

+ O(ε2),

where D(p) is the dissipation and εi = pi
qi
− 1 measures the deviations of the populations pi from

their equilibrium values. We have seen that in a non-equilibrium steady state with fixed boundary
populations, dissipation is minimized. We showed that for steady states near equilibrium, the rate
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of change of relative entropy is approximately equal to minus the dissipation plus a boundary term.
Minimum dissipation coincides with minimum entropy production only in the limit ε→ 0.

7. Minimum Dissipation versus Minimum Entropy Production

We return to our simple three-state example of membrane transport to illustrate the difference
between populations which minimize dissipation and those which minimize entropy production,
depicted in Figure 8.

qA qB qCX YqA qC

1

1

1

1

Figure 8. A model of passive transport across a membrane where all transition rates are set equal.

For simplicity, we have set all transition rates equal to one. In this case, the detailed balance
equilibrium distribution is uniform. We take qA = qB = qC = 1. If the populations pA and pC are
externally fixed, then the population pB which minimizes the dissipation is simply the arithmetic
mean of the boundary populations

pB =
pA + pC

2
.

The rate of change of the relative entropy I(p(t), q) where q is the uniform detailed balanced
equilibrium is given by

d
dt

I(p(t), q) = −(pA − pB) ln
(

pA
pB

)
− (pB − pC) ln

(
pB
pC

)
︸ ︷︷ ︸

− 1
2 ∑i,j∈V Jij Aij

+ (pA − pB)(ln(pA) + 1) + (pC − pB)(ln(pC) + 1)︸ ︷︷ ︸
∑i∈B

Dpi
Dt

∂I
∂pi

. (25)

Differentiating this quantity with respect to pB for fixed pA and pC yields the condition

pA + pC
2pB

− ln(pB)− 2 = 0.

The solution of this equation gives the population pB, which extremizes the rate of change of
relative entropy, namely

pB =
pA + pC

2W
(
(pA+pC)

2 e2
)

,

where W(x) is the Lambert W-function or the omega function which satisfies the following relation

x = W(x)eW(x).

The Lambert W-function is defined for x ≥ −1
e and double valued for x ∈ [−1

e , 0). This
simple example illustrates the difference between distributions which minimize dissipation subject
to boundary constraints and those which extremize the rate of change of relative entropy. For fixed
boundary populations, dissipation is minimized in steady states arbitrarily far from equilibrium. For
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steady states in the neighborhood of the detailed balanced equilibrium, the rate of change of relative
entropy is approximately equal to minus the dissipation plus a boundary term.

8. Discussion

Treating Markov processes as morphisms in a category leads naturally to open systems which
admit non-equilibrium steady states, even when the transition rates of the underlying process
satisfy Kolmogorov’s criterion. Microscopically, all reactions should be reversible with perhaps
a large disparity between the forward and reverse rates. Nonetheless, it is clear that biological
organisms are capable, at least locally, of storing free energy. This is typically accomplished via
the interaction with other systems or the environment. In this paper, the environment served as
a reservoir maintaining boundary populations at constant values. Since open Markov processes
are morphisms in the category DetBalMark, one can compose these open systems, thereby building
up complicated systems in a systematic way. We saw that the non-equilibrium steady states which
emerge minimize a quadratic form which depends on the deviation of the steady state populations
from the populations of the underlying detailed balanced equilibrium. For steady states in the
neighborhood of equilibrium, we saw that the dissipation is in fact the linear approximation of the
rate of change of relative entropy with respect to a detailed balanced equilibrium plus a boundary
term. In our framework, dissipation appears to be the fundamental quantity as it is minimized for
non-equilibrium steady states arbitrarily far from equilibrium. There has been much work examining
the regime of validity of Prigogine’s principle of minimum entropy production [27–29]. In future
work, we aim to generalize our framework for composing Markov processes to the non-linear regime
of chemical reaction networks with an eye towards incorporating recent interesting results in the
area [30]. We anticipate that the perspective achieved by viewing interacting systems as morphisms
in a category will bring new insight to the study of living systems far from equilibrium.
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