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Abstract: Numerical study of the slip effects and radiative heat transfer on a steady state fully
developed Williamson flow of an incompressible Newtonian fluid; between parallel vertical walls
of a microchannel with isothermal walls in a porous medium is performed. The slip effects are
considered at both boundary conditions. Radiative highly absorbing medium is modeled by the
Rosseland approximation. The non-dimensional governing Navier–Stokes and energy coupled partial
differential equations formed a boundary problem are solved numerically using the fourth order
Runge–Kutta algorithm by means of a shooting method. Numerical outcomes for the skin friction
coefficient, the rate of heat transfer represented by the local Nusselt number were presented even
as the velocity and temperature profiles illustrated graphically and analyzed. The effects of the
temperature number, Grashof number, thermal radiation parameter, Reynolds number, velocity slip
length, Darcy number, and temperature jump, on the flow field and temperature field and their effects
on the boundaries are presented and discussed.

Keywords: radiative heat transfer; slip effects; natural convection; forced convection; microchannel;
porous medium

1. Introduction

Combined natural (free) and forced convection in channels occurs in many applications [1]
and geometries such flow between parallel vertical walls [2], including flow reversal [3], inclined
parallel plates [4], and vertical channels [5], etc. Thermal radiative emission from a hot surface to a
cold surface plays an important role in many uses, including energy conversion [6], with radiation
effects and viscous heating in a channel partially filled by a porous material [7], viscous heating
in a porous channel [8], microchannels [9], heat exchangers with vertical hexagonal rod bundle
geometries [10], buoyancy-driven vortical flow [11], biofidelity corridors [12], fluid flow control [13,14],
in various boundary conditions [15], and pressure dependent viscosity flows [16]. Furthermore mixed
convection viscoelastic slip flow through a porous medium in a vertical porous channel with thermal
radiation flow [17] is found in industrial processes and has acquired substantial importance due to its
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wideranging applications in fluid flow control [18], propulsion [19,20], and viscous gravity currents
inside confining channels and fractures [21,22].

Velocity and thermal slip affects high performance magnetic bearings that are subjected to higher
thermal loads and many other research fields [23–26], EHD (electrohydrodynamics) mixers [27],
microfluidics and nanofluidics [28–32], and pseudoplastic material hydrodynamics [33–38]. The flow
slip at boundary conditions is seen in rare gas flow [28] as well as incompressible flow [29]. In addition,
thermal jump conditions are seen in many experiments [30]. Ulmanella and Ho [29] experimentally
detected the speed of fluids at several microchannel walls, as a function of shear rate, type of fluid,
and wall surface properties. Bocquet and Barrat [30] explained the probability of temperature slip
simultaneously with velocity discontinuity at boundary conditions. They presented the amount of
velocity slip and the value of temperature jump by bringing together the velocity slip length and
temperature slip length, respectively. The slip relations should be applied at the fluid solid boundaries
in microchannels in other textbooks [31].

Recently Jha et al. [32] presented an exact solution of steady fully developed natural convection
flow of a viscous, incompressible, electrically conducting fluid in a vertical annular microchannel
with the effect of porous resistance in the presence of velocity slip and temperature jump at the
annular microchannel surfaces [32]. They expressed their solution in terms of radius ratio, Darcy
number, rarefaction parameter, and fluid–wall interaction parameter effect on the flow. They found
that an increase in Darcy number leads to a decrease in the fluid velocity, volume flow rate and skin
friction, but they have not studied the effects of parameters on Nusselt number and their geometry
is cylindrical.

Of the various kinds of fluids the Williamson fluid is studied in this paper. The Williamson
fluid was first introduced by Williamson in 1929 [33]. This kind of fluid model was first is used to
model pseudoplastics which do not exhibit a real yield value and cannot be modeled as plastics nor
Newtonian fluids. Gravity currents such as drainage processes may occur in a variety of natural and
industrial activities, including the geological storage of carbon dioxide. This kind of non-Newtonian
fluid behavior is observed in gravity currents propagating in confining boundaries [34] in volcanos
and geothermal applications [35]. King and Woods [36] presented a dipole solution for viscous
gravity currents. Longo et al. illustrated the dipole solution for power-law gravity currents in porous
formations [37]. Buoyancy-driven fluid drainage from a porous medium for V-shaped Hele-Shaw cells
where the fluid drains from an edge is discussed in another reference. It flows between walls with a
limited gap (with respect to the main length scales) mimicking flows in porous media (Hele-Shaw cell
analogy) [38].

