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Abstract: In this paper, we consider the local fractional decomposition method, variational iteration
method, and differential transform method for analytic treatment of linear and nonlinear local
fractional differential equations, homogeneous or nonhomogeneous. The operators are taken in the
local fractional sense. Some examples are given to demonstrate the simplicity and the efficiency of
the presented methods.
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1. Introduction

Fractional calculus is at a stage of rapid development in many areas of science and engineering.
Many hidden aspects of real world phenomena from several fields were developed by using this type
of fractional calculus. Fractional operators have been applied successfully to describe phenomena
with memory effect, although the types of memory types appearing in Nature are still far from being
fully understood.

As a result differential equations with arbitrary orders have been subjected to many studies due to
their frequent occurrence in different applications in physics, fluid mechanics, physiology, engineering,
potential theory and elasticity, among others. Recently, a lot of literature has been published regarding
the application of fractional differential equations in nonlinear dynamics [1-7]. Thus, a huge amount
of attention has been given to the solution of fractional ordinary and fractional partial differential
equations [1-10]. During the last few years local fractional calculus has started to play an important
role in describing the complex phenomena which take place on a Cantor set.

Local fractional differential equations are usually difficult to solve analytically, so it is necessary to
obtain an efficient approximate solution, and for this the local fractional decomposition method [11-13],
local fractional variational iteration method [13,14], local fractional differential transform method [15],
and local fractional series expansion method [16,17], have been successfully applied to solve
partial differential equations with local fractional operators, while the local fractional Sumudu

Entropy 2016, 18, 150; d0i:10.3390/e18040150 www.mdpi.com/journal/entropy


http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2016, 18, 150 20f12

transform [18], and local fractional Laplace transform [19-21] are used to solve local fractional ordinary
differential equations.

We recall that entropy plays an important role in the analysis of anomalous diffusion processes
and fractional diffusion equations. These fractional novel entropy indices and fractional operators
allowing their implementation in complex dynamical systems [22-28]. Another application is related
to local fractional wave equations under fixed entropy arising in fractal hydrodynamics [29].

In this work, we applied the local fractional decomposition method, variational iteration
method, and differential transform method to solve local fractional ordinary differential equations.
The advantage of these methods respect to other numerical methods is that they don’t
need discretization.

2. Analysis of the Methods

2.1. Local Fractional Decomposition Method (LFDM)

Let us consider the local fractional differential equation in the following form:

L) (7) + Rog (1) = f(7) , 0 < 8 <1 1)
m9) _ 4"’

where L( g s M E N is linear local fractional operator of order md, Ry is linear local fractional
operator of order less than m®, and f (7y) is the source term. The Equation (1) has a lot of application in
physics and engineering.

By defining the m9-fold local fractional integral operator:

m—time
1 Y Y
(—m?) s ) mo
LEmg () = (Hﬁ)of Of P (@) (dw) @
we obtain:
LEMILEN g (1) + Rog (1)] = LE™ [ (7)] 3)
Hence, we have:
¢ (1) =p (1) + LE"[f ()] = LE" [Reg (7)], )

where p () is obtained from the initial conditions.
In the LFDM we express the solution ¢ () of local fractional differential Equation (1) in a series
form defined by:

=D on(7) @)
n=0

Substituting Equation (5) into both sides of Equation (4) yields:

Z )+ LE™D [ f (w)] — L) [Rﬁ <2 Pn (w)) ] 6)

n=0

The components ¢, (7), n = 0 of the solution ¢ () are completely determined in a recursive
manner by:

90 (7) = p (1) + LE™) [f (w)],

(—m?) @)
¢ny1(7) = —L [Ry ¢n (w)], n=0
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2.2. Local Fractional Variational Iteration Method (LFVIM)

We consider the following local fractional differential equation:

L) (7) + Rog (7) + Nog (7) = f (1) , 0 < 9 <1 ®)

where Ny is nonlinear local fractional operator.
According to the theory of local fractional variational iteration algorithm [13,14], we can write the
iteration formula as:

7
ouit (1) = 00 )+ Fg5 | Ty (L0 @)+ Rogu (@) + Nogi (@) = £ (0)] ()" 9)
0
where 1“(%19) is a fractal Lagrange multiplier.