Considering all the above, the aim of the current study was the synthesis of the radiative
hydrodynamics of a highly absorbing incompressible fluid in a straight up microchannel filled with a
saturated porous material. Different wall temperatures are applied on the walls of the channels and
the fluid is an optically thick medium. A parameter study on temperature profile, velocity profile,
Nusselt number, and friction coefficient is investigated analytically.

2. Materials and Methods

A two-dimensional, steady state, incompressible and electrically conducting fluid flow with heat
transfer by convection between two vertical plates in the presence of radiation in a simple configuration
as shown in Figure 1. A stream of cold fluid at temperature TL moving over the left surface of the plate
with a slip velocity formed a fully developed laminar flow while the right surface of the plate is heated
by convection from a hot fluid at temperature TR .The two parallel planar walls are located at y = ´L
and y = +L, with the gap of 2 L. We shall assume that the velocity and the pressure field are of the form:

Ñ

V “ pupyq, 0, 0q p “ ppxq (1)
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The equation which governs the buoyancy-driven flow of an incompressible fluid through a
porous medium in the x-direction is:

ρ

ˆ

u
Bu
Bx
` v

Bu
By

˙

“ ´
Bp
Bx
`
Bτ

By
´ ρ0gβ

´

T´ Tre f

¯

` uK (2)

Since in other directions there is no fluid flow, the corresponding equations are not required here.
The Navier–Stokes equation for steady state fully developed velocity (Bu/Bx = 0; B2u/Bx2 = 0) for the
case for which µ8 = 0, µ0 = µ and Γγ’ < 1 (the component of extra stress tensor is τ = µγ’ (1 ´ Γγ’)´1 =
µγ’ (Γγ’ + 1)) [16] can be written as is simplified as:

d2u
dy2 “

dp
dx ` uK´ ρ0gβ

´

T´ Tre f

¯

µ
´

1` 2Γ du
dy

¯ (3)

where u is the fluid velocity in vertical direction, ρ0 is the fluid density at reference temperature
(Tref = (TL + TR)/2), µ is the dynamic viscosity, β is the thermal expansion coefficient, and σc is the
electrical conductivity. As well, the temperature equation for optically thick fluid is [18]:

B2T
By2 “ ´

4σ
3kχ

B2T4

By2 (4)

where T is the medium temperature, k is the thermal conductivity, σ is the Stefan–Boltzmann constant
and χ is the mean absorption coefficient of the medium. The boundary conditions of Equation (1) at
the system boundaries are:

u py “ Lq “ lv

ˆ

du
dy

˙

y“L
(5)

u py “ ´Lq “ lv

ˆ

du
dy

˙

y“´L
(6)

where lv is the velocity slip length and for the temperature are:

T py “ Lq “ TR ` lT

ˆ

dT
dy
`

4σ
3kχ

BT4

By

˙

y“L
(7)

T py “ ´Lq “ TR ` lT

ˆ

dT
dy
`

4σ
3kχ

BT4

By

˙

y“´L
(8)

where lT is the temperature jump length. The above equations are non-dimensionalized by the
following parameters for length:

X “
x
L

(9)

Y “
y
L

(10)

for velocity:

U pYq “
upyq
um

(11)

for temperature:

θ pYq “
2T´ TL ´ TR

TR ´ TL
(12)

for pressure:

P “
pL
µum

(13)
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and the non-dimensional well-known numbers as Grashof number:

Gr “
gβ pTR ´ TLq L3

2ν2 (14)

Reynolds number:

Re “
umL
ν

(15)

the radiation parameter:

Rd “
σ pTR ´ TLq

3

6kχ
(16)

temperature parameters:

θR “
TR ` TL
TR ´ TL

(17)

Darcy number:

Da “
L2

K
(18)

Weissenberg dimensionless number:

We “
Γum

L
(19)

Which is used for comparison of the evolution of the viscous energy released to the elastic energy
stored in the viscoelastic fluid flows, defined as the relation of stress relaxation time of the fluid (Γ) and
the fluid flow time (u/L). Physical interpretation of the Weissenberg number is the degree of anisotropy
or orientation generated by the deformation, and it is appropriate to describe flows with a constant
stretch history, such as simple shear.

Velocity slip parameter:

λv “
lv
L

(20)

λT “
lT
L

(21)

Finally the non-dimensional governing equations can be reformulated as:

d2U
dY2 “

DaU ´ Grθ
Re `

dP
dX

1`We dU
dY

(22)

d2

dY2

”

θ` Rdpθ` θRq
4
ı

“ 0 (23)

U pY “ 1q “ λv

ˆ

dU
dY

˙

Y“1
(24)

U pY “ ´1q “ λv

ˆ

dU
dY

˙

Y“´1
(25)

θ pY “ 1q “ 1` λT
d

dY

”

θ` Rdpθ` θRq
4
ı

Y“1
(26)

θ pY “ ´1q “ ´1` λT
d

dY

”

θ` Rdpθ` θRq
4
ı

Y“´1
(27)
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Figure 1. Schematic illustration of a vertical channel containing fully-developed mixed convection fluid flow. 
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fluid flow in a upright channel occupied by a highly absorbing fluid, which are important factors in 
various industrial applications. For the purpose of obtaining a strong visualization of the physical 
problem, widespread estimations have been performed to acquire the velocity and thermal field as a 
function of physical parameters such as combined convection parameter and Darcy number 
temperature-based parameters such as thermal radiation parameter, thermal parameter, and 
temperature slip, and a flow parameter, the velocity slip, are exposed comprehensively in Figures 2–7. 
The non-dimensional governing Equations (19)–(24) are solved numerically using Runge–Kutta–
Fehlberg method with shooting technique. The set of simultaneous first order differential equations of 
equivalent initial-value problem (Z′ = f(Z,Y)) are constructed by the vector Z = [U; U′; θ; θ′] and the 
first guess of the initial value are assumed as Z(Y = −1) = [0; 0; −1; 0]. 

To benchmark the current numerical method, the comparison of the numerical solution and 
analytical solution is illustrated in Figure 1. As the analytical solution of the problem for Rd = 0.0,  
Γ = 0, and λT = 0.0 is: 

Figure 1. Schematic illustration of a vertical channel containing fully-developed mixed convection
fluid flow.

3. Results and Discussion

Research has been carried out into steady state laminar combined free and forced convection fluid
flow in a upright channel occupied by a highly absorbing fluid, which are important factors in various
industrial applications. For the purpose of obtaining a strong visualization of the physical problem,
widespread estimations have been performed to acquire the velocity and thermal field as a function of
physical parameters such as combined convection parameter and Darcy number temperature-based
parameters such as thermal radiation parameter, thermal parameter, and temperature slip, and a
flow parameter, the velocity slip, are exposed comprehensively in Figures 2–7. The non-dimensional
governing Equations (19)–(24) are solved numerically using Runge–Kutta–Fehlberg method with
shooting technique. The set of simultaneous first order differential equations of equivalent initial-value
problem (Z1 = f(Z,Y)) are constructed by the vector Z = [U; U1; θ; θ1] and the first guess of the initial
value are assumed as Z(Y = ´1) = [0; 0; ´1; 0].

To benchmark the current numerical method, the comparison of the numerical solution and
analytical solution is illustrated in Figure 1. As the analytical solution of the problem for Rd = 0.0, Γ = 0,
and λT = 0.0 is:

U “ Gr
Re.Da Y´ PX

Da

`
e´
?

Da.Yp2 Gr
Re cosh

?
Da`2PXsinh

?
Da`2 Gr

Re lvsinh
?

Daq
2Da.sinhp2

?
Daqp

?
Dalv`1q

´
e
?

Da.Yp2PXsinh
?

Da´2 Gr
Re cosh

?
Da`2 Gr

Re lvsinh
?