Making the local fractional variation of Equation (9), we have:
T N N
Ogni1 (1) = 89n (1) + 8" iy | ey |LO") gy () + Ro (@) + Non () = f ()] ()’ (10)

where @, is considered as a restricted local fractional variation; that is 6%, = 0 (see [20]).
Ifm= 2, we get:

;’lﬂ _ (w — 7)19 (11)
ra+9) T0+9)
so that iteration is expressed as:
gt
Pnt1 (1) = ¢n (7) 1+19 J l+z9 L® gy (w) + Rogu (w) + Npgn (w)—f(v)] (dw)’ (12)
0
If m = 3, we get:
]’lﬁ _ _(("]_’)/)219 (13)
ra+7dv) I'(1+29)
so that iteration is expressed as:
e
Prit () = 00 (1) = gy | gy (L9 (@) + Rogu (@) + Nog (@) = £ ()] (o) (19
0
Finally, the solution is:
() = Hm on (7) (15)

n—0o0

2.3. Local Fractional Differential Transform Method (LFDTM)

In this method, the definition of local fractional differential transform and its theorems are
introduced via the general local fractional Taylor theorems [20,21].

Definition 1. The local fractional differential transform of the function ¢ () is defined by the
following formula:

1 ¢ (v)
k)= F(1+kz9)l dyk? L . (16

wherek =0,1,... ,mand 0 < ¢ < 1. In this work, the lowercase ¢ (y) represents the original function
and the uppercase X (k) stand for the transformed function.

Definition 2. The local fractional differential inverse transform of R (k) is defined as follows:
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¢ (1) = Y. R(k)y* (17)
k=0

Theorem 1. If (y) = u (y) + v () , then we have:

N(k)=U(k)+V (k) (18)
Theorem 2. If ¢ () = u (y) - v (), then we have:
k
R(k)= > U(p) V(k—p) (19)
=0
Theorem 3. If ¢ () = %u (7), where n € N, then we have:
T+ (k+n)d)
N (k) = T 1 k0) U(k+n) (20)
Theorem 4. If ¢ (y) = ﬁ, where n € N, then we have:
Oy (k—n)
R{k) = I (1+k0) @
where the local fractional Dirac delta function is [20]:
1, k=n
5o (k—n) = 22)
0, k#n

Hence, according to the LFDTM and its theorems we can construct the iteration formula for local
fractional differential Equation (8) in the form:

I'(1+ (k+m)?)

Tarke) L k+m) = Fk)—=ReR (k)= NoR (k) (23)

where RyR (k), NyX (k) and F (k) are the transformations of the functions Ry¢ (7), Ny () and
f () respectively.

3. Illustrative Examples

In this section, some examples for homogeneous and nonhomogeneous local fractional differential
equations within local fractional derivative operator are presented in order to demonstrate the
simplicity and the efficiency of the above methods.

3.1. Homogeneous Local Fractional Differential Equations

Example 1. Let us consider the homogeneous local fractional differential equation with local fractional
derivative in the form:

9® (1) —g(1)=0,0<8<1 (24)
subject to the initial conditions given as:
9(0)=0, ¢! (0) =1 (25)
e By using LFDM:

Adopting the inverse operator L(~2?)

leads to:

to both sides of Equation (24) and using the initial conditions
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L2 L@ g ()] = L2 [ ()]
Hence, we get:

9

0=y L o) (26)

According to the LFDM we decompose the unknown function ¢ (y) as an in finite series:

0
= > on() 27)
n=0
Substituting Equation (27) into Equation (26) yields:
3" i —29
5 00 (1) = il + 10| £ g0 )] (28)

The components ¢, (y), n = 0 can be completely determined by using the following
iterative formula:

,),19
@0 () = Td+9) (29)
Pur1 (1) = L [y ()] ,n =0 (30)

In view of Equations (29) and (30), we have the following approximations:

o?
@0 (7) = m

9 30
1 (1) = L2 [gy ()] = =29 [r(ﬂo)] = T

30 50
92 (7) = LE2) [y ()] = LE2) [r(17+30)] = 1559

50 7%

o3 (7) = LE2) [gy ()] = LE2) [ (1+519)] TA+79)
and so on. Finally, the solution of Equation (24) in series form is given by:
9 39 50 79

9 v v v (o
¢ = Ta5e) TTA30) TA+59) Tasze TS () (1)

e By using LFVIM:

Using Equation (12), we write the iterative formula of Equation (24) as

g
20) _ o
Pr1 ()= 000+ mgy | gy (957 @) - o )] () 32)
0
Start with the zeroth approximation:
,)/19
$o (7) = Ti+9) (33)

Utilizing Equations (32) and (33), we obtain the successive approximations:

v
911 =0 e | o) 98" (@) = 9o (@) | (dew)?