Daq
2Da.sinhp2

?
Daqp

?
Dalv´1q

(28)

where pressure drop is calculated from:

´

2
e2
?

Da`1
´ 1

¯ ´

PX `
Gr
Re lv

¯

`
?

DaPX “

Da3{2lv2PX ´
Gr
Re

?
Dalv `Da3{2pDalv2 ´ 1q

(29)

The numerical results of current work for velocity slip length of 0.01, Da = 0.01, and Gr/Re = 50
are in good agreement with the analytical solution. As shown in Figure 2 the shooting method can
capture the precise results with 15 points. Figure 2 presents the consequence of the change of thermal
radiation parameter on the numerous feature of temperature and velocity field of the microchannel in
the constant value of the Grashof to Reynolds ratio (Gr/Re = 100), and θR = 10, λv = 0.01, We = 0.001,
λT = 0.01, Da = 0.1. On behalf of the special case of no absorption of the thermal radiation in the fluid,
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the temperature has a linear profile as shown in Figure 3a. By increasing of thermal radiation number
ranging 10´4 to 10´2 the dimensionless temperature is amplified, particularly close to the left partition.
Figure 3b displays a curvy form for the velocity outline. By growth of the amount of thermal radiation,
the dimensionless velocity profile alternates from sine shape to parabola shape and its maximum
decrease. The maximum value occurs at the middle of parabola profile approaches the Poiseuille
profile maximum (i.e., 1.5) by increase of Rd. The effect of thermal radiation on the friction factor at
walls and pressure gradient is illustrated in Figure 3c. By increasing Rd, the friction factor at the walls
(the left and right friction coefficients) decrease smoothly while the pressure gradient (the profile with
the middle legend), increases dramatically. As well the friction factor for the same Reynolds number is
greater at the right wall for low Rd and the reverse phenomena is seen for high Rd. Both skin-friction
values continue to reduce further with the increase of Rd although the rate of reduction declines. The
Nusselt number profiles are plotted versus Rd at the walls in Figure 3d. The augmentation is more
sensitive in the right wall. The change in the heat amount at the left and the right surface is the same
as the absorbed heat in the system.
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Figure 3. Thermal radiation effect on (a) the dimensionless temperature profile; (b) the dimensionless
velocity profile; (c) the friction factor at walls and pressure gradient (middle); (d) Nusselt number
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The effect of combined heat transfer coefficient (Gr/Re) is revealed in Figure 4. As exposed in
Figure 4a with an increase of Gr/Re from 1 to 30 the dimensionless temperature is constant. Figure 4b
illustrates the influence of the mixed convection parameter Gr/Re, on the dimensionless velocity
profiles for the Rd = 10, and λT = 0.01, λv = 0.01, We = 0.001, θR = 10, Da = 0.1. As seen the parabola
shape function changes to a sine-like shape for the velocity profile. It seems that the sine-like shape for
the velocity profile is an odd function but the absolute value of the right side is slightly higher than the
left side.
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Figure 4. Grashof number to Reynolds number ratio effect on (a) the dimensionless temperature profile;
(b) the dimensionless velocity profile; (c) the friction factor at walls and pressure gradient; (d) Nusselt
number at walls.

In natural convection and heat transfer, the Grashof number (Gr) arises as a dimensionless number
which approximates the ratio of the buoyancy to viscous force acting on a fluid. Notwithstanding,
in forced convection the Reynolds number governs the fluid flow since in the current mixed
convection problem the Gr/Re ratio is an important dimensionless parameter that governs the fluid
flow. By increasing Gr/Re, the dimensionless velocity profile maximum increases and the location of
the maximum moves from the middle to the right. It is obvious that the velocity is enhanced with
increased buoyancy force. An increase of the reversal flow with the surge of Gr/Re and that the reversal
flow is absent for small values of Gr/Re. The effect of Gr/Re on the friction factor at the walls and
pressure gradient is illustrated in Figure 4c. For high Gr/Re, by increasing Gr/Re, the friction factors
at the left and right walls are increased while the friction factor at the left is decreased for low Gr/Re
values. Also the friction factor for the same Reynolds number is greater at the right wall rather than
the left wall. As obvious from this figure, the natural convection augments the fluid flow near the
hot wall and increases the wall skin fraction and diminishes the heat transfer near the cold wall and
decreases it. The pressure gradient is constant and independent of Gr/Re. The same trend seen in
Nusselt number at walls in Figure 4d, and that augmentation is more sensitive at the right wall.

The influence of Da is revealed in Figure 5. As exposed in Figure 5a by change of Darcy number
from 0 to 15 for the λT = 0.01, We = 0.001, θR = 10, λv = 0.01, Rd = 10, and Gr/Re = 50, the dimensionless
temperature profile is not altered. Figure 5b displays the alteration of the sine-like contour of the
velocity profile caused by the existence of the porous media. By increasing the Darcy number, the
dimensionless velocity profile conserves its sine shape but its peaks are chamfered and its maximum
decreases. As a result the general effect of the Darcy parameter is to decrease the velocity magnitude
which is done by the solid matrix. This is as a result of the existence of the porous matrix which
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generates a resistive force akin to the drag force that acts in the opposite direction of the fluid motion,
thus bringing the velocity of the fluid to decrease.

The effect of Darcy number on the friction factor at the walls and pressure gradient is exemplified
in Figure 5c. By increasing of Darcy number, the friction factors at both walls are decreased for low
Darcy number and increased for high Darcy number. The change of pressure gradients by Darcy
number is significant. Physically, it means that with the increasing Ha, the strength of the solid matrix
resistance, the resistance force increases which drags the flow backward and resists the effect of natural
convection. It is observed that dp/dx increases rapidly with Da. The Darcy number effect on Nusselt
number at the walls is shown in Figure 5d. Although the friction factor for the same Darcy number
is greater at the right wall rather than the left wall, by increasing the Darcy number the Nusselt
number decreases at the right wall and the Nusselt number increases at the left wall where both values
approach to the same value.
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The consequence of changing thermal parameter on the system is recognized in Figure 6. As
shown in Figure 6a by increasing θR from 0.1 to 5 the dimensionless temperature is increased, especially
near the left wall. The maximum value occurs at the right wall and the minimum value comes about at
the left wall. Figure 6b shows the sine-like shape of the velocity profile for the Rd = 0.01, Gr/Re = 100,
We = 0.001, λT = 0.01, λv = 0.01, and Da = 0.1. As observed, as θR increases, the dimensionless velocity
profile conserves its sine-shape but displays its maximum decrease. As understandable from this figure
the natural convection effects are weakened by the increase of θR. Furthermore, from Figures 3b and 6b
it is detected that the increase of both radiation and thermal parameters make the reversal flow smaller,
thus one consequence of radiation is the stabilization of the fluid motion as can be understood. The
effect of θR on the pressure gradient and friction factor at walls is illustrated in Figure 6c. By increasing
θR, the friction factor at the right wall is decreased slightly while the friction factor at the left wall is
increased for θR < 3 and decreased for θR > 3. Also the friction factor for the θR < 2.5 is greater at the
wall Y = 1 while the friction factor at the wall Y = ´1 is greater for the θR > 2.5. In addition a slight
pressure gradient decrease (the profile with the middle legend) is seen for θR < 0.5, but a dramatic
increase is detected for θR > 0.5. The increase of θR has a slight effect on the walls’ surface tension but
it increases the dp/dx dramatically. Dimensionless temperature profiles are presented in Figures 3a, 4a,
5a and 6a disclose that the first derivative of the temperature profiles increases with the increase of the
parameters θR and Rd while it decreases with an increase of Gr/Re. Therefore an increase in Nusselt
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number is seen by the increase in θR and Rd, while the augmentation of the Nusselt number is more at
the right wall for θR < 3.5 (see Figure 5d).
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The outcome of velocity slip in the vertical microchannel velocity and temperature is presented
in Figure 7 by changing velocity slip length from 0 to 0.05 for the Rd = 0.01, and λT = 0.01, θR = 0.1,
We = 0.001, Da = 0.1, Gr/Re = 50. It can be seen from Figure 7a that for different values of the velocity
slip length the dimensionless temperature is not changed. Further, in Figure 7b it is observed that
amount of velocity increases at the right wall and decreases at the left wall with an increase of velocity
slip, while the sinus shape of the velocity profile is not altered. The maximum value occurs at the
right peak and it moves right by increase of the velocity slip. By increase of velocity slip length, the
maximum dimensionless velocity profiles to some extent increase. The consequence of velocity slip
length on the friction factor at walls and pressure gradient is illustrated in Figure 7c. It is clearly seen
from these figures that dp/dx and the Cf at the Y = 1 increases while the Cf at the Y = ´1 decrease with
increasing velocity slip length. Also the friction factor for the same velocity slip length is greater at
the right wall rather than the left wall. In Figure 7d, one can observe that the Nu at the Y = ´1 is not
changed considerably with an increase of velocity slip length, but the Nu at the Y = 1 increases rapidly,
especially for λv > 0.03. The above discussion for the gas flow can be regarded by replacement of
the velocity slip length by the mean free path of the molecules in a rare gas or velocity slip length by
Knudsen number. By an upsurge of the gas viscosity and decrease of the gas density and the sound
velocity in it, the velocity slip length increases.