T
T(1+0) ' T(1+30)
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A

P2(7) =1 (y ) O} T [ 2 (@) - 1 (w)] (dw)”

9 39 50
_ i Y Y
= T(+9) T TA+30) T T(1+50)

v
ey | iy [98 (@) = 92 (@] @)

o3 () =@2(y

,},l‘) 3¢ 751‘) 7719
TA+0) T T(A139) T T(1+58) T T(A179)
9 30 59 79 (2n+1)9
on(P) = et o s T
r1+d9) T(1+39) T(1+5%) T(1+79) r1+2n+1)9)
Hence, we get the solution of Equation (24) as follows:
¢ () = Hm @u (7) = sinhy (70) (34)

e By using LFDTM:

Taking the local fractional differential transform of Equation (24), we obtain the following
iteration relation:

Irl+k+2)9) _
“TaiE) R(k+2)—R(k)=0 (35)
or:

I'(1+k9)
rl+k+2)9)

From the initial conditions Equation (25), we get:

N (k+2) = N (k) (36)

1

R(O) =0 () = 5 g

(37)

Using iteration Equations (36) and (37), we obtain the following values of X (k) successively:

N(z):ﬁam):o

N = [ g R =0
O e DR

R(6) = T gg N4 = 0
RO = E e O = i

Finally, the local fractional differential inverse transform leads to:

p(1) = 3 N[k
k=0

,},0 730 ,Y5L9 ,},719

= Tt T T3 T TA+59) T T8 T
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that gives the exact solution by:
¢ () = sinhy (7") (38)

From Equations (31), (34) and (38), the approximate solution of the given problem Equation (24) by
using local fractional decomposition method is the same results as that obtained by the local fractional
variational iteration method and by the local fractional differential transformation method.

3.2. Nonhomogeneous Local Fractional Differential Equation

Example 2. Consider the nonhomogeneous local fractional differential equation with local fractional
derivative in the form:

29
(39) () — -
P o) = gy 001 (39)
subject to initial conditions:
9(0)=1, ¢ (0) =1, ¢ (0) =0 (40)

e By using LFDM:

Taking the inverse operator L(~3%) to both sides of Equation (39) and using the initial conditions
leads to:

130 [[G0) gy (] = 300 [0 "
¢ (7) rit29) ¢ (7) (41)
Hence, we get:
B v 5% (—38)
) =1t i Tragse T e (42)

According to the LFDM we decompose the unknown function ¢ () as an in finite series:

w
(1) = ¢u(7) (43)
n=0
Substituting Equation (43) into Equation (42) yields:
0 o 56 ©
_ Y Y (—39)

The components ¢, (7), n = 0 can be completely determined by using the cursive relationship:

,Yﬂ ,)/Sﬁ

139 "Tasse (V)= L [y ()], n=0 (45)

<P0(“Y):1+r(

Consequently, we obtain:

,Yl9 ,.}/519
P =1+ T35 TA +50)

9 59
91(7) = L3 [go ()] = L3 [1 + riEe r(¥+5ﬂ)]
30 49 80
= T(iae) T Ty T (s

_ 30 49 86
p1(7)] = L3 [F(17+319) + ey r(17+819)]
,Y619 ,)/719 1148
= T(1+69) T T(1179) T TA+119)

—39) [

2 (7) = L




Entropy 2016, 18, 150

_ _ 60 79 118
93 (1) =L [p2 ()] = L3 [1‘(11619) + r(1v+719) + r(17+1119)]
99 100 140
r(ire) + 79 T IO

and so on. The solution in series form:

,)/19 7319 ,),419 ,YSI9
-1
¢ =t Fa et T 39 T T140)  TA+50)

is readily obtained. Therefore, the exact solution can be written as:
20
_ 8\ _
o(1) = Eo (1) T (1+29)
e By using LFVIM:

Using Equation (14), we write the iteration formula of Equation (39) as:

v
w2®

oui1 ) = ()~ gy | S [ @) o) - ] e
0

Start with the zeroth approximation:

,),19 ,.},519
P =1+ T35 TA 5 59)

Substituting Equation (49) into Equation (48), we obtain the successive approximations:

Vo 20
P11 =90~ iy | Ky |87 (@) = po () — gy | (@)’
9 Y )20 w”
- r(17+19) - F(ll+19) J (ra(Jl:z)ﬂ) [_1 T TA+9) r(1+519)] (dw)

')’0 730 ,)/419 7519 780
=1+ a5 T tasoe) T raTae) T a9 T T189)

Y 20
- (39)
#2(1) =01 = ity | i [0 (@) = 01 (@) = ety | ()
0 T (w20 W3 wh? W8 0
= r(17+z9) - r(11+19) f (r(1+72)19) [_ T(1+39)  T(1+49) 1“(1+819)] (dew)
¢ 30 40 59 60 79
=1+ miso) * s + TG st rired) e
,Y8L9 119
T TA+8e) T TA+119)
n ko 26
_ i T
on (7) *kzzor(uzﬁ) T (1+20)

The LFVIM admits the use of:

@ (7) = lim ¢n (7),

n—ao0

that gives the solution by:

8of 12

(46)

(47)

(48)

(49)

(50)