The upshot of temperature slip is verified in Figure 8. As depicted in Figure 8a by increasing
λT from 0 to 0.1 the magnitude of the dimensionless temperature distribution shifted upward with a
constant value. This shows that the fluid temperature between the boundaries increases with increasing
temperature slip length. Figure 8b illustrates the sine-like outline of the velocity side view with fixed
values of other parameters as the Rd = 0.01, and Gr/Re = 50, We = 0.001, λv = 0.01, Da = 0.1, θR = 0.1.
With increasing temperature slip, the dimensionless velocity profile is not changed much. Even though
by increasing the temperature, the maximum velocity of the fluid increases, this increase are less
than the increase in temperature for common values of the temperature slip. For the rare gas stream
between parallel plates the temperature slip is proportional to the velocity slip length ratio or Knudsen
number. By growth of the gas Prantdl number and decrease of the specific heat ratio, the temperature’s
slip length increases. The effect of temperature slip length on the friction factor at boundary conditions
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and pressure gradient is exemplified in Figure 8c. By increasing the temperature slip, the coefficient
of friction at the walls is not changed meaningfully but the pressure gradient decreases slightly. The
decrease of the pressure gradient in the gas can be justified by considering the definition of Prandtl
number as the ratio of the viscous to the thermal diffusion. As a consequence, the fluid flow is resisted
because of this predominant property of the viscous fluid that leads to the decrease in pressure gradient,
so the temperature jumps the boundary condition because of the decrease in the required pumping
power in comparison with no-jumps boundary condition. Furthermore the friction factor for the same
temperature slip length is greater at the right wall than the left wall. The same trend is seen for the
Nusselt numbers at walls as shown in Figure 8d.
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The irreversibility in the channel flow of a fluid has two components of energy and momentum.
Consequently, entropy production may occur as a result of fluid friction and heat transfer in the
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direction of finite temperature gradients. Following, Bejan [39,40], the volumetric rate of entropy
generation can be expressed as:
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The first term in Equation (7) describes the heat transfer irreversibility and the second term
represents the local entropy generation rate due to fluid friction, respectively. Figure 8 presents the
effect of Darcy number on the dimensionless heat transfer component of the entropy, the dimensionless
viscous component of the entropy, the total dimensionless heat transfer component of the entropy,
and the total dimensionless viscous component of the entropy. The effect of Hartmann number is
established in Figure 8. As shown in Figure 9a by the increase of Da from 16 to 18 for the Rd = 10,
λT = 0.1, λv = 0.001, We = 0.001, θR = 5, and Gr/Re = 1, because the dimensionless temperature shape is
not hooked on Darcy number the Sθ not altered. This narrow range of Darcy number is to emphasize
the maximum exergy of a system. As exposed the Sθ(Y) is roughly linear and has a greater value at the
left wall and a lesser value at the right wall. Figure 9b displays the distribution of Su by the variation of
compactness of the porous medium. The reality of compression of porous media produces a resistive
force similar to the drag force that acts in the opposite direction of the fluid motion, thus causing
the velocity of the fluid to decrease. By increasing of Darcy number, the peaks of the dimensionless
velocity profile are chamfered consequently the velocity gradient inside the channel is decreased which
leads to lesser viscous warming, so the overall effect of the Darcy number is to decrease the velocity
component of entropy generation and it has an optimum near Da = 17.5.Entropy 2016, 18, 147 12 of 15 
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4. Conclusions

The aim of this wprk was to describe the flow of a fully developed non-linear laminar mixed heat
transfer of convection and radiation of an incompressible, electrically conducting radiative absorbing
fluid in a vertical microchannel in the presence of a porous medium and the effects of thermal radiation
heat absorption, and mixed convection. The consequences can be briefly summarized as follows:

(1) Temperature increases with increasing Rd and θR. As the radiation parameter increases the
capacity of absorption of thermal radiation increases which causes higher temperatures. As well
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the higher temperature parameter means a higher level of temperature of the system and an
increase of radiation heat emitting sources.

(2) The heat transfer between the two boundaries of the channel is not simply due to pure conduction
and the thermal radiation and mixed convection in a channel filled with a fluid-saturated porous
medium has a great impact on heat exchange mechanisms.

(3) Dimensionless coefficients suitable for the evaluation of the dimensionless mean velocity, of the
dimensionless bulk temperature and of the Nusselt numbers have been presented.

(4) Natural convection helps the fluid flow. As well the increase of temperature through the channel
helps natural convection. However the existence of a porous solid matrix increases the pressure
loss inside the channel. Since the pressure gradient decreases with increasing Gr/Re; Rd and θR
while it increases with an increase of Da.

(5) The coefficient of skin friction increases as Rd and θR increase while it decreases with an increase
of Gr/Re. The skin friction coefficient and mass transfer rates decrease with an increase in Rd
whereas heat transfer rate increases with an increase in the parameter Rd.

(6) Coefficient of skin friction and Nusselt number increase with an increase of Rd and θR while they
decrease with the mixed convection parameter.

(7) Grashof number, velocity slip, and pressure gradient increase skin friction and the Nusselt
number, whereas temperature jump and Reynolds number reduce their values.

(8) The shape of velocity profiles is different when Gr/Re changes. By increasing Gr/Re it alternates
from a parabola to a sine shape profile.

(9) The wall friction and Nusselt numbers may vary monotonically or non-monotonically with Rd
and θR, again depending on the values of the other parameters.
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Nomenclature

Symbol Description Unit

Cp specific heat capacity J/(kg¨K)
Da Darcy number = L2

K
g acceleration due to gravity m/s2

Gr Grashof number = gβpTR´TLqL3

2ν2

h heat transfer coefficient W/(m2¨K)
k thermal conductivity W/(m¨K)
K permeability of solid matrix m2

l slip length m
L half of gap length m

Nu Nusselt Number = 2 Lh/k
p pressure Pa
P dimensionless pressure = pL

µ um

Pr Prandtl number = υ/α
Rd the radiation parameter
Re Reynolds number = um L

ν
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Symbol Description Unit

S entropy J/K
T temperature K

Tref reference temperature = (TL + TR)/2 K
u fluid vertical velocity m/s
U dimensionless fluid vertical velocit y = u/um

We Weissenberg number = Γum
L

x, y Cartesian coordinates m
X, Y dimensionless Cartesian coordinates = x/L; y/L

Greek symbols
α thermal diffusivity m2/s
β volumetric coefficient of thermal expansion 1/K
χ mean absorption coefficient of the medium m´1

σ Stefan–Boltzmann constant W/(m2¨K4)
µ dynamic viscosity kg/(m¨ s)
υ kinematic viscosity m2/s
ρ fluid density kg/m3

Γ stress relaxation time of the fluid s
θ dimensionless temperature = 2T´TL´TR

TR´TL

θR temperature parameter
Superscript

0 reference
L Left wall
m average

max maximum
min minimum

R Right wall
t temperature
v velocity
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