(51)
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e By using LFDTM:
Applying the local fractional differential transform of Equation (39), we obtain the following

iteration relation:

T(1+ (k+3)0)
C T(1+k8)

o9 (k—2)

T (1+29) (52)

N (k+3) — X (k) =

or

T (14 ko) 5o (k—2)
T+ (k+3)9) ()+1"(1+219)] 43

From the initial conditions Equation (40), we get:

_
r1+9)’

Using iteration Equation (53), we obtain the following values of X (k) successively:

1 5y (k—2) 1 1
RO = Tavae [N(0)+r(1+219)] “T(A+30) | T TA+39)

(1+9) dg(k—2)] T(1+9) 1 _ 1
R@) = (1+419)[N(1)+rﬂ(1+219)]_ (1149) T(1+08) L (1+40)

T
1+ 29) So(k—2)] T(1+26 1 1
>PQ> ]_H
T

N(k+3) =

R(0) =1, N(1) = R(2) =0 (54)

( ) _
(1+59 T (1+29) 1+59) T(1+28) T (1+59)

(1+39) 1 3 1
T(1+69) T'(1+39) T (1+60)

r
T
N(5) =
r

N(6) - L0+39) (519(k—2)]:

T(1+160) [ @+ ra529)

Finally, the local fractional differential inverse transform leads to:

o0

e(r) = X R(K)
k=0 (55)
4 3¢ 49 50

=1+ 1"(17+19) + r(17+3ﬁ) + r({y+4l9) + syt

that gives the solution by:

7219
@ (7) =Ep (’Yﬂ) - m (56)

From Equations (47), (51) and (56), the approximate solution of the given problem Equation (39) by
using local fractional decomposition method is the same results as that obtained by the local fractional
variational iteration method and by the local fractional differential transformation method.

3.3. Nonlinear Local Fractional Differential Equations

Example 3. Let us consider the nonlinear local fractional differential equation with local fractional

derivative operator:
?20 (1) + 9" (1) =297 (1) =0, 0<9 <1 (57)

subject to initial conditions:

9(0)=0, ¢ (0)=1 (58)
° By using LFVIM:

Using Equation (14), we write the iteration formula of Equation (57) as:
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4

by | S [ @) + o @) -2 @) @) 69)
0

Pnt1 (V) = @n (v

Start with the zeroth approximation:

o0
Po (1) = T +0) (60)
Substituting Equation (60) into Equation (59), we obtain the successive approximations:
T @w=® [ (20 9
?1(1) =00 () = ity | i [0 (@) + 07 (@)~ 268 (@) (d)?
0 20 440
= TA+8)  T(1+29) ' T(1+49)
1 26 0
#2(1) =010~ 1ty | i 7 [#27 (@) + 917 (@) - 293 (@)] (dw)?
9 720 ,)/319 4,}140 16’)/50
TA+6) ~ T(1+29) T I(1+30) T T(1+49) ' T(1+50)
Therefore, the approximation solution is
¢ 29 39 4~A40 16 5¢
9N =t~ Trag T ! ! (61)

T(1+08) T(1+28) T(1+38) T(+40) T(1+59) &
° By using LFDTM:

Taking the local fractional differential transform of Equation (57), we obtain the following
iteration relation:

T'(1+(k+2)9) I(1+(k+1)9) d .
TTAE) N(k+2)+—r(l+kﬁ) N(k+1) ZEON(p)N(k p) =0 (62)
or:
I'(1+k0) Iri+k+1)9)
N (k+2) = AT (k129 ZZN CTTaTR) N (k+1) (63)
From the initial conditions Equation (58), we get:
1
R(0)=0, N(1 4
(0) =0, R(1) = gy (64
Using iteration Equation (64), we obtain the following values of X (k) successively:
S SRR INETY P
@)= I'(1+29) [2& OR(©) 1 N(l)] - T(1+29)
T +9) - I(1+29) _ 1
R(3) = T (1+39) [4N( IRM) T(1+9) R2)| = T (1+39)
Finally, the local fractional differential inverse transform leads to:
S ko
e(r) = 2Rk
k=0 (65)

4 20 30
_ + Y
T(1+0)  T(+9) '« T(1130)

+ ...
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4. Conclusions

In this work, LFDM, LFVIM and LFDTM have been successfully used to find the approximate
solutions of homogeneous and nonhomogeneous local fractional ordinary differential equations.
The results show that the three methods are powerful and efficient for solving linear and nonlinear local
fractional differential equations, and therefore, can be widely applied in other problems. Furthermore,
the local fractional variational iteration method (LFVIM) requires the evaluation of the Lagrange
multiplier, while the local fractional differential transformation method (LFDTM), which is based on
the local fractional Taylor theorem, constructs solutions in the form of polynomial series by means of
an iterative procedure.
